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Abstract

The article provides multifaceted evidence on the shape of the aggregate country-level

production function, derived from the World Technology Frontier, estimated on the ba-

sis of annual data on inputs and output in 19 highly developed OECD countries in the

period 1970–2004. A comparison of its estimates based on Data Envelopment Analysis

and Bayesian Stochastic Frontier Analysis uncovers a number of significant discrepan-

cies between the nonparametric estimates of the frontier and the Cobb–Douglas and

translog production functions in terms of implied efficiency levels, partial elasticities,

and returns-to-scale properties. Furthermore, the two latter characteristics as well

as elasticities of substitution are found to differ markedly across countries and time,

providing strong evidence against the constant-returns-to-scale (CRS) Cobb–Douglas

specification, frequently used in related literature. We also find notable departures

from perfect substitutability between unskilled and skilled labor, consistent with the

hypotheses of skill-biased technical change and capital–skill complementarity. In the

Appendix, as a corollary from our results, we have also conducted a series of develop-

ment accounting and growth accounting exercises.

Keywords and Phrases: world technology frontier, aggregate production function,

Data Envelopment Analysis, Stochastic Frontier Analysis, partial elasticity, returns to

scale, substitutability

JEL Classification Numbers: E23, O11, O14, O33, O47
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1 Introduction

It is paradigmatic in the contemporary macroeconomics literature to assume that the

production process can be summarized by an aggregate production function, mapping

the stocks of appropriately specified aggregate inputs onto the unique aggregate output.

When the precise shape of this function is not the central question of the economic

problem at hand, it is also frequently assumed to take the constant-returns-to-scale

Cobb–Douglas form, valued for its simplicity, analytical tractability, and agreement

with a few broad patterns observed in the data.

Seen from an empirical viewpoint, there is however no consensus on the preferred

functional form of the aggregate (country-level) production function.1 Estimation of

aggregate production functions is notoriously difficult due to multiple empirical is-

sues: measurement uncertainty of input and output aggregates such as GDP, physical

capital and human capital, problems with comparability across countries and time,

endogeneity of input variables, just to name a few. Yet another important issue, and

one that we carefully address in the current paper is that even though the production

function is a technological concept, one of a technical relationship between inputs and

outputs, in reality, country-level productivity may also be affected by non-technological

variables such as taxation, presence of various barriers to doing business (corruption,

crime, complicated bureaucratic procedures, etc.), sectoral composition of production,

labor market institutions, or financial constraints. To obtain reliable estimates of the

technological production function itself, one ought to control for differences in these

institutional conditions across countries and time. We achieve this goal by taking the

World Technology Frontier approach.2

1Taking aggregation issues seriously, it is even dubious if such an aggregate production function

exists at all (see e.g., Felipe and Fisher, 2003). The ability to aggregate local input–output relationships

into an aggregate function where total output depends on total stocks of inputs only and not on

their distribution across plants, requires strong homogeneity assumptions imposed on the individual

production processes – which are very unlikely to hold. Keeping this caveat in mind, the “aggregate

production function”, which we refer to, can then be viewed only as an approximate relationship

between aggregate inputs and output, which could be altered due to shifts in factor distribution. See

Temple (2006) for a discussion of this interpretation.
2It should be kept in mind that although the World Technology Frontier approach enables us to

filter out non-technological productivity differences across countries and time given the allocation of

inputs, there still remains the possibility that the aforementioned non-technological variables may

affect input allocation as well. For example, corruption creates both inefficiency in factor use (part

of output is diverted away instead of being included in GDP) and suboptimal investment decisions,

resulting in suboptimal capital stocks. In our approach, the potential product of a hypothetical

5

The objective of the current paper is then to estimate the aggregate, country-level

production function as a relationship between countries’ aggregate inputs and their

maximum attainable output, computed on the basis of the World Technology Frontier

(WTF hereafter) – where the WTF is the best-practice frontier at each moment in time.

By doing so, we are able to single out technological aspects of the production processes

from their institutional background, at least up to a multiplicative constant. Such

estimates of the aggregate production function will be then used as a convenient starting

point for further analyses, aimed at deriving this function’s crucial characteristics, and

discussing which parametric form agrees most with the available empirical evidence.

As crucial features of the estimated aggregate production function, we shall investigate

its implications for the cross-country distribution of technical inefficiency, the pattern

of dependence of its (variable) partial elasticities on factor endowments, (variable)

returns-to-scale properties, and its implied (Morishima and Allen–Uzawa) elasticities

of substitution.

We estimate the aggregate production function with two alternative methods. First,

we apply the nonparametric Data Envelopment Analysis (DEA) approach,3 augmented

with the Simar and Wilson (1998, 2000) bootstrap procedure which enables us to ad-

just for the bias of DEA efficiency estimates as well as to compute standard errors

and confidence intervals for these estimates. The advantage of this first approach is

that it does not require one to make a priori assumptions on the functional form of the

aggregate production function – and yields testable predictions instead. Unfortunately,

since the DEA approach is based on piecewise linear approximations of the true ag-

gregate production function, it is not suited to providing predictions on the function’s

curvature features such as the elasticities of substitution.

Second, we also apply the Stochastic Frontier Analysis (SFA) methodology4 which

allows us to estimate the production function directly, under certain predefined (para-

metric) functional specifications. Such parametric models are estimated with Bayesian

techniques, particularly well-suited to production function estimation due to their rel-

ative robustness under collinearity and measurement error. The advantage of the SFA

“corrupt” country, computed at the frontier, would then be corrected for the first source of inefficiency

but not the second, which we are unable to address. In fact, throughout the paper, we will be taking

the allocation of inputs as given, without considering its optimality.
3For applications in macroeconomics, see e.g., Färe et al. (1994), Kumar and Russell (2002),

Henderson and Russell (2005), Jerzmanowski (2007), Badunenko, Henderson and Zelenyuk (2008),

and Growiec (2012).
4For applications in macroeconomics, see e.g., Koop, Osiewalski and Steel (1999, 2000) and Bos et

al. (2010). See Kumbhakar and Knox Lovell (2000) for general reference.
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approach is that it allows to test several parametric specifications directly. It is also

useful for drawing precise conclusions on the aggregate production function’s elasticities

of substitution.5

Based on these methods, we obtain the following principal results:

• the CRS Cobb–Douglas production function fails to reproduce the important

properties of our data (regarding the distribution of inefficiency levels, partial

elasticities and elasticities of substitution),

• the (non-parametric) bootstrap-augmented DEA frontier is not only markedly

different from the CRS Cobb–Douglas production function specification, but also

from the unrestricted Cobb–Douglas and the translog, even though the latter

offers much more flexibility and can be fitted to the data relatively well,

• regardless of the approach taken, the ranking of countries with respect to their

technical efficiency is relatively stable (although individual distances to the fron-

tier may vary),

• partial elasticities of the aggregate production function are correlated with inputs

both in the DEA and in the translog case, and they vary substiantially across

countries and time, providing evidence against the Cobb–Douglas specification

and lending support to the skill-biased technical change hypothesis,

• tests of returns to scale based on the DEA, Cobb–Douglas and translog repre-

sentations of the frontier provide mixed evidence on this property, although DRS

seems more prevalent in smaller economies, and IRS – in larger economies,

• unskilled and skilled labor are not perfectly substitutable,

• (Morishima and Allen–Uzawa) elasticities of substitution vary largely across coun-

tries and time, staying in broad agreement with the hypothesis of capital–skill

complementarity.

Based on our WTF production function estimates, we have also conducted a series

of development accounting and growth accounting exercises. The discussion of their

5SFA allows us to estimate the production function directly, but even if the estimated parametric

function is misspecified when taken at face value, sometimes it can still be considered as a reasonable

approximation of the true aggregate production function, sufficiently good within some range of input

combinations. The translog production function is indeed frequently viewed this way, i.e., as a local

second-order Taylor approximation of an arbitrary function.
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results has been delegated to the Appendix, so that they do not interrupt our main

line of reasoning. They are nevertheless an important corollary of our estimations.6 In

the Appendix, we have found that:

• according to DEA, differences in GDP per worker between the USA and most

Western European countries in 1980 have been mostly due to differences in effi-

ciency and skilled labor endowments, whereas in 2004 they have been mostly due

to differences in efficiency and physical capital endowments. Average efficiency

differences have grown visibly between 1980 and 2004;

• according to the Cobb–Douglas production function specification, the differences

in GDP per worker between the USA and other countries in the sample have been

predominantly Total Factor Productivity (TFP)-driven, with a few exceptions

where physical capital differences played an equally important role;

• according to DEA, factor accumulation and technological progress have provided

significant positive contributions to GDP growth in 1980–2004, with technological

progress being particularly powerful in 1990–2004. Average efficiency levels have

been declining, providing negative contributions to GDP growth;

• according to the Cobb–Douglas production function specification, TFP growth,

physical capital accumulation, and human capital accumulation have all provided

positive contributions to GDP growth throughout 1980–2004. The variance of

their relative strength across countries and time was large.

The remainder of the paper is structured as follows. Section 2 presents the dataset

and methodology. Section 3 offers an overview of our basic results, and a characteriza-

tion of the World Technology Frontier viewed through the lens of the DEA approach.

Section 4 discusses the properties of the aggregate, country-level production function,

inferred from the WTF. Section 5 concludes.

6Included in the Appendix is also one specific robustness check.
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2 Data and methodology

2.1 Data sources and the construction of variables

The macroeconomic dataset used in the current study covers 19 highly developed

OECD economies in the period 1970–2004. The output variable is GDP and the in-

put variables are the aggregate stocks of physical capital, human capital, subdivided

into unskilled and skilled labor, and (for auxiliary purposes only) the “raw” number of

employees.

International, annual data on GDP and GDP per worker as well as the total number

of workers in 1970–2004 have been taken from the Total Economy Database, devel-

oped by the Conference Board and Groningen Growth and Development Data Centre

(GGDC). The unit of measurement is the US dollar, converted to constant prices as of

year 2008 using updated 2005 EKS PPPs.7

Physical capital stocks have been constructed using the perpetual inventory method

(cf. Caselli, 2005). We have used country-level investment shares from the Penn World

Table 6.2 (cf. Heston, Summers and Aten, 2006). Following Caselli (2005), we also

assumed an annual depreciation rate of 6%.

Country-level human capital data have been taken from de la Fuente and Doménech

(2006). The raw variables provided in this contribution are shares of population aged 25

or above having completed primary, some secondary, secondary, some tertiary, tertiary,

or postgraduate education. The considered dataset is of 5-year frequency only and

ends in 1995. Nevertheless, the de la Fuente–Doménech dataset has been given priority

among all possible education attainment databases due to its presumed superior quality.

The original de la Fuente–Doménech data have then been extrapolated forward in the

time-series dimension until the year 2000 using Cohen and Soto (2007) schooling data

as a predictor for the trends. Neither Barro and Lee (2001) nor Cohen and Soto (2007)

data could be used directly for this purpose because neither of them is (even roughly)

in agreement with the de la Fuente–Doménech dataset – nor with each other – in the

period where all datasets offer data points. Furthermore, the human capital data have

been extrapolated to all intermediate years as well, for human capital variables are, in

general, very persistent and not susceptible to business cycle variations.

Human capital aggregates have been constructed from these educational attainment

data using the Mincerian exponential formula with a concave exponent, following Hall

7The Conference Board and Groningen Growth and Development Centre, Total Economy Database,

January 2009. http://www.conference-board.org/data/economydatabase/
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and Jones (1999), and more directly, Caselli (2005) and Growiec (2012):

HU =

(∑
i∈SU

ψie
ϕ(si)

)
L, HS =

(∑
i∈SS

ψie
ϕ(si)

)
L, (1)

where SU is the set of groups of people who completed less than 12 years of education

(less than elementary, elementary, less than secondary), SS is the set of groups of people

who completed 12 years of education or more (secondary, less than college, college or

more), ψi captures the share of i-th education group in total working-age population

of the given country, si represents years of schooling in i-th education group (cf. de la

Fuente and Doménech, 2006), L is the total number of workers, and ϕ(s) is a concave

piecewise linear function:

ϕ(s) =




0.134s s < 4,

0.134 · 4 + 0.101(s− 4) s ∈ [4, 8),

0.134 · 4 + 0.101 · 4 + 0.068(s− 8) s ≥ 8.

(2)

The overall human capital index may be computed as the sum of unskilled and skilled

labor: H = HU + HS.8 We have however allowed these two types of labor to be

imperfectly substitutable and thus enter the production function separately. The “per-

fect substitution” case where only total human capital matters for production (and

its distribution between unskilled and skilled labor has no impact whatsoever) is an

interesting special case of our generalized formulation. The data do not support this

assumption.

All data used in DEA and bootstrap-augmented DEA analyses are at annual fre-

quency, and the WTF is estimated sequentially, so that for computing the WTF in

each period t, data from periods τ = 1, 2, ..., t are used.

Should significant outliers be found within our sample, the final results are likely

to be biased. The same problem could also appear due to business-cycle fluctuations,

especially that we only measure the total stocks of physical and human capital in

the considered countries, without taking account of their utilization rates which vary

significantly across the cycle. Escaping short- and medium-term disturbances appears

extremely important in an aggregate production function analysis such as ours. Thus,

the Hodrick and Prescott (1997) filter with the usual smoothing parameter (λ = 6.25

8The cutoff point of 12 years of schooling, delineating unskilled and skilled labor, seems adequate

for the relatively highly developed OECD economies in our sample, though it might be set too high if

developed economies were to be considered as well (cf. Caselli and Coleman, 2006).
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in agreement with the de la Fuente–Doménech dataset – nor with each other – in the

period where all datasets offer data points. Furthermore, the human capital data have

been extrapolated to all intermediate years as well, for human capital variables are, in

general, very persistent and not susceptible to business cycle variations.

Human capital aggregates have been constructed from these educational attainment

data using the Mincerian exponential formula with a concave exponent, following Hall

7The Conference Board and Groningen Growth and Development Centre, Total Economy Database,

January 2009. http://www.conference-board.org/data/economydatabase/

9



Data and methodology

N a t i o n a l  B a n k  o f  P o l a n d10

2

and Jones (1999), and more directly, Caselli (2005) and Growiec (2012):

HU =

(∑
i∈SU

ψie
ϕ(si)

)
L, HS =

(∑
i∈SS

ψie
ϕ(si)

)
L, (1)

where SU is the set of groups of people who completed less than 12 years of education

(less than elementary, elementary, less than secondary), SS is the set of groups of people

who completed 12 years of education or more (secondary, less than college, college or

more), ψi captures the share of i-th education group in total working-age population

of the given country, si represents years of schooling in i-th education group (cf. de la
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for annual data) has been applied to all our data to exclude the outliers and high-

frequency cyclical variation present in the data.

Unfortunately, when employing the aforementioned panel dataset in parametric

analyses such as the SFA, we face a critical problem. Namely, due to the strong multi-

collinearity present in the time domain of our smoothed time series, the parametric,

Bayesian estimation procedures applied here might lead to uninformative, uninter-

pretable results. To avoid this unwelcome outcome, we have decided to narrow down

the time dimension of the dataset used in our SFA estimations, limiting ourselves to

data covering entire decades instead of single years. One further potential advantage

of this approach is that original human capital data are readily available at decadal

frequency.

The presentation of our results in the following sections takes into account the fact

that our DEA results have been obtained for the whole dataset and the SFA results

for its subset only. We concentrate on cross-sectional comparisons or on the inferred

“time-less” characteristics such as the slope and curvature of the aggregate production

function, and do not compare goodness-of-fit statistics if they are computed on the

basis of different datasets.

2.2 Methodological issues

The objective of the current paper is to draw conclusions on the shape of the aggre-

gate, country-level production function, based on two types of estimates of the World

Technology Frontier: deterministic DEA-based ones, augmented with the stochastic,

nonparametric Simar–Wilson bootstrap, and parametric SFA-based ones, computed

using Bayesian procedures. Let us now provide a brief description of both approaches.

2.2.1 Data Envelopment Analysis

The idea behind DEA is to construct the best-practice production function as a convex

hull of production techniques (input–output configurations) used in countries present

in the data.

The production function is then inferred indirectly as a fragment of the boundary

of this convex hull for which is output is maximized given inputs. More precisely, for

each observation i = 1, 2, ..., I and t = 1, 2, ..., T , output yit is decomposed as:

yit = Eitft(xit) (3)
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i.e., into a product of the maximum attainable output given inputs y∗it ≡ ft(xit) and

the Shephard distance function Eit ∈ (0, 1]. In other words, the efficiency index Eit

measures (vertical) distance to the technology frontier, while the frontier itself is com-

puted nonparametrically as y∗it = ft(xit). The vector of inputs, xit, could in principle

be of any length n ∈ N, but if one distinguishes too many types of inputs then (i) the

DEA could run into numerical problems due to the “curse of dimensionality” (cf. Färe

et al., 1994), and (ii) the efficiency levels could be overestimated due to too small a

sample size. Throughout most of our analysis, we will be assuming xit = (Kit, H
U
it , H

S
it),

however, making our study immune to both these criticisms.

Formally, the (output-based) deterministic DEA method is a linear programming

technique allowing one find the Shephard distance function Ejt for each unit j =

1, 2, ..., I and given t ∈ {1, 2, ..., T} in the sample such that its reciprocal – the Debreu–

Farrell efficiency index θjt is maximized subject to a series of feasibility constraints (cf.

Fried, Knox Lovell and Schmidt, 1993):

max
{θjt,λ11,...,λIt}

θjt

s.t. θjtyjt ≤
t∑

τ=1

I∑
i=1

λiτyiτ ,

t∑
τ=1

I∑
i=1

λiτx1,iτ ≤ x1,jt,

t∑
τ=1

I∑
i=1

λiτx2,iτ ≤ x2,jt,

... (4)
t∑

τ=1

I∑
i=1

λiτxn,iτ ≤ xn,jt,

λiτ ≥ 0, i = 1, 2, ..., I, τ = 1, 2, ..., t,

It is also additionally assumed that
∑t

τ=1

∑I
i=1 λiτ = 1 in the VRS case (variable

returns to scale), or
∑t

τ=1

∑I
i=1 λiτ ≤ 1 in the NIRS case (non-increasing returns to

scale). Under the CRS (constant returns to scale) assumption, no further restriction

on λiτ ’s is necessary.

The Shephard distance function Ejt is computed as the reciprocal of the (output-

oriented Debreu–Farell) efficiency index θjt (that is, Ejt = 1/θjt).

Since the data contain a finite number of data points, one for each country and

each year, by construction the DEA–based production function is piecewise linear and

12
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its vertices are the actually observed efficient input–output configurations (i.e., not

dominated by any linear combination of other observed input–output configurations).

As a rule, the WTF is estimated sequentially, so that for computing the WTF

in each period t, data from periods τ = 1, 2, ..., t are used. This corresponds to the

assumption that technologies, once developed, remain available for use forever (see e.g.,

Henderson and Russell, 2005).

2.2.2 Advantages and limitations of the deterministic DEA approach

The deterministic DEA is a data-driven approach to deriving the production function

from observed input–output pairs. Its unquestionable strength lies in the fact that it

does not require any assumptions on the functional form of the aggregate production

function (provided that it satisfies the free-disposal property), and provides testable

predictions on its shape instead. Indeed, the usual assumption of a Cobb–Douglas

aggregate production function may lead to marked biases within growth accounting

or levels accounting exercises leading to an overestimation of the role of total factor

productivity (TFP), as argued by Caselli (2005) and Jerzmanowski (2007), a feature

which is avoided when the DEA approach is adopted. As for the predicted shape of the

production function, DEA can only offer its finite-sample, piecewise linear approxima-

tion. With sufficiently large data samples, however, certain parametric forms could be

tested formally against this approximate DEA-based nonparametric benchmark, such

as the Cobb–Douglas or translog.

There are also limitations of the DEA approach. First, its deterministic character

makes it silent on the estimation precision of the aggregate production function and

of the predicted efficiency levels if inputs and outputs are subject to stochastic shocks.

This weakness is however removed in the current study by using bootstrap techniques

due to Simar and Wilson (1998, 2000b).

Second, the DEA provides a biased proxy of the actual technological frontier. In

fact, even the most efficient units in the sample could possibly operate with some ex-

tra efficiency, since they are already aggregates of smaller economic units and must

therefore have some internal heterogeneity. Taking account of that, the frontier would

be shifted upwards; efficiency is nevertheless normalized to 100% for the most effi-

cient units in the sample. Again, the bootstrap method due to Simar and Wilson

(1998, 2000b) helps in this respect by allowing for corrections in the bias as well as

for estimating confidence intervals for the actual efficiency levels and the technological

frontier.
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Third, the DEA constructs the aggregate production function basing on the (rel-

atively few) efficient data points. This makes it naturally sensitive to outliers and

measurement error. This problem cannot be fully neutralized by bootstrap techniques.

In this light, it is important to emphasize that our data have been carefully filtered,

so that outlying observations and cyclical fluctuations have been removed. We are

confident that thanks to this step, the risk of errors in our DEA has been minimized.

2.2.3 Simar and Wilson’s bootstraps

As mentioned above, our deterministic DEA results have been complemented with

Simar and Wilson’s (SW) bootstraps. These procedures approximate the sampling

distribution of an estimator by repeatedly simulating the Data Generating Process

(DGP) under the assumption that the true production function is unknown and conse-

quently the true Shephard distance functions Eit (for i = 1, 2, ..., I and t = 1, 2, ..., T )

are unknown, too. Simar and Wilson’s bootstraps are then used to formulate an ap-

proximation of the sampling distribution of the difference Êit − Eit, where Êit is the

DEA estimator of Eit.

The exact procedure applied here is the homogenous bootstrap described by Simar

and Wilson (1998). The procedure is based on the homogeneity assumption (cf. Simar

and Wilson, 2000a), that random variables E1t, ..., EIt are i.i.d. with an unknown

density function g on the support (0, 1] (the output-oriented case). In particular,

it means that we assume Eit to be independent of the random variables generating

observed inputs and output, (x̃t
i, ỹ

t
i), where xt

i = [x′
11 ... x

′
it]

′, yti = [y11 ... yit]
′.9

As the outcome of the homogenous SW bootstrap we receive, for each unit i =

1, 2, ..., I and t = 1, 2, ..., T , the bootstrap estimate of the Shephard distance function

Êit and a set of bootstrap realizations Eitb, b = 1, 2, ..., B, where B = 2000 is the num-

ber of bootstrap iterations.10 Consequently, we also obtain estimates of the bootstrap

bias, variance of Êit, and respective confidence intervals. Estimates Êit may also be ad-

ditionally bias-corrected. If the bootstrap procedure is consistent, then asymptotically,

these estimates may be used for Eit. Some Monte Carlo experiments conducted by

Simar and Wilson (1998, 2000a) suggest that this SW bootstrap is indeed consistent.

However, no rigorous proof of its consistency exists in the literature so far (cf. Simar

and Wilson, 2000a).

9Vectors (x̃t
i, ỹ

t
i), for i = 1, 2, ..., I and t = 1, 2, ..., T , are assumed to be i.i.d., too. Their realizations

are the observed input-output pairs {(xt
i, y

t
i), i = 1, 2, ..., I, t = 1, 2, ..., T}. We use the procedure

boot.sw98 contained in the free software package FEAR (written in R).
10See Simar and Wilson (1998). Usually, B = 2000 is considered sufficient in the literature.
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ditionally bias-corrected. If the bootstrap procedure is consistent, then asymptotically,

these estimates may be used for Eit. Some Monte Carlo experiments conducted by

Simar and Wilson (1998, 2000a) suggest that this SW bootstrap is indeed consistent.

However, no rigorous proof of its consistency exists in the literature so far (cf. Simar

and Wilson, 2000a).

9Vectors (x̃t
i, ỹ
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It should be emphasized that the homogeneity assumption may be relaxed. The

inefficiency of a unit would then depend on the observed values of inputs and outputs,

i.e., on the pairs (xt
i, y

t
i) (i = 1, 2, ..., I and t = 1, 2, ..., T ). Such procedures are called

a heterogeneous bootstraps and were first proposed in the paper by Simar and Wilson

(2000b), where the pairs (xt
i, y

t
i) were expressed in cylindrical coordinates.11 In the

papers by Kneip, Simar and Wilson (2008, 2009) as well as Park, Jeong and Simar

(2009), generalized procedures were proposed, allowing for:

• orthonormal coordinates, with one of them being connected with Eit,

• constant returns to scale.

These authors have also proposed formal proofs of consistency of certain bootstrap

procedures.

Unfortunately, these procedures generate a lot of additional computational burden

which greatly limits their practical applicability (see the comments in Kneip, Simar

and Wilson, 2008, 2009). For example, they depend on unknown constants whose

values are established arbitrarily. Moreover, for large numbers of units in the sample,

complexity of the algorithm blows up calculation times beyond acceptable limits. For

these reasons, the software is still in its infancy (see Kneip, Simar and Wilson, 2009)

and could not be used for the purposes of the current study.

2.2.4 Testing local and global returns to scale

In order to test the extent of returns to scale in the production technology on the basis

of DEA-based estimates of the WTF, we have used the resampling algorithm due to

Simar and Wilson (1998) and then carried out formal tests of local and global returns

to scale, introduced by Löthgren and Tambour (1999) and by Simar and Wilson (2002),

respectively.

As far as the test of local returns to scale is concerned, we use a procedure based

on bootstrap confidence intervals proposed by Löthgren and Tambour (1999). This

returns-to-scale test (for each unit j = 1, 2, ..., I, and t = 1, 2, ..., T ) is performed using

the following nested testing procedure:

Test 1:

H0 : S
C−NIRS
jt = 1 (scale-efficient or increasing returns to scale),

H1 : S
C−NIRS
jt > 1 (decreasing returns to scale).

11In DEA, inefficiency has a radial character, so (xt
i, y

t
i) is strictly connected with Eit.
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As the outcome of the homogenous SW bootstrap we receive, for each unit i =

1, 2, ..., I and t = 1, 2, ..., T , the bootstrap estimate of the Shephard distance function

Êit and a set of bootstrap realizations Eitb, b = 1, 2, ..., B, where B = 2000 is the num-

ber of bootstrap iterations.10 Consequently, we also obtain estimates of the bootstrap

bias, variance of Êit, and respective confidence intervals. Estimates Êit may also be ad-

ditionally bias-corrected. If the bootstrap procedure is consistent, then asymptotically,

these estimates may be used for Eit. Some Monte Carlo experiments conducted by

Simar and Wilson (1998, 2000a) suggest that this SW bootstrap is indeed consistent.

However, no rigorous proof of its consistency exists in the literature so far (cf. Simar

and Wilson, 2000a).

9Vectors (x̃t
i, ỹ

t
i), for i = 1, 2, ..., I and t = 1, 2, ..., T , are assumed to be i.i.d., too. Their realizations

are the observed input-output pairs {(xt
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10See Simar and Wilson (1998). Usually, B = 2000 is considered sufficient in the literature.
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t
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(2000b), where the pairs (xt
i, y

t
i) were expressed in cylindrical coordinates.11 In the

papers by Kneip, Simar and Wilson (2008, 2009) as well as Park, Jeong and Simar

(2009), generalized procedures were proposed, allowing for:

• orthonormal coordinates, with one of them being connected with Eit,

• constant returns to scale.

These authors have also proposed formal proofs of consistency of certain bootstrap

procedures.

Unfortunately, these procedures generate a lot of additional computational burden

which greatly limits their practical applicability (see the comments in Kneip, Simar

and Wilson, 2008, 2009). For example, they depend on unknown constants whose

values are established arbitrarily. Moreover, for large numbers of units in the sample,

complexity of the algorithm blows up calculation times beyond acceptable limits. For

these reasons, the software is still in its infancy (see Kneip, Simar and Wilson, 2009)

and could not be used for the purposes of the current study.

2.2.4 Testing local and global returns to scale

In order to test the extent of returns to scale in the production technology on the basis

of DEA-based estimates of the WTF, we have used the resampling algorithm due to

Simar and Wilson (1998) and then carried out formal tests of local and global returns

to scale, introduced by Löthgren and Tambour (1999) and by Simar and Wilson (2002),

respectively.

As far as the test of local returns to scale is concerned, we use a procedure based

on bootstrap confidence intervals proposed by Löthgren and Tambour (1999). This

returns-to-scale test (for each unit j = 1, 2, ..., I, and t = 1, 2, ..., T ) is performed using

the following nested testing procedure:

Test 1:

H0 : S
C−NIRS
jt = 1 (scale-efficient or increasing returns to scale),

H1 : S
C−NIRS
jt > 1 (decreasing returns to scale).

11In DEA, inefficiency has a radial character, so (xt
i, y

t
i) is strictly connected with Eit.
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If H0 in Test 1 is not rejected, we proceed with the second test:

Test 2:

H0 : S
CRS
jt = 1 (scale-efficient),

H1 : S
CRS
jt > 1 (increasing returns to scale),

where

SCRS
jt =

θCRS
jt (xt

j, y
t
j)

θV RS
jt (xt

j, y
t
j)
, SC−NIRS

jt =
θCRS
jt (xt

j, y
t
j)

θNIRS
jt (xt

j, y
t
j)
,

and θCRS
jt (xt

j, y
t
j), θ

V RS
jt (xt

j, y
t
j) and θNIRS

jt (xt
j, y

t
j) are the output-oriented Debreu–Farrell

distance functions under the assumption of constant, variable, and non-increasing re-

turns to scale, respectively.

Let then Ŝ∗C−NIRS
jt (α) and Ŝ∗CRS

jt (α) denote the lower bound of the bootstrap (1-α)-

confidence interval for SC−NIRS
jt and SCRS

jt , respectively. The test procedure is straight-

forward: (i) if Ŝ∗C−NIRS
jt (α) > 1, then H0 in Test 1 is rejected and we conclude that

the technology features decreasing returns to scale; (ii) if Ŝ∗C−NIRS
jt (α) = 1, then H0

in Test 1 cannot be rejected and we perform Test 2. If Ŝ∗CRS
jt (α) > 1, then the hy-

pothesis of scale efficiency is rejected by Test 2 and we conclude that the technology

exhibits increasing returns to scale; (iii) finally, if Ŝ∗CRS
jt (α) = 1, we conclude that the

technology is scale-efficient.

In turn, our statistical test of global returns to scale is based on two nested tests

proposed by Simar and Wilson (2002). In Test 1, the null hypothesis is tested that

the aggregate production function (WTF) exhibits globally constant returns to scale

(CRS) against an alternative hypothesis that the technology is characterized by variable

returns to scale (VRS). That is:

Test 1:

H0: technology is globally CRS,

H1: technology is VRS.

If H0 is rejected, we shall perform Test 2 with H0 stating that the technology

exhibits globally non-increasing returns to scale (NIRS) against H1 that the technology

is VRS:

Test 2:

H0 : technology is globally NIRS,

H1 : technology is VRS.

Simar and Wilson (2002) discussed various statistics for testing these hypotheses;

among these, we have selected the following ratios of means:
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ŜCRS
t =

∑t
τ=1

∑I
j=1 θ̂

CRS
jτ (xτ

j , y
τ
j )∑t

τ=1

∑I
j=1 θ̂

V RS
jτ (xτ

j , y
τ
j )

in Test 1,

and ŜC−NIRS
t =

∑t
τ=1

∑I
j=1 θ̂

CRS
jτ (xτ

j , y
τ
j )∑t

τ=1

∑I
j=1 θ̂

NIRS
jτ (xτ

j , y
τ
j )

in Test 2,

where θ̂CRS
jτ (xτ

j , y
τ
j ), θ̂

V RS
jτ (xτ

j , y
τ
j ) and θ̂NIRS

jτ (xτ
j , y

τ
j ) are estimators of the (output-oriented)

Debreu–Farrell distance function under the assumption of constant, variable, and non-

increasing returns to scale, respectively.

By construction ŜCRS
t ≥ 1 because θ̂CRS

jτ (xτ
j , y

τ
j ) ≥ θ̂V RS

jτ (xτ
j , y

τ
j ). The null hypothe-

sis in Test 1 is rejected when ŜCRS
t is significantly greater than 1. The p-value of the

null hypothesis is derived by bootstrapping (see Simar and Wilson, 2002):12

p− value =
B∑
b=1

I[0,+∞)(Ŝ
CRS,b
t − ŜCRS

obs,t )

B
,

where B = 2000 is the number of bootstrap replications, I[0,+∞) is the indicator func-

tion, ŜCRS,b
t is the b-th bootstrap sample, and ŜCRS

obs,t is the original observed value. The

same methodology is used in Test 2.

2.2.5 Stochastic Frontier Analysis

To take a broader picture of the (in)efficiency in aggregate production processes in

highly developed OECD countries, the results obtained with the DEA approach have

been compared against estimates resulting from stochastic frontier analysis (SFA). In

this alternative approach, stochastic disturbances are explicitly taken into account,

and the potential biases in efficiency estimates caused by stochastic variation, out-

liers and measurement error are thus minimized. Unfortunately, these advantages are

only conditional on finding the appropriate parametric representation of the aggregate,

WTF-based production function.

In its simplest, log-linear form, the stochastic frontier model for panel data, em-

ployed in the current paper, can be written as:

yit = x′
itβ + vit − uit, (5)

where yit = lnYit represents the logarithm of output in country i = 1, ..., I and pe-

riod t = 1, ..., T , β represents the vector of estimated parameters, and the vector

12To test the hypotheses regarding global returns to scale of the technology we use suitably modified

codes written by Oleg Badunenko (see http://sites.google.com/site/obadunenko/codes).
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xit carries information about n factors of production expressed in logarithms, plus a

constant term. Given this notation, the case xit = (1, lnKit, lnH
U
it , lnH

S
it) represents

our benchmark Cobb–Douglas specification with physical capital, unskilled labor and
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in which case equation (5) becomes the translog production function. Constant returns

to scale are either tested or directly imposed, wherever necessary, by writing down the

production function in its intensive form. We shall do this in some of our estimated

specifications, along with introducing certain regularity conditions which serve as a

source of prior information and depend on the specification of the frontier. These
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sum of these three partial elasticities represents the measure of average returns to scale
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The basic theoretical framework of stochastic frontier (SF) models was originally

proposed by Aigner, Lovell and Schmidt (1977).13 In their seminal paper, these authors

assumed the total, “composed” error of the production function regression to be a

sum of two components: a symmetric, normally distributed variable (the idiosyncracy,

vit) and the absolute value of a normally distributed variable (the inefficiency, uit).

Ever since, the main stream of research on stochastic frontier models appears to have

focused primarily upon various assumptions about the distribution of the inefficiency

term. Single-parameter distributional specifications of vit and uit (for instance, normal

and truncated normal, respectively) have produced some skepticism in the subsequent

literature (cf. Ritter and Simar, 1997; Greene, 2003), but nevertheless remain an

important tool in comtemporary applied SFA-based research.

Another issue is that applying the Stochastic Frontier methodology to panel data

requires one to keep track of technological progress which can strongly affect production

capabilities. Obviously, it is “unfair” to evaluate the efficiency of observations from the

past against a frontier estimated with a dataset including more recent data as well,

since at earlier times, production processes could not enjoy the possibilities offered

13Another seminal paper in this field is due to Meeusen and van den Broeck (1977).
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tion, ŜCRS,b
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where yit = lnYit represents the logarithm of output in country i = 1, ..., I and pe-

riod t = 1, ..., T , β represents the vector of estimated parameters, and the vector

12To test the hypotheses regarding global returns to scale of the technology we use suitably modified

codes written by Oleg Badunenko (see http://sites.google.com/site/obadunenko/codes).
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proposed by Aigner, Lovell and Schmidt (1977).13 In their seminal paper, these authors

assumed the total, “composed” error of the production function regression to be a

sum of two components: a symmetric, normally distributed variable (the idiosyncracy,

vit) and the absolute value of a normally distributed variable (the inefficiency, uit).

Ever since, the main stream of research on stochastic frontier models appears to have

focused primarily upon various assumptions about the distribution of the inefficiency

term. Single-parameter distributional specifications of vit and uit (for instance, normal

and truncated normal, respectively) have produced some skepticism in the subsequent

literature (cf. Ritter and Simar, 1997; Greene, 2003), but nevertheless remain an

important tool in comtemporary applied SFA-based research.

Another issue is that applying the Stochastic Frontier methodology to panel data

requires one to keep track of technological progress which can strongly affect production

capabilities. Obviously, it is “unfair” to evaluate the efficiency of observations from the

past against a frontier estimated with a dataset including more recent data as well,

since at earlier times, production processes could not enjoy the possibilities offered

13Another seminal paper in this field is due to Meeusen and van den Broeck (1977).
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by technologies developed later on. However, even when computing the WTF in a

sequential manner, akin to the one used in our DEA analysis, in SFA one ought to

control for technological progress within the frontier so as to obtain a fair evaluation

of the evolution of technical inefficiency across countries and time.

To address this issue, we employ Battese and Coelli’s (1992, 1995) decomposition

of the inefficiency term uit. It takes the following form:

uit = ui · zt,

where the random variable ui has either a truncated normal or an exponential distri-

bution14 and zt = exp[−η(t − T )], where positive (or negative) η indicates decreasing

(or increasing, respectively) inefficiency over time. Hence, the Battese–Coelli method-

ology urges the modeler to assume that the random part of uit is time-invariant, and

its temporal evolution is described by a deterministic function zt with an estimated

parameter η. This rigidity is however partly overcome when the WTF is estimated se-

quentially, so that for each period t, data from periods τ = 1, 2, ..., t are used. In such

case, temporal shifts in uit appear not only due to changes in zt, but also due to the

consecutive re-estimations of the WTF. The inefficiency term uit, the Debreu–Farrell

efficiency measure θit and the Shephard distance measure Eit are interrelated via the

equality θit = 1/Eit = exp(−uit).

Estimating the WTF sequentially allows the fixed effect ui to be reassessed in

every period. In result, we dispose of the uneasy assumption of a unique pattern of

convergence to the WTF across all countries and years (e.g., Kumbhakar and Wang

(2005) assume ui to be a function of capital per worker in the initial period). On the

other hand, we do not risk overparametrization of our model which would have likely

happened, had we assumed the parameters in β to be time-dependent (e.g., following

linear trends as in Koop, Osiewalski and Steel, 1999 and Makie�la, 2009). Such an

approach would be inadequate for a time horizon comparable to the one employed in

our study.

An alternative approach allowing one to deal with stochastic frontiers with time-

varying inefficiencies was offered by Cornwell, Schmidt and Sickles (1990). Regrettably,

this approach is a based on a “deterministic” frontier model, akin to DEA, and is

distribution-free in terms of uit, so it was not used for the purposes of the current

14Robustness tests have been done upon these two different distributional assumptions, though in

terms of our final results, choosing any of them makes little difference. The results are available from

the authors upon request.
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In sum, the crux of the SFA approach lies with the decomposition of the error

term into two components: the country- and time-specific idiosyncratic shock (or mea-

surement error) vit, and the technical inefficiency component uit which is assumed to

be non-negative. Both components are assumed to be independent of one another.

Needless to say, this assumption stands in sharp contrast to the DEA approach where

the whole distance between actual and potential output is automatically attributed to

inefficiency.

In our analysis, we shall employ several different assumptions concerning the dis-

tribution of uit. This issue is discussed in more details in the following section, along

with the description of the estimation procedure and assumptions made in the course

of our SFA analysis.

2.2.6 Bayesian estimation framework

From the computational perspective, two different approaches have been employed

in SFA literature to isolate the inefficiency component from the idiosyncratic error.

The first one is based on maximum likelihood methods, as proposed by Jondrow et

al. (1982). In this case, given the parameters of the model Θ = (β, σ−2, η, φ), the

likelihood function takes the form:

L(yit, θ) =
∏

p(yit|xit, θ) (6)

and so its maximization requires the derivation of marginal distributions p(yit|xit, θ) as

an integral with respect to the measure induced by the assumed parametric distribution

of uit:

p(yit|xit, θ) =

∫

R+

p(yit|xit, uit, θ)p(uit|θ)duit.

The other approach is the Bayesian one, first applied to the context of SFA by

van den Broeck et al. (1994). It relies on a posterior simulator, such as the currently

popular Gibbs sampling, which is applied in order to determine the distribution of

the inefficiency component uit via draws from the posterior distribution p(θ|yit, xit).

Hence, as opposed to Jondrow et al.’s approach, no explicit analytical formula for the

likelihood function is needed.

15Given the purposes of the current study, there are two major disadvantages of Cornwell, Schmidt

and Sickles’ (1990) model: (i) it labels all omitted time-invariant effects as inefficiency, and (ii) it can

only measure countries relative to each other, not relative to the frontier, set up in absolute terms.
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In our study, the stochastic frontier will be estimated with Bayesian techniques

that naturally correspond to the latter approach. Thus, all structural parameters of

the production function (yit|uit,Θ) ∼ N(x′
itβ − uit, σ

2), contained in the vector β,

as well the variance of disturbances vit and uit, the mean of the inefficiency term

uit, denoted by φ−1, and the pace of technological progress η, will be estimated in a

Bayesian procedure.

The first step of this procedure consists in making assumptions on the considered

shapes of parameter distributions and endowing them with appropriate priors. The

vector β is assumed to take the multivariate normal distribution (possibly truncated,

to depict the regularity conditions), β ∼ N(µ,Σ). The prior distribution of σ−2 is

taken close to the “usual” flat prior, as in Koop, Osiewalski and Steel (1999). vit’s are

treated as independent normal variables with zero mean, unknown variance and with

no autocorrelation over time (for all t, vit is independent of vi,t−1). The analysis starts

with an assumption that uit’s are independent exponentially distributed variables with

mean φ−1 and no autocorrelation. In this case, φ−1 ∼ Exp(− ln r∗), which implies

that prior median efficiency is equal to r∗. According to the findings presented in

the literature, r∗ should take the values from the interval [0.5, 0.9] (see Marzec and

Osiewalski, 2008; Makie�la, 2009). Having found that the final results are insensitive to

any value choice out of the aforementioned interval, the prior efficiency median was set

to 0.75. The alternative half-normal distribution of uit has also been investigated, but

it hardly affects the final outcome of the analysis.

The additional economic regularity conditions, imposed in a few considered cases,

depend on the specific form of the production function under estimation. In case of

the Cobb-Douglas specification, input elasticities, equal to the estimated β parameters,

have been assumed to be non-negative. Similar assumptions have also been made in

case of the translog specification; however, in this case input elasticities are linear

combinations of input quantities and β parameters, so the restriction is applied to

average elasticities only and not to their values for all units separately. All in all,

for all production functions under consideration, the regularity conditions enter the

estimation procedure through p(β) ∈ [0, 1]. Should average elasticities in the sample

satisfy these assumptions, then p(β) = 1.

The complexity of stochastic frontier models makes numerical integration methods

inevitable. In the current study, as in most recent Bayesian literature, this procedure is

based upon Gibbs sampling, which involves taking sequential random draws from the

full conditional posterior distribution (cf. e.g., Koop, Steel and Osiewalski, 1995). Un-

der very mild assumptions (see Tierney, 1994), these draws converge to the distribution
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for all production functions under consideration, the regularity conditions enter the

estimation procedure through p(β) ∈ [0, 1]. Should average elasticities in the sample

satisfy these assumptions, then p(β) = 1.

The complexity of stochastic frontier models makes numerical integration methods

inevitable. In the current study, as in most recent Bayesian literature, this procedure is

based upon Gibbs sampling, which involves taking sequential random draws from the

full conditional posterior distribution (cf. e.g., Koop, Steel and Osiewalski, 1995). Un-

der very mild assumptions (see Tierney, 1994), these draws converge to the distribution
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of draws from the joint posterior. In the current research, implemented in WinBUGS,

the characteristics of joint posterior distribution have been calculated on the basis of

300 000 burn-in draws and 300 000 accepted (final) draws for different starting points.

To evaluate the convergence of the Markov Chain Monte Carlo (MCMC) estimation

procedure, the following tests were done:

• assessment of the history plot (which plots the estimated parameter value against

the iteration number),

• autocorrelation tests: high autocorrelation might imply slow exploration of the

entire posterior distribution,

• evaluation of posterior kernel density plots.

Due to the obvious multi-collinearity present in our data, consisting of HP-filtered,

constructed time series of annual frequency, this Bayesian procedure suffers from low

estimation efficiency and may run into risk of leading to uninformative results. We

have therefore limited our SF analysis to data of decadal frequency. As we shall see

shortly, this is enough to show significant departures of the Cobb–Douglas and translog

parametric results from the non-parametric DEA benchmark, and to characterize a

number of intriguing properties of the estimated production function.

2.2.7 Advantages and limitations of the SFA approach

A large amount of work has been devoted in the literature to the development of

Bayesian methods suitable for making inference in stochastic frontier models. Some of

the important advantages of this approach include: (i) the possibility of exact inference

on technical efficiency in the presence of idiosyncratic disturbances, (ii) the possibility

of using prior knowledge on the shape of aggregate production functions, and (iii)

relatively easy incorporation of ideas and restrictions such as regularity conditions, or

the optimal treatment of parameter and model uncertainty.

Although applications of Bayesian approaches to SFA are widespread in the empiri-

cal literature, some competing methods, such as the aforementioned deterministic DEA,

have also been strongly advocated. Undoubtedly, SFA makes it possible to account for

the stochastic disturbances and measurement error to which the DEA method seems

quite sensitive (cf. Koop and Steel, 2001). However, while choosing the SFA approach

(based upon either classical or Bayesian econometrics), any researcher has to make far

more assumptions than in the case of DEA. The utmost objective of comparing these

two approaches is thus to make these assumptions testable.
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Our work does not use, but is also closely related to a novel “compromise”approach,

the semi-parametric StoNED (Stochastic Non-smooth Envelopment of Data, cf. Ku-

osmanen and Kortelainen, 2010) which shares a number of properties with both DEA

and SFA. In a nutshell, StoNED combines nonparametric frontier estimation akin to

DEA (however, in StoNED it is not necessary to approximate the aggregate produc-

tion function with piecewise linear functions – they may be replaced by other increasing

and concave but not necessarily differentiable functions) with a stochastic treatment

of the composite error, vit − uit, under certain parametric assumptions. Its drawbacks,

in relation to the purposes of the current paper, are that it does not yet allow one

to deal with time-varying inefficiency in panel data, and that it does not provide an

operationally useful method to estimate the frontier nonparametrically other than by

applying DEA with variable returns to scale (which is the “lower bound” production

function considered in StoNED, and which we compute here). Most importantly, it does

not provide any value added for identifying the desired properties of the (parametric)

frontier production function, and that is why we set this avenue aside.
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3 Overview of the results

As mentioned above, there are multiple ways of characterizing the World Technology

Frontier, i.e., estimating maximum potential output given inputs, and the results may

vary depending on the approach. Under the fundamental assumption that the aggregate

production function is a useful tool for approximating real-world production processes,

and given the hypothesis that there exists a unique “true” production function, we

proceed to catalog the discrepancies between the alternative estimates. When doing

this, we shall keep in mind the specific assumptions underlying them, and carry out

appropriate statistical tests aimed at verifying if these conditions are met.

DEA (and even more so, bias-corrected DEA), due to its nonparametric charac-

ter, should in general allow for a better fit to the unknown production function than

parametric SFA methods, potentially suffering from misspecification problems.16 It is

however relatively less useful for deriving secondary characteristics of the production

function than the parametric SFA (e.g., there is no way to approximate its second

derivative and hence, curvature measures such as the elasticity of substitution), and it

does not extrapolate forward into regions with yet unobserved factor mixes.

3.1 The Cobb–Douglas function does not capture the curva-

ture of the WTF: a graphical presentation

Given the preceding discussion, it seems to be a useful exercise to assess the goodness

of fit of various parametric specifications of the aggregate production function to the

DEA-based frontier. In the literature, Cobb–Douglas and translog production functions

(as well as CES) have been frequently applied in this context. However, our findings

provide strong evidence against the Cobb–Douglas specification, already at this stage,

and regardless of the assumptions on returns to scale and inputs used for production.

Our results regarding the translog specification paint a much more promising picture.

Figure 1 illustrates that even when human capital is not included in the production

function, and the function itself is assumed to have constant returns to scale to capi-

tal and (unaugmented) labor: Y/L = f(K/L), large deviations of the Cobb–Douglas

specification from the nonparametric (or translog) aggregate frontier production func-

16Obviously, this is only true unless the true data-generating process is based on one of the considered

parametric forms. In such case, as shown by van Biesebroeck (2007) in a Monte Carlo study, best

estimates are always obtained with methods which “know” the actual parametric form of the true

production function, and not with DEA which ignores this information.
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tion are already clearly visible. The fact is that the DEA frontier (whether augmented

with the bootstrap or not) and the translog one have much more curvature than the

Cobb–Douglas. The Cobb–Douglas function will thus systematically overestimate pro-

ductivity for extremely low and high capital endowments, and underestimate it in the

intermediate range.
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Figure 1: Potential output given inputs in 2004 – estimates of a two-factor production

function with constant returns to scale. DEA, bootstrap-corrected DEA vs. the Cobb-

Douglas and translog production functions.

The translog production function, on the other hand, can be fitted quite closely

to the DEA-based frontier. This is due to its markedly higher flexibility thanks to

the inclusion of second-order terms. This said, its generalization and extrapolation

properties are still doubtful due to the fact that it constitutes a local log-quadratic

approximation of the true production function, and the second-order terms render it

convex or decreasing if factor endowments are sufficiently high. This will be commented

upon when discussing the implied partial elasticities with respect to inputs as well as

the implied Morishima and Allen–Uzawa elasticities of substitution.
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3.2 Imperfect substitutability between unskilled and skilled

labor

Another important building block of our study is the fact that our principal aggregate

production function specifications assume that output is produced from physical capital

and the stocks of unskilled and skilled labor, the latter two being mutually imperfectly

substitutable inputs:

Y = F (K,HU , HS).

We do not make any prior assumptions on returns to scale.

The reason for this extension of the traditional capital-and-labor-only approach

is that neglecting human-capital augmentation of labor and assuming perfect substi-

tutability between its unskilled and skilled part leads to serious misspecification prob-

lems (see also e.g., Caselli and Coleman, 2006; Growiec, 2010, 2012). A preliminary

argument supporting this finding is presented in Figures 2–3. We see there that the

estimates of technical efficiency (and thus, maximum attainable output) vary largely

whether human capital augmentation of labor is included in the production function

or not, and whether the human capital aggregate is further decomposed into unskilled

and skilled labor. Since each of these figures illustrates the difference between two

nested specifications, they provide an adequate measure of the extent of function mis-

specification due to improper aggregation.
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Figure 2: The importance of labor augmentation. Bias-corrected Debreu-Farrell effi-

ciency measures computed for the cases Y = F (K,L) and Y = F (K,HU , HS).
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Figure 3: Bias-corrected Debreu-Farrell efficiency measures computed for the cases

Y = F (K,H) and Y = F (K,HU , HS).

The correlation coefficients between the three considered DEA-based efficiency mea-

sures presented in Figures 2–3 are substantial, but significantly different from unity

(with I = 475 units). They can be viewed in Table 1:

Table 1: Correlation coefficients of bootstrap–corrected DEA Debreu–Farrell efficiency

measures for three different input choices.

F (K,L) F (K,H) F (K,HU , HS)

F (K,L) 1 0,803 0,705

F (K,H) 1 0,918

F (K,HU , HS) 1

The reasons for relaxing the constant returns to scale assumption will be discussed

in greater detail at a later stage of the analysis.

3.3 WTF in 1980–2004, according to DEA

Let us now characterize the most general properties of the WTF in 1980–2004, viewed

through the lens of the (bootstrap-augmented) DEA approach. It is a natural choice to

begin with this specification since it has the least imposed structure and most flexibility,

making it best suited to capturing the specific features of our data.
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The results are the following. Efficiency and potential output measures for each

country and year have been presented in Tables 2–4. Table 2 presents Debreu-Farrell

efficiency measures, capturing the distance to the WTF (1 represents 100% efficiency,

and the larger is the number, the more inefficient is the data unit). Table 3 presents

bootstrap–corrected efficiency measures. As opposed to the original distances, these

ones have been corrected for the inherent bias in DEA estimates. Table 4 presents

“potential” (WTF-based, bias-corrected) output per worker in the considered 19 OECD

countries in 1980–2004,17 denominated in thousands of PPP converted US dollars under

constant prices as of year 2008. By definition, it is the product of each country’s actual

GDP and the Debreu-Farrell efficiency measure, capturing their distance to the WTF.

There are interesting regularities visible in the observed trends, summarized in

Tables 2–4. For example, as illustrated in Figure 4, growth in actual and potential

productivity is often parallel, but sometimes we also observe sharp departures from

the parallel pattern: while the USA maintained a relatively stable distance to the

WTF across years, in Japan this gap has opened wide in the last years.

Diverging stories can also be told about Greece and Ireland. In the former coun-

try, distance to the WTF in terms of technical efficiency was sizeable and increasing

throughout the period; in the latter, it was much smaller, and distance to the WTF

first increased but then decreased again.

17We do not report the results for 1970-1979 because for these first few years of data, the DEA

frontier is estimated quite roughly, due to a small sample size.
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Figure 4: Growth in output and potential output per capita, USA and Japan.

Another finding is that DEA consistently diagnozes several countries as 100% effi-

cient throughout the whole period 1980–2004: USA, Norway, UK (excluding 1990-93),

and Ireland (excluding 1980-84). We may also single out another group of countries

including Switzerland and Italy: they were efficient in the first half of the sample,

but then they became increasingly inefficient in the second half of the sample (since

1993). Moreover, most countries recorded divergence with respect to the frontier in the

considered period, especially after 1995, but there is a number of notable exceptions

to this rule, including Sweden, Canada (efficient since 2001) and to a lesser extent –

Greece and Spain, which recorded some convergence.18

Complementing DEA with the Simar–Wilson bootstrap eliminates the possibility of

100% efficiency, but otherwise does not change this picture much. The list of interesting

differences includes Norway (which joins the “club” of countries gradually diverging

from the frontier), and the USA and Ireland (which observed a decrease in efficiency

around 1995-98 but then returned to their usual efficiency levels).

18Please recall that our dataset ends in 2004.
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Another finding is that DEA consistently diagnozes several countries as 100% effi-

cient throughout the whole period 1980–2004: USA, Norway, UK (excluding 1990-93),

and Ireland (excluding 1980-84). We may also single out another group of countries

including Switzerland and Italy: they were efficient in the first half of the sample,

but then they became increasingly inefficient in the second half of the sample (since

1993). Moreover, most countries recorded divergence with respect to the frontier in the

considered period, especially after 1995, but there is a number of notable exceptions

to this rule, including Sweden, Canada (efficient since 2001) and to a lesser extent –

Greece and Spain, which recorded some convergence.18

Complementing DEA with the Simar–Wilson bootstrap eliminates the possibility of

100% efficiency, but otherwise does not change this picture much. The list of interesting

differences includes Norway (which joins the “club” of countries gradually diverging

from the frontier), and the USA and Ireland (which observed a decrease in efficiency

around 1995-98 but then returned to their usual efficiency levels).

18Please recall that our dataset ends in 2004.
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Figure 5: Growth in output and potential output per capita, Greece and Ireland.

3.4 Parametric estimates of the aggregate production func-

tion

Before we put our parametric estimates and their nonparametric counterparts into

“competition”, let us also present the numerical results obtained for the parametric

case.

To this end, three alternative parametric, SFA-based estimates of the aggregate

production function have been contained in Table 5. Reported estimates of the pa-

rameter η refer to the technical change parameter in the Battese and Coelli (1995)

intertemporal component of the inefficiency term zt, λ = φ−1 is the mean of the distri-

bution of its time-invariant component ui, whereas σ
2 refers to the estimated variance

of the idiosyncratic error term vit.

Under every Cobb–Douglas specification (the unrestricted case and the CRS case),

the partial elasticity with respect to capital is estimated at 0.6− 0.7, which is a large

number. The partial elasticity with respect to unskilled labor, on the other hand, is

very low (between 0.05 and 0.1) and only marginally significantly different from zero.

The estimated measure of scale elasticity is slightly less than unity, suggesting (mildly)

decreasing returns at the aggregate level. Standard errors of estimation suggest that
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production function have been contained in Table 5. Reported estimates of the pa-

rameter η refer to the technical change parameter in the Battese and Coelli (1995)

intertemporal component of the inefficiency term zt, λ = φ−1 is the mean of the distri-

bution of its time-invariant component ui, whereas σ
2 refers to the estimated variance

of the idiosyncratic error term vit.

Under every Cobb–Douglas specification (the unrestricted case and the CRS case),

the partial elasticity with respect to capital is estimated at 0.6− 0.7, which is a large

number. The partial elasticity with respect to unskilled labor, on the other hand, is

very low (between 0.05 and 0.1) and only marginally significantly different from zero.

The estimated measure of scale elasticity is slightly less than unity, suggesting (mildly)

decreasing returns at the aggregate level. Standard errors of estimation suggest that
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Another finding is that DEA consistently diagnozes several countries as 100% effi-

cient throughout the whole period 1980–2004: USA, Norway, UK (excluding 1990-93),

and Ireland (excluding 1980-84). We may also single out another group of countries

including Switzerland and Italy: they were efficient in the first half of the sample,

but then they became increasingly inefficient in the second half of the sample (since

1993). Moreover, most countries recorded divergence with respect to the frontier in the

considered period, especially after 1995, but there is a number of notable exceptions

to this rule, including Sweden, Canada (efficient since 2001) and to a lesser extent –

Greece and Spain, which recorded some convergence.18

Complementing DEA with the Simar–Wilson bootstrap eliminates the possibility of

100% efficiency, but otherwise does not change this picture much. The list of interesting

differences includes Norway (which joins the “club” of countries gradually diverging

from the frontier), and the USA and Ireland (which observed a decrease in efficiency

around 1995-98 but then returned to their usual efficiency levels).

18Please recall that our dataset ends in 2004.
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3.4 Parametric estimates of the aggregate production func-

tion

Before we put our parametric estimates and their nonparametric counterparts into

“competition”, let us also present the numerical results obtained for the parametric

case.

To this end, three alternative parametric, SFA-based estimates of the aggregate

production function have been contained in Table 5. Reported estimates of the pa-

rameter η refer to the technical change parameter in the Battese and Coelli (1995)

intertemporal component of the inefficiency term zt, λ = φ−1 is the mean of the distri-

bution of its time-invariant component ui, whereas σ
2 refers to the estimated variance

of the idiosyncratic error term vit.

Under every Cobb–Douglas specification (the unrestricted case and the CRS case),

the partial elasticity with respect to capital is estimated at 0.6− 0.7, which is a large

number. The partial elasticity with respect to unskilled labor, on the other hand, is

very low (between 0.05 and 0.1) and only marginally significantly different from zero.

The estimated measure of scale elasticity is slightly less than unity, suggesting (mildly)

decreasing returns at the aggregate level. Standard errors of estimation suggest that
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it might be indistinguishable from unity (representing constant returns), though.

Turning to the estimates of the translog production function reported in Table 5,

we observe that the quadratic terms in the translog are generally statistically insignif-

icant. Hence, because of this statistical imprecision, at this point we cannot infer if

the departures from the Cobb–Douglas benchmark are economically important or not.

Furthermore, in the translog case, aggregate returns to scale, when not restricted to

be constant, can be country-specific. The same applies to partial elasticities and elas-

ticities of substitution – their magnitude will vary across countries and time. We shall

document these meaningful variations in the following subsection.

At the general level, however, it should be noted that the average values of partial

elasticities obtained under the translog specifications are somewhat closer to the ones

postulated in related literature yet still far from consistent. The capital elasticity is

estimated around 0.6 (i.e., way more than 1
3
suggested by, e.g., Kydland and Prescott,

1982), the skilled labor elasticity – around 0.25, and the unskilled elasticity – around

0.1.

Table 5: Parameters of the estimated production functions (SFA).
SFA-CD

(K,Hu,Hs)

s.e. SFA-CD

(K,Hu,Hs)

[CRS]

s.e. SFA-

Translog

(K,Hu,Hs)

[CRS]

s.e. SFA-

Translog

(K,Hu,Hs)

s.e.

Constant 1,0050 0,6509 0,1892 0,2292 -0,8686 2,1510 12,9300 10,8300

LNK 0,7321 0,0520 2,1530 1,4820

LNHU 0,0565 0,0348 -2,0640 0,9748

LNHS 0,1715 0,0410 -0,9649 1,0230

LNK INT 0,7628 0,0514 1,3330 0,9506

LNHS INT 0,1435 0,0398 -0,0802 0,6068

LNK2 -0,2901 0,2172

LNHU2 0,0919 0,0559

LNHs2 -0,0070 0,0930

LNK2 INT -0,1571 0,2110

LNHS2 INT 0,0371 0,0940

LNKHS INT 0,0671 0,1349

LNKHU 0,1238 0,1065

LNKHS 0,1520 0,1376

LNHUHS -0,1151 0,0777

eK 0,7321 0,7628 ∼ 0,6115 ∼ 0,6048

eHu 0,0565 0,1435 ∼ 0,1226 ∼ 0,1009

eHs 0,1715 ∼ 0,2659 ∼ 0,2514

eS 0,9601 1,0000 1,0000 0,9571

η -0,1385 0,0377 -0,1735 0,0339 -0,2136 0,0625 -0,2205 0,0720

σ2 0,0039 0,0008 0,0042 0,0009 0,0047 0,0011 0,0042 0,0010

λ 4,1630 1,1710 4,9300 1,2830 6,7160 2,3660 6,3080 2,5690

The symbol ∼ denotes the average value of the relevant (country-specific) elasticity.

It is worthwhile to comment on our estimates of η under the Cobb–Douglas and

translog specifications. In both cases, the data suggest gradual divergence of actual

productivity from the WTF, i.e., on average, OECD countries are found to systemati-

cally lag behind the frontier.

One may also draw a few conclusions on the preferred shape of the aggregate pro-
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Another finding is that DEA consistently diagnozes several countries as 100% effi-

cient throughout the whole period 1980–2004: USA, Norway, UK (excluding 1990-93),

and Ireland (excluding 1980-84). We may also single out another group of countries

including Switzerland and Italy: they were efficient in the first half of the sample,

but then they became increasingly inefficient in the second half of the sample (since

1993). Moreover, most countries recorded divergence with respect to the frontier in the

considered period, especially after 1995, but there is a number of notable exceptions

to this rule, including Sweden, Canada (efficient since 2001) and to a lesser extent –

Greece and Spain, which recorded some convergence.18

Complementing DEA with the Simar–Wilson bootstrap eliminates the possibility of

100% efficiency, but otherwise does not change this picture much. The list of interesting

differences includes Norway (which joins the “club” of countries gradually diverging

from the frontier), and the USA and Ireland (which observed a decrease in efficiency

around 1995-98 but then returned to their usual efficiency levels).

18Please recall that our dataset ends in 2004.
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it might be indistinguishable from unity (representing constant returns), though.

Turning to the estimates of the translog production function reported in Table 5,

we observe that the quadratic terms in the translog are generally statistically insignif-

icant. Hence, because of this statistical imprecision, at this point we cannot infer if

the departures from the Cobb–Douglas benchmark are economically important or not.

Furthermore, in the translog case, aggregate returns to scale, when not restricted to

be constant, can be country-specific. The same applies to partial elasticities and elas-

ticities of substitution – their magnitude will vary across countries and time. We shall

document these meaningful variations in the following subsection.

At the general level, however, it should be noted that the average values of partial

elasticities obtained under the translog specifications are somewhat closer to the ones

postulated in related literature yet still far from consistent. The capital elasticity is

estimated around 0.6 (i.e., way more than 1
3
suggested by, e.g., Kydland and Prescott,

1982), the skilled labor elasticity – around 0.25, and the unskilled elasticity – around

0.1.

Table 5: Parameters of the estimated production functions (SFA).
SFA-CD

(K,Hu,Hs)

s.e. SFA-CD

(K,Hu,Hs)

[CRS]

s.e. SFA-

Translog

(K,Hu,Hs)

[CRS]

s.e. SFA-

Translog

(K,Hu,Hs)

s.e.

Constant 1,0050 0,6509 0,1892 0,2292 -0,8686 2,1510 12,9300 10,8300

LNK 0,7321 0,0520 2,1530 1,4820

LNHU 0,0565 0,0348 -2,0640 0,9748

LNHS 0,1715 0,0410 -0,9649 1,0230

LNK INT 0,7628 0,0514 1,3330 0,9506

LNHS INT 0,1435 0,0398 -0,0802 0,6068

LNK2 -0,2901 0,2172

LNHU2 0,0919 0,0559

LNHs2 -0,0070 0,0930

LNK2 INT -0,1571 0,2110

LNHS2 INT 0,0371 0,0940

LNKHS INT 0,0671 0,1349

LNKHU 0,1238 0,1065

LNKHS 0,1520 0,1376

LNHUHS -0,1151 0,0777

eK 0,7321 0,7628 ∼ 0,6115 ∼ 0,6048

eHu 0,0565 0,1435 ∼ 0,1226 ∼ 0,1009

eHs 0,1715 ∼ 0,2659 ∼ 0,2514

eS 0,9601 1,0000 1,0000 0,9571

η -0,1385 0,0377 -0,1735 0,0339 -0,2136 0,0625 -0,2205 0,0720

σ2 0,0039 0,0008 0,0042 0,0009 0,0047 0,0011 0,0042 0,0010

λ 4,1630 1,1710 4,9300 1,2830 6,7160 2,3660 6,3080 2,5690

The symbol ∼ denotes the average value of the relevant (country-specific) elasticity.

It is worthwhile to comment on our estimates of η under the Cobb–Douglas and

translog specifications. In both cases, the data suggest gradual divergence of actual

productivity from the WTF, i.e., on average, OECD countries are found to systemati-

cally lag behind the frontier.

One may also draw a few conclusions on the preferred shape of the aggregate pro-
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duction function by comparing potential output excluding the idiosyncratic disturbance

term, Y ∗∗
it = θitF (Kit, H

U
it , H

S
it), to each country’s actual output Yit. Ratios of form

Y ∗∗/Y have been presented in Table 6, allowing us to see in which countries depar-

tures of output from the assumed functional form (controlling for inefficiency but not

idiosyncratic disturbances) are most pronounced. What is especially notable there,

there are some strong correlations between these departures and factor endowments.

In particular, for all tested production functions, departures from the function are

positively correlated with the stock of physical capital. Correlation with output is

obvious; its magnitude varies across proposed specifications, though, being somewhat

less pronounced for the cases of CRS Cobb–Douglas and unrestricted translog.

Table 6: Departures from the parametric production function in 2000, controlling for

technical inefficiency.
SFA-CD (K,Hu,Hs) SFA-CD

(K,Hu,Hs)

[CRS]

SFA-

Translog

(K,Hu,Hs)

[CRS]

SFA-Translog (K,Hu,Hs) mean

Australia 1,1129 1,2233 1,1092 1,0547 1,1250

Austria 1,1306 1,2146 1,0972 1,0864 1,1322

Belgium 1,1184 1,1945 1,0767 1,0362 1,1065

Canada 1,1231 1,1702 1,1365 1,1057 1,1339

Denmark 1,0669 1,1536 1,0396 1,0787 1,0847

Finland 1,1042 1,2452 1,0984 1,1186 1,1416

France 1,0900 1,2088 1,0982 1,0549 1,1130

Greece 1,1362 1,2724 1,1417 1,0936 1,1610

Ireland 0,9462 0,9461 0,8635 0,9356 0,9229

Italy 1,0934 1,2350 1,0980 1,1177 1,1360

Japan 1,2320 1,5028 1,2797 1,2822 1,3242

Netherlands 1,1239 1,2888 1,1143 1,0643 1,1478

Norway 1,0029 1,0963 0,8990 1,0026 1,0002

Portugal 1,1588 1,1473 1,0759 1,0413 1,1058

Spain 1,1893 1,2397 1,1312 1,1045 1,1662

Sweden 1,0284 1,1031 1,0338 1,0498 1,0538

Switzerland 1,2884 1,4762 1,2586 1,2976 1,3302

UK 0,9777 0,9951 0,9801 0,9411 0,9735

USA 0,9363 0,9488 0,9446 0,8993 0,9322

mean 1,0979 1,1927 1,0777 1,0718 1,1100

corr.with K/L 0,2529 0,4307 0,2452 0,3865 0,3498

corr.with Hu/L 0,2254 0,1186 0,0883 0,0400 0,1192

corr.with Hs/L -0,0821 0,0811 0,1656 0,1065 0,0752

corr.with Y/L -0,5055 -0,3724 -0,5042 -0,4040 -0,4511

After a brief presentation of our estimation results, let us pass to the presentation of

their implications for the shape of the aggregate production function. In the following

section, we shall dwell more on the discrepancies between the nonparametric DEA

outcomes discussed above and their SFA counterparts obtained under the parametric

assumption of a Cobb–Douglas or translog production function.
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positively correlated with the stock of physical capital. Correlation with output is
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less pronounced for the cases of CRS Cobb–Douglas and unrestricted translog.
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Canada 1,1231 1,1702 1,1365 1,1057 1,1339

Denmark 1,0669 1,1536 1,0396 1,0787 1,0847

Finland 1,1042 1,2452 1,0984 1,1186 1,1416

France 1,0900 1,2088 1,0982 1,0549 1,1130

Greece 1,1362 1,2724 1,1417 1,0936 1,1610

Ireland 0,9462 0,9461 0,8635 0,9356 0,9229

Italy 1,0934 1,2350 1,0980 1,1177 1,1360

Japan 1,2320 1,5028 1,2797 1,2822 1,3242

Netherlands 1,1239 1,2888 1,1143 1,0643 1,1478

Norway 1,0029 1,0963 0,8990 1,0026 1,0002

Portugal 1,1588 1,1473 1,0759 1,0413 1,1058

Spain 1,1893 1,2397 1,1312 1,1045 1,1662

Sweden 1,0284 1,1031 1,0338 1,0498 1,0538

Switzerland 1,2884 1,4762 1,2586 1,2976 1,3302

UK 0,9777 0,9951 0,9801 0,9411 0,9735

USA 0,9363 0,9488 0,9446 0,8993 0,9322

mean 1,0979 1,1927 1,0777 1,0718 1,1100

corr.with K/L 0,2529 0,4307 0,2452 0,3865 0,3498

corr.with Hu/L 0,2254 0,1186 0,0883 0,0400 0,1192

corr.with Hs/L -0,0821 0,0811 0,1656 0,1065 0,0752

corr.with Y/L -0,5055 -0,3724 -0,5042 -0,4040 -0,4511

After a brief presentation of our estimation results, let us pass to the presentation of

their implications for the shape of the aggregate production function. In the following

section, we shall dwell more on the discrepancies between the nonparametric DEA

outcomes discussed above and their SFA counterparts obtained under the parametric

assumption of a Cobb–Douglas or translog production function.
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4 Implications for the shape of the aggregate pro-

duction function

Our estimates provide testable implications on the following properties of the aggregate

production function:

1. Implied efficiency levels. How far is a given country in a given year from the

WTF if the latter takes the given functional form? Is there any congruence of

these distance measures across different specifications?

2. Partial elasticities. Are partial elasticities constant (as in the Cobb–Douglas

specification)? If not, are they systematically related to inputs? If so, what is

the pattern of dependence? Do we observe meaningful shifts in partial elasticities

across time (e.g., as in the case where technical change favors some factors at

the expense of others)? Do the observed regularities agree or disagree with the

hypothesis of skill-biased technical change?

3. Returns to scale. For each given country and year, can returns to scale be diag-

nozed as constant, decreasing or increasing? Viewed globally, are they constant

or variable?

4. Elasticities of substitution. Are Morishima and Allen–Uzawa (two-factor) elas-

ticities of substitution constant across countries and time (as they are in the

Cobb–Douglas and CES specifications)? If not, can we observe indications of

greater complementarity or substitutability of certain inputs in certain countries?

Do the observed regularities agree or disagree with the hypothesis of capital-skill

complementarity?

Our first broad finding is that the CRS Cobb–Douglas specification is the one

which most frequently fails in our tests. Our data provide several arguments against

its validity, corroborating the preliminary evidence illustrated in the previous section.

We are however not able to offer an alternative parametric form of the function

that would be in good agreement with nonparametric (bias-corrected) DEA results.

In particular, our SFA-based estimates of translog production functions indicate vis-

ible departures of this particular functional specification from the DEA results, too:

the discrepancy pertains to implied efficiency levels, identified partial elasticities, and

returns-to-scale properties. On the other hand, the same translog estimations pro-

vide a strong argument why the CRS Cobb–Douglas is too simple a specification to
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match the complex patterns present in the data: partial elasticities vary substantially

across countries, they are heavily correlated with factor endowments, and a number of

Morishima (and Allen–Uzawa) elasticities of substitution are far away from unity.

The available evidence on constant vs. variable returns to scale is ambiguous. In a

series of DEA-based tests of local returns to scale (in a given country and year), the

null of their constancy is relatively rarely rejected (although some countries do exhibit

decreasing, rather than constant returns to scale, throughout the whole considered

period). In a test of global constancy of returns to scale, however, the null of constant

returns to scale can be rejected against the alternative of variable returns to scale with

99% confidence. Unlike the DEA, the translog specification diagnozes a sharp pattern

of dependence of returns to scale on the size of the economy.

4.1 Implied efficiency levels

Table 7 presents a comparison of seven different characterizations of the World Tech-

nology Frontier in the year 2000, computed on the basis of data for 1970–2000. In

consecutive columns, we document Debreu–Farrell efficiency measures θi (such that

potential output of country i at WTF is Y ∗
i = θiYi) computed according to the follow-

ing methodologies:

1. Bias-corrected DEA with constant returns to scale, and aggregate capital and

(raw) labor taken as inputs.

2. Bias-corrected DEA with variable returns to scale, and aggregate physical and

human capital as inputs.

3. Bias-corrected DEA with variable returns to scale, and aggregate physical capi-

tal as well as unskilled and skilled labor as inputs (the difference between these

estimates and the aforementioned ones capture the degree of imperfect substi-

tutability between unskilled and skilled labor).

4. SFA under the assumption of a Cobb–Douglas production function with variable

returns to scale and aggregate physical capital as well as unskilled and skilled

labor as inputs.

5. SFA under the assumption of a Cobb–Douglas production function with constant

returns to scale and aggregate physical capital as well as unskilled and skilled

labor as inputs.
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6. SFA under the assumption of a translog production function with constant returns

to scale and aggregate physical capital as well as unskilled and skilled labor as

inputs, estimated in an intensive form: Y
HU = F

(
K
HU ,

HS

HU

)
.

7. SFA under the assumption of a translog production function with variable returns

to scale and aggregate physical capital as well as unskilled and skilled labor as

inputs.

Table 7: Technical efficiency – comparison of alternative measurements for the year

2000.
DEA (K,L) DEA (K,H) DEA

(K,Hu,Hs)

SFA-CD

(K,Hu,Hs)

SFA-CD

(K,Hu,Hs)

[CRS]

SFA-

Translog

(K,Hu,Hs)

[CRS]

SFA-

Translog

(K,Hu,Hs)

mean

Australia 1,2021 1,2381 1,2421 1,2029 1,0438 1,0979 1,0810 1,1583

Austria 1,1628 1,2407 1,2397 1,1959 1,0395 1,0869 1,0857 1,1502

Belgium 1,0734 1,1972 1,1750 1,1506 1,0328 1,0655 1,0580 1,1075

Canada 1,2075 1,2700 1,2685 1,1599 1,0320 1,0772 1,0590 1,1535

Denmark 1,2168 1,2248 1,2447 1,2376 1,0466 1,1070 1,1296 1,1724

Finland 1,2469 1,3526 1,3589 1,3015 1,0634 1,1446 1,1688 1,2338

France 1,1406 1,2041 1,2097 1,1552 1,0421 1,0884 1,0876 1,1326

Greece 1,3207 1,3532 1,3419 1,2452 1,0553 1,1263 1,1231 1,2237

Ireland 1,0133 1,0635 1,0835 1,1174 1,0166 1,0324 1,0922 1,0598

Italy 1,1824 1,2216 1,0809 1,1355 1,0424 1,0818 1,0870 1,1188

Japan 1,4641 1,4780 1,3949 1,2724 1,0728 1,1686 1,1991 1,2928

Netherlands 1,2522 1,2683 1,2088 1,2641 1,0637 1,1250 1,1016 1,1834

Norway 1,0377 1,0574 1,1603 1,2700 1,0563 1,1038 1,1409 1,1180

Portugal 1,2806 1,2104 1,1743 1,0205 1,0035 1,0118 1,0198 1,1030

Spain 1,1920 1,1944 1,1203 1,0346 1,0122 1,0243 1,0221 1,0857

Sweden 1,1964 1,1791 1,1470 1,2281 1,0476 1,1052 1,1073 1,1444

Switzerland 1,4088 1,4592 1,4726 1,3335 1,0688 1,1369 1,1547 1,2907

UK 1,0140 1,0263 1,0243 1,0396 1,0109 1,0235 1,0229 1,0231

USA 1,0104 1,1210 1,0887 1,0152 1,0051 1,0181 1,0355 1,0420

Corr. with DEA 0,8222 0,9110 1,0000 0,7615 0,7421 0,7908 0,7189

RMSE Dev. / DEA 0,0748 0,0520 0,0000 0,0822 0,1993 0,1518 0,1467

Corr. with SFA-TL 0,5566 0,6202 0,7189 0,9014 0,9027 0,9139 1,0000

RMSE Dev. / SFA-TL 0,1428 0,1662 0,1467 0,1009 0,0625 0,0217 0,0000

In Table 7, we report correlations between efficiency indexes computed on the basis

of each specification. What is crucial here is that in the cross-sectional dimension, DEA-

based and SFA-based predictions on technical efficiency are quite strongly positively

correlated.19 Broadly the same group of countries is found to be closest to the frontier

in all considered cases: Ireland, UK, and USA, and broadly the same group of countries

lags behind by most: Finland, Greece, Japan, and Switzerland.

We do find some meaningful discrepancies, however. Firstly, in the case of CRS

Cobb–Douglas (and only in that case), all countries are found to be close to the frontier

19We do not compare our DEA and SFA results across the time-series dimension here because, due

to reasons discussed in preceding sections, our SFA results are based on data of decadal frequency

only. Hence, only three observations are available across time (for 1980, 1990 and 2000) which is too

little to draw reliable conclusions.
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Denmark 1,2168 1,2248 1,2447 1,2376 1,0466 1,1070 1,1296 1,1724

Finland 1,2469 1,3526 1,3589 1,3015 1,0634 1,1446 1,1688 1,2338

France 1,1406 1,2041 1,2097 1,1552 1,0421 1,0884 1,0876 1,1326

Greece 1,3207 1,3532 1,3419 1,2452 1,0553 1,1263 1,1231 1,2237

Ireland 1,0133 1,0635 1,0835 1,1174 1,0166 1,0324 1,0922 1,0598

Italy 1,1824 1,2216 1,0809 1,1355 1,0424 1,0818 1,0870 1,1188

Japan 1,4641 1,4780 1,3949 1,2724 1,0728 1,1686 1,1991 1,2928

Netherlands 1,2522 1,2683 1,2088 1,2641 1,0637 1,1250 1,1016 1,1834

Norway 1,0377 1,0574 1,1603 1,2700 1,0563 1,1038 1,1409 1,1180

Portugal 1,2806 1,2104 1,1743 1,0205 1,0035 1,0118 1,0198 1,1030

Spain 1,1920 1,1944 1,1203 1,0346 1,0122 1,0243 1,0221 1,0857

Sweden 1,1964 1,1791 1,1470 1,2281 1,0476 1,1052 1,1073 1,1444

Switzerland 1,4088 1,4592 1,4726 1,3335 1,0688 1,1369 1,1547 1,2907

UK 1,0140 1,0263 1,0243 1,0396 1,0109 1,0235 1,0229 1,0231

USA 1,0104 1,1210 1,0887 1,0152 1,0051 1,0181 1,0355 1,0420

Corr. with DEA 0,8222 0,9110 1,0000 0,7615 0,7421 0,7908 0,7189

RMSE Dev. / DEA 0,0748 0,0520 0,0000 0,0822 0,1993 0,1518 0,1467

Corr. with SFA-TL 0,5566 0,6202 0,7189 0,9014 0,9027 0,9139 1,0000

RMSE Dev. / SFA-TL 0,1428 0,1662 0,1467 0,1009 0,0625 0,0217 0,0000

In Table 7, we report correlations between efficiency indexes computed on the basis

of each specification. What is crucial here is that in the cross-sectional dimension, DEA-

based and SFA-based predictions on technical efficiency are quite strongly positively

correlated.19 Broadly the same group of countries is found to be closest to the frontier

in all considered cases: Ireland, UK, and USA, and broadly the same group of countries

lags behind by most: Finland, Greece, Japan, and Switzerland.

We do find some meaningful discrepancies, however. Firstly, in the case of CRS

Cobb–Douglas (and only in that case), all countries are found to be close to the frontier

19We do not compare our DEA and SFA results across the time-series dimension here because, due

to reasons discussed in preceding sections, our SFA results are based on data of decadal frequency

only. Hence, only three observations are available across time (for 1980, 1990 and 2000) which is too

little to draw reliable conclusions.
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(less than 10% inefficiency) and there is little variation across countries. This suggests

potential difficulties in identifying the inefficiency distribution uit under this functional

specification, and thus indirectly provides evidence against it. Secondly, the correlation

between the CRS translog and unrestricted translog results is very strong, suggesting

that there are only minor departures from CRS in such case. Thirdly, correlations

are generally stronger within DEA and SFA estimates than between these two groups,

suggesting that functional specification of the aggregate production function is at least

as important than the choice of its inputs.

Furthermore, treating the bootstrap-augmented DEA with θDEA(K,HU , HS) and

the unrestricted translog SFA with θTL(K,HU , HS) as two “benchmarks”, represent-

ing the most general, nesting specifications in each of the two approaches, we have

also computed the RMSE distance measures, quantifying the differences in predicted

Debreu–Farrell technical inefficiency measures obtained from alternative methodolo-

gies. The results are in line with expectations: the distances are largest between the

two general methodologies (DEA/SFA), and within these methodologies, the distances

are the larger, the simpler is the measure in question (with the unrestricted Cobb–

Douglas being an exception to this rule).

Table 8 complements Table 7 by presenting a comparison of seven alternative es-

timates of potential output per worker. Departures of parametric SFA results (both

Cobb–Douglas and translog) from the DEA ones are visible but not dramatic. The

discrepancy is the strongest with respect to the estimates of the CRS Cobb–Douglas

function.

To make sure, stochastic estimates included in Table 8 are computed as

Y ∗
it = θitYit = θitF (Kit, H

U
it , H

S
it) exp (vit) ,

where θit = exp(−uit) is the Debreu-Farrell efficiency measure reported above. Hence

by definition these estimates contain the idiosyncratic disturbance term vit as well.

Knowing that this term can dominate the result if the postulated functional form of

the aggregate production function provides a bad fit to the data, and wanting to get

rid of this feature of our results, we have also computed potential output according to:

Y ∗∗
it = θitF (Kit, H

U
it , H

S
it),

so that the idiosyncratic disturbance term is not included. The respective results are

presented in Table 9 where it is observed that the differences between the DEA and

SFA results are much smaller if idiosyncratic disturbances are not included. One has

39



Implications for the shape of the aggregate production function

N a t i o n a l  B a n k  o f  P o l a n d36

4

(less than 10% inefficiency) and there is little variation across countries. This suggests
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also computed the RMSE distance measures, quantifying the differences in predicted

Debreu–Farrell technical inefficiency measures obtained from alternative methodolo-
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To make sure, stochastic estimates included in Table 8 are computed as
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where θit = exp(−uit) is the Debreu-Farrell efficiency measure reported above. Hence

by definition these estimates contain the idiosyncratic disturbance term vit as well.

Knowing that this term can dominate the result if the postulated functional form of

the aggregate production function provides a bad fit to the data, and wanting to get

rid of this feature of our results, we have also computed potential output according to:

Y ∗∗
it = θitF (Kit, H

U
it , H

S
it),

so that the idiosyncratic disturbance term is not included. The respective results are

presented in Table 9 where it is observed that the differences between the DEA and

SFA results are much smaller if idiosyncratic disturbances are not included. One has
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Table 8: Potential output – comparison of alternative estimates. Stochastic estimates

include inefficiency and idiosyncratic errors.
DEA (K,L) DEA (K,H) DEA

(K,Hu,Hs)

SFA-CD

(K,Hu,Hs)

SFA-CD

(K,Hu,Hs)

[CRS]

SFA-

Translog

(K,Hu,Hs)

[CRS]

SFA-

Translog

(K,Hu,Hs)

mean

Australia 85,99 88,57 88,85 86,05 74,67 78,54 77,33 82,8567

Austria 86,14 91,91 91,83 88,59 77,00 80,51 80,42 85,1998

Belgium 87,60 97,69 95,89 93,89 84,28 86,95 86,34 90,3768

Canada 87,10 91,61 91,50 83,67 74,44 77,70 76,39 83,2018

Denmark 80,28 80,81 82,11 81,65 69,05 73,03 74,52 77,3491

Finland 82,61 89,62 90,04 86,23 70,45 75,84 77,44 81,7467

France 86,99 91,83 92,26 88,10 79,48 83,01 82,95 86,3726

Greece 77,54 79,45 78,79 73,11 61,96 66,13 65,94 71,8476

Ireland 79,31 83,25 84,81 87,46 79,57 80,82 85,49 82,9592

Italy 86,48 89,35 79,06 83,05 76,24 79,13 79,50 81,8308

Japan 88,96 89,80 84,75 77,31 65,18 71,00 72,85 78,5501

Netherlands 87,65 88,77 84,61 88,48 74,45 78,74 77,11 82,8320

Norway 95,65 97,47 106,95 117,07 97,37 101,74 105,17 103,0599

Portugal 54,63 51,63 50,10 43,54 42,81 43,16 43,51 47,0539

Spain 83,84 84,00 78,79 72,77 71,18 72,04 71,88 76,3560

Sweden 77,87 76,74 74,65 79,93 68,18 71,93 72,07 74,4804

Switzerland 92,40 95,70 96,58 87,45 70,09 74,56 75,73 84,6452

UK 67,96 68,79 68,65 69,68 67,76 68,60 68,56 68,5712

USA 86,52 95,99 93,22 86,93 86,07 87,18 88,67 89,2248

Corr. with DEA 0,9184 0,9494 1,0000 0,9254 0,8521 0,8973 0,8864

RMSE Dev. / DEA 5,5053 3,9030 0,0000 5,4995 13,3124 10,0614 9,7482

Corr. with SFA-TL 0,8072 0,8347 0,8864 0,9608 0,9833 0,9916 1,0000

RMSE Dev. / SFA-TL 9,0778 11,0974 9,7482 7,1465 4,3597 1,6533 0,0000

to keep in mind, though, that under production function misspecification, especially

likely in the CRS Cobb–Douglas case, numbers reported in SFA columns of Table 9 will

be biased. The reason is that they do not represent inefficiency-corrected measures of

actual output, but of output as if the estimated production function provided a perfect

fit to the data, which it likely does not.

Differences across different production function specifications, documented in Ta-

bles 7–9, suggest that the parametric functional forms used in our SFA analyses, espe-

cially the CRS Cobb–Douglas ones, are likely to be somewhat misspecified. They also

constitute suggestive evidence that allowing for imperfect substitutability between un-

skilled and skilled labor helps obtain significantly different (and thus certainly better,

since this step allows for more generality) results, supporting the related findings by

Growiec (2010, 2012).

On the other hand, the discrepancy between our DEA and SFA results could also

indicate that the former method provides a relatively rough approximation of the WTF

due to, e.g., sharp underrepresentation of certain input–output mixes in our dataset

(see Growiec, 2012).

In sum, despite several important differences listed above, the ranking of countries

in terms of their technical efficiency is similar under all functional specifications of

the WTF. Hence, according to this test, the translog production function and the
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Spain 83,84 84,00 78,79 72,77 71,18 72,04 71,88 76,3560

Sweden 77,87 76,74 74,65 79,93 68,18 71,93 72,07 74,4804

Switzerland 92,40 95,70 96,58 87,45 70,09 74,56 75,73 84,6452

UK 67,96 68,79 68,65 69,68 67,76 68,60 68,56 68,5712

USA 86,52 95,99 93,22 86,93 86,07 87,18 88,67 89,2248

Corr. with DEA 0,9184 0,9494 1,0000 0,9254 0,8521 0,8973 0,8864

RMSE Dev. / DEA 5,5053 3,9030 0,0000 5,4995 13,3124 10,0614 9,7482

Corr. with SFA-TL 0,8072 0,8347 0,8864 0,9608 0,9833 0,9916 1,0000

RMSE Dev. / SFA-TL 9,0778 11,0974 9,7482 7,1465 4,3597 1,6533 0,0000

to keep in mind, though, that under production function misspecification, especially

likely in the CRS Cobb–Douglas case, numbers reported in SFA columns of Table 9 will

be biased. The reason is that they do not represent inefficiency-corrected measures of

actual output, but of output as if the estimated production function provided a perfect

fit to the data, which it likely does not.

Differences across different production function specifications, documented in Ta-

bles 7–9, suggest that the parametric functional forms used in our SFA analyses, espe-

cially the CRS Cobb–Douglas ones, are likely to be somewhat misspecified. They also

constitute suggestive evidence that allowing for imperfect substitutability between un-

skilled and skilled labor helps obtain significantly different (and thus certainly better,

since this step allows for more generality) results, supporting the related findings by

Growiec (2010, 2012).

On the other hand, the discrepancy between our DEA and SFA results could also

indicate that the former method provides a relatively rough approximation of the WTF

due to, e.g., sharp underrepresentation of certain input–output mixes in our dataset

(see Growiec, 2012).

In sum, despite several important differences listed above, the ranking of countries

in terms of their technical efficiency is similar under all functional specifications of
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Table 8: Potential output – comparison of alternative estimates. Stochastic estimates

include inefficiency and idiosyncratic errors.
DEA (K,L) DEA (K,H) DEA

(K,Hu,Hs)

SFA-CD

(K,Hu,Hs)

SFA-CD

(K,Hu,Hs)

[CRS]

SFA-

Translog

(K,Hu,Hs)

[CRS]

SFA-

Translog

(K,Hu,Hs)

mean

Australia 85,99 88,57 88,85 86,05 74,67 78,54 77,33 82,8567

Austria 86,14 91,91 91,83 88,59 77,00 80,51 80,42 85,1998

Belgium 87,60 97,69 95,89 93,89 84,28 86,95 86,34 90,3768

Canada 87,10 91,61 91,50 83,67 74,44 77,70 76,39 83,2018

Denmark 80,28 80,81 82,11 81,65 69,05 73,03 74,52 77,3491

Finland 82,61 89,62 90,04 86,23 70,45 75,84 77,44 81,7467

France 86,99 91,83 92,26 88,10 79,48 83,01 82,95 86,3726

Greece 77,54 79,45 78,79 73,11 61,96 66,13 65,94 71,8476

Ireland 79,31 83,25 84,81 87,46 79,57 80,82 85,49 82,9592

Italy 86,48 89,35 79,06 83,05 76,24 79,13 79,50 81,8308

Japan 88,96 89,80 84,75 77,31 65,18 71,00 72,85 78,5501

Netherlands 87,65 88,77 84,61 88,48 74,45 78,74 77,11 82,8320

Norway 95,65 97,47 106,95 117,07 97,37 101,74 105,17 103,0599

Portugal 54,63 51,63 50,10 43,54 42,81 43,16 43,51 47,0539

Spain 83,84 84,00 78,79 72,77 71,18 72,04 71,88 76,3560

Sweden 77,87 76,74 74,65 79,93 68,18 71,93 72,07 74,4804

Switzerland 92,40 95,70 96,58 87,45 70,09 74,56 75,73 84,6452

UK 67,96 68,79 68,65 69,68 67,76 68,60 68,56 68,5712

USA 86,52 95,99 93,22 86,93 86,07 87,18 88,67 89,2248

Corr. with DEA 0,9184 0,9494 1,0000 0,9254 0,8521 0,8973 0,8864

RMSE Dev. / DEA 5,5053 3,9030 0,0000 5,4995 13,3124 10,0614 9,7482

Corr. with SFA-TL 0,8072 0,8347 0,8864 0,9608 0,9833 0,9916 1,0000

RMSE Dev. / SFA-TL 9,0778 11,0974 9,7482 7,1465 4,3597 1,6533 0,0000

to keep in mind, though, that under production function misspecification, especially

likely in the CRS Cobb–Douglas case, numbers reported in SFA columns of Table 9 will

be biased. The reason is that they do not represent inefficiency-corrected measures of

actual output, but of output as if the estimated production function provided a perfect

fit to the data, which it likely does not.

Differences across different production function specifications, documented in Ta-

bles 7–9, suggest that the parametric functional forms used in our SFA analyses, espe-

cially the CRS Cobb–Douglas ones, are likely to be somewhat misspecified. They also

constitute suggestive evidence that allowing for imperfect substitutability between un-

skilled and skilled labor helps obtain significantly different (and thus certainly better,

since this step allows for more generality) results, supporting the related findings by

Growiec (2010, 2012).

On the other hand, the discrepancy between our DEA and SFA results could also

indicate that the former method provides a relatively rough approximation of the WTF

due to, e.g., sharp underrepresentation of certain input–output mixes in our dataset

(see Growiec, 2012).

In sum, despite several important differences listed above, the ranking of countries

in terms of their technical efficiency is similar under all functional specifications of

the WTF. Hence, according to this test, the translog production function and the
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Table 9: Potential output – comparison of alternative estimates. Stochastic estimates

include inefficiency but not the idiosyncratic errors.
DEA (K,L) DEA (K,H) DEA

(K,Hu,Hs)

SFA-CD

(K,Hu,Hs)

SFA-CD

(K,Hu,Hs)

[CRS]

SFA-

Translog

(K,Hu,Hs)

[CRS]

SFA-

Translog

(K,Hu,Hs)

mean

Australia 85,99 88,57 88,85 95,76 91,34 87,11 81,56 88,4554

Austria 86,14 91,91 91,83 100,15 93,52 88,34 87,37 91,3228

Belgium 87,60 97,69 95,89 105,01 100,68 93,62 89,46 95,7065

Canada 87,10 91,61 91,50 93,97 87,11 88,31 84,46 89,1510

Denmark 80,28 80,81 82,11 87,11 79,65 75,92 80,38 80,8942

Finland 82,61 89,62 90,04 95,22 87,73 83,30 86,63 87,8765

France 86,99 91,83 92,26 96,03 96,07 91,16 87,50 91,6912

Greece 77,54 79,45 78,79 83,07 78,84 75,50 72,12 77,9021

Ireland 79,31 83,25 84,81 82,76 75,29 69,79 79,98 79,3121

Italy 86,48 89,35 79,06 90,80 94,16 86,88 88,86 87,9423

Japan 88,96 89,80 84,75 95,24 97,96 90,86 93,42 91,5687

Netherlands 87,65 88,77 84,61 99,44 95,96 87,74 82,07 89,4644

Norway 95,65 97,47 106,95 117,41 106,75 91,47 105,44 103,0207

Portugal 54,63 51,63 50,10 50,45 49,11 46,44 45,30 49,6670

Spain 83,84 84,00 78,79 86,54 88,25 81,49 79,39 83,1846

Sweden 77,87 76,74 74,65 82,20 75,21 74,36 75,66 76,6692

Switzerland 92,40 95,70 96,58 112,68 103,47 93,85 98,26 98,9913

UK 67,96 68,79 68,65 68,12 67,42 67,24 64,52 67,5301

USA 86,52 95,99 93,22 81,39 81,66 82,35 79,74 85,8386

Corr. with DEA 0,9184 0,9494 1,0000 0,9093 0,8613 0,8704 0,9057

RMSE Dev. / DEA 5,5053 3,9030 0,0000 8,5495 7,1559 6,6828 5,9600

Corr. with SFA-TL 0,9552 0,9137 0,9057 0,9502 0,9449 0,9110 1,0000

RMSE Dev. / SFA-TL 4,7802 6,2994 5,9600 9,7674 6,4254 5,1412 0,0000

nonparametric frontier seem to identify a similar location of the WTF. Let us now

assess its curvature properties.

4.2 Partial elasticities

Another test, aiming at defining the desirable properties of the aggregate production

function, is to check if its partial elasticities tend to vary across countries and time

if they are not restricted against such behavior.20 To this end, we have computed

the partial elasticities of the aggregate production function both with DEA and SFA

(under the translog specification).

In the DEA approach, partial elasticities have been computed on the basis of the

solution to each unit’s optimal program. Knowing its maximum attainable output

given inputs as well as the neighboring efficient units, we have identified each of its

partial elasticities on the basis of the local slope of the (piecewise linear) production

function, projected along the axis associated with the respective factor of production.

20In related studies, Bernanke and Gürkaynak (2001) as well as Gollin (2002) have documented

substantial variability of capital and labor income shares across countries. Our current exercise, doc-

umenting the variability of implied partial elasticities, is complementary to theirs: partial elasticities

and factor shares coincide under the Cobb–Douglas specification but the former depend on factor

endowments otherwise.
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Table 8: Potential output – comparison of alternative estimates. Stochastic estimates

include inefficiency and idiosyncratic errors.
DEA (K,L) DEA (K,H) DEA

(K,Hu,Hs)

SFA-CD
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SFA-CD

(K,Hu,Hs)
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SFA-

Translog

(K,Hu,Hs)

[CRS]

SFA-

Translog

(K,Hu,Hs)

mean
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Denmark 80,28 80,81 82,11 81,65 69,05 73,03 74,52 77,3491

Finland 82,61 89,62 90,04 86,23 70,45 75,84 77,44 81,7467

France 86,99 91,83 92,26 88,10 79,48 83,01 82,95 86,3726

Greece 77,54 79,45 78,79 73,11 61,96 66,13 65,94 71,8476

Ireland 79,31 83,25 84,81 87,46 79,57 80,82 85,49 82,9592

Italy 86,48 89,35 79,06 83,05 76,24 79,13 79,50 81,8308

Japan 88,96 89,80 84,75 77,31 65,18 71,00 72,85 78,5501

Netherlands 87,65 88,77 84,61 88,48 74,45 78,74 77,11 82,8320

Norway 95,65 97,47 106,95 117,07 97,37 101,74 105,17 103,0599

Portugal 54,63 51,63 50,10 43,54 42,81 43,16 43,51 47,0539

Spain 83,84 84,00 78,79 72,77 71,18 72,04 71,88 76,3560

Sweden 77,87 76,74 74,65 79,93 68,18 71,93 72,07 74,4804

Switzerland 92,40 95,70 96,58 87,45 70,09 74,56 75,73 84,6452

UK 67,96 68,79 68,65 69,68 67,76 68,60 68,56 68,5712

USA 86,52 95,99 93,22 86,93 86,07 87,18 88,67 89,2248

Corr. with DEA 0,9184 0,9494 1,0000 0,9254 0,8521 0,8973 0,8864

RMSE Dev. / DEA 5,5053 3,9030 0,0000 5,4995 13,3124 10,0614 9,7482

Corr. with SFA-TL 0,8072 0,8347 0,8864 0,9608 0,9833 0,9916 1,0000

RMSE Dev. / SFA-TL 9,0778 11,0974 9,7482 7,1465 4,3597 1,6533 0,0000

to keep in mind, though, that under production function misspecification, especially

likely in the CRS Cobb–Douglas case, numbers reported in SFA columns of Table 9 will

be biased. The reason is that they do not represent inefficiency-corrected measures of

actual output, but of output as if the estimated production function provided a perfect

fit to the data, which it likely does not.

Differences across different production function specifications, documented in Ta-

bles 7–9, suggest that the parametric functional forms used in our SFA analyses, espe-

cially the CRS Cobb–Douglas ones, are likely to be somewhat misspecified. They also

constitute suggestive evidence that allowing for imperfect substitutability between un-

skilled and skilled labor helps obtain significantly different (and thus certainly better,

since this step allows for more generality) results, supporting the related findings by

Growiec (2010, 2012).

On the other hand, the discrepancy between our DEA and SFA results could also

indicate that the former method provides a relatively rough approximation of the WTF

due to, e.g., sharp underrepresentation of certain input–output mixes in our dataset

(see Growiec, 2012).

In sum, despite several important differences listed above, the ranking of countries

in terms of their technical efficiency is similar under all functional specifications of

the WTF. Hence, according to this test, the translog production function and the
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Table 9: Potential output – comparison of alternative estimates. Stochastic estimates

include inefficiency but not the idiosyncratic errors.
DEA (K,L) DEA (K,H) DEA

(K,Hu,Hs)

SFA-CD

(K,Hu,Hs)

SFA-CD

(K,Hu,Hs)

[CRS]

SFA-

Translog

(K,Hu,Hs)

[CRS]

SFA-

Translog

(K,Hu,Hs)

mean

Australia 85,99 88,57 88,85 95,76 91,34 87,11 81,56 88,4554

Austria 86,14 91,91 91,83 100,15 93,52 88,34 87,37 91,3228

Belgium 87,60 97,69 95,89 105,01 100,68 93,62 89,46 95,7065

Canada 87,10 91,61 91,50 93,97 87,11 88,31 84,46 89,1510

Denmark 80,28 80,81 82,11 87,11 79,65 75,92 80,38 80,8942

Finland 82,61 89,62 90,04 95,22 87,73 83,30 86,63 87,8765

France 86,99 91,83 92,26 96,03 96,07 91,16 87,50 91,6912

Greece 77,54 79,45 78,79 83,07 78,84 75,50 72,12 77,9021

Ireland 79,31 83,25 84,81 82,76 75,29 69,79 79,98 79,3121

Italy 86,48 89,35 79,06 90,80 94,16 86,88 88,86 87,9423

Japan 88,96 89,80 84,75 95,24 97,96 90,86 93,42 91,5687

Netherlands 87,65 88,77 84,61 99,44 95,96 87,74 82,07 89,4644

Norway 95,65 97,47 106,95 117,41 106,75 91,47 105,44 103,0207

Portugal 54,63 51,63 50,10 50,45 49,11 46,44 45,30 49,6670

Spain 83,84 84,00 78,79 86,54 88,25 81,49 79,39 83,1846

Sweden 77,87 76,74 74,65 82,20 75,21 74,36 75,66 76,6692

Switzerland 92,40 95,70 96,58 112,68 103,47 93,85 98,26 98,9913

UK 67,96 68,79 68,65 68,12 67,42 67,24 64,52 67,5301

USA 86,52 95,99 93,22 81,39 81,66 82,35 79,74 85,8386

Corr. with DEA 0,9184 0,9494 1,0000 0,9093 0,8613 0,8704 0,9057

RMSE Dev. / DEA 5,5053 3,9030 0,0000 8,5495 7,1559 6,6828 5,9600

Corr. with SFA-TL 0,9552 0,9137 0,9057 0,9502 0,9449 0,9110 1,0000

RMSE Dev. / SFA-TL 4,7802 6,2994 5,9600 9,7674 6,4254 5,1412 0,0000

nonparametric frontier seem to identify a similar location of the WTF. Let us now

assess its curvature properties.

4.2 Partial elasticities

Another test, aiming at defining the desirable properties of the aggregate production

function, is to check if its partial elasticities tend to vary across countries and time

if they are not restricted against such behavior.20 To this end, we have computed

the partial elasticities of the aggregate production function both with DEA and SFA

(under the translog specification).

In the DEA approach, partial elasticities have been computed on the basis of the

solution to each unit’s optimal program. Knowing its maximum attainable output

given inputs as well as the neighboring efficient units, we have identified each of its

partial elasticities on the basis of the local slope of the (piecewise linear) production

function, projected along the axis associated with the respective factor of production.

20In related studies, Bernanke and Gürkaynak (2001) as well as Gollin (2002) have documented

substantial variability of capital and labor income shares across countries. Our current exercise, doc-

umenting the variability of implied partial elasticities, is complementary to theirs: partial elasticities

and factor shares coincide under the Cobb–Douglas specification but the former depend on factor

endowments otherwise.
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partial elasticities on the basis of the local slope of the (piecewise linear) production

function, projected along the axis associated with the respective factor of production.

20In related studies, Bernanke and Gürkaynak (2001) as well as Gollin (2002) have documented

substantial variability of capital and labor income shares across countries. Our current exercise, doc-

umenting the variability of implied partial elasticities, is complementary to theirs: partial elasticities

and factor shares coincide under the Cobb–Douglas specification but the former depend on factor

endowments otherwise.

41

We have also endowed these partial elasticities with confidence intervals and cor-

rected them for the DEA bias using the Simar–Wilson bootstrap. Unfortunately, these

augmented results are somewhat less convincing than original ones. The reason is that

whereas DEA guarantees the production function to be increasing and concave, the

bootstrap-based production function need not satisfy these properties. It turns out

that when the bootstrap predicts large DEA biases, it also suggests unacceptably high

partial elasticities there, in line with local convexity of the function. For this reason, we

have decided to concentrate only on the original DEA results in the current discussion.

Another related issue is that under the DEA approach, efficient units are located

in vertices of the technology set. For such units, left-sided and right-sided partial

elasticities do not coincide. We have decided to report only the right-sided partial

elasticities here (i.e., percentage changes in output given a 1% increase in the respective

input, holding everything else constant).21

Tables 10–11, based on the DEA approach, document a negative correlation be-

tween the estimated partial elasticities and the scale of the economy. Hence, they

confirm that the nonparametric WTF has more curvature than the Cobb–Douglas pro-

duction function for which this correlation is zero. Another finding is that while the

average partial elasticities are generally in line with the ones present in the established

literature, they tend to vary largely across countries and have visible trends across

time. The DEA production function specification implies a consistent falling trend in

the partial elasticity of unskilled labor,22 a moderately increasing trend in the physical

capital elasticity, and an essentially flat trend in skilled labor elasticity.

The finding that some of the reported right-sided partial elasticities are very low

or even zero, is an artifact of the construction of the DEA frontier as a convex hull of

observed input-output pairs, with zero slope imposed on the function to the right of

the highest efficient unit. Also by construction, left-sided partial elasticities must be

greater or equal to the right-sided ones here. Hence, on the basis of right-sided partial

elasticities reported here, one cannot make any inference regarding returns to scale.

This will be done separately in the following subsection.

21Left-sided partial elasticities as well as partial elasticities based on the Simar–Wilson bootstrap

are available from the authors upon request.
22The huge drop in this partial elasticity in 1996 remains a caveat, though. We cannot offer an

explanation of this apparent “discontinuity” in our results, apart from the fact that it coincides in time

with Switzerland and Japan’s significant departures from full efficiency.
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The finding that some of the reported right-sided partial elasticities are very low
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observed input-output pairs, with zero slope imposed on the function to the right of

the highest efficient unit. Also by construction, left-sided partial elasticities must be

greater or equal to the right-sided ones here. Hence, on the basis of right-sided partial

elasticities reported here, one cannot make any inference regarding returns to scale.

This will be done separately in the following subsection.

21Left-sided partial elasticities as well as partial elasticities based on the Simar–Wilson bootstrap

are available from the authors upon request.
22The huge drop in this partial elasticity in 1996 remains a caveat, though. We cannot offer an

explanation of this apparent “discontinuity” in our results, apart from the fact that it coincides in time

with Switzerland and Japan’s significant departures from full efficiency.
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Table 9: Potential output – comparison of alternative estimates. Stochastic estimates

include inefficiency but not the idiosyncratic errors.
DEA (K,L) DEA (K,H) DEA

(K,Hu,Hs)

SFA-CD

(K,Hu,Hs)

SFA-CD

(K,Hu,Hs)

[CRS]

SFA-

Translog

(K,Hu,Hs)

[CRS]

SFA-

Translog

(K,Hu,Hs)

mean

Australia 85,99 88,57 88,85 95,76 91,34 87,11 81,56 88,4554

Austria 86,14 91,91 91,83 100,15 93,52 88,34 87,37 91,3228

Belgium 87,60 97,69 95,89 105,01 100,68 93,62 89,46 95,7065

Canada 87,10 91,61 91,50 93,97 87,11 88,31 84,46 89,1510

Denmark 80,28 80,81 82,11 87,11 79,65 75,92 80,38 80,8942

Finland 82,61 89,62 90,04 95,22 87,73 83,30 86,63 87,8765

France 86,99 91,83 92,26 96,03 96,07 91,16 87,50 91,6912

Greece 77,54 79,45 78,79 83,07 78,84 75,50 72,12 77,9021

Ireland 79,31 83,25 84,81 82,76 75,29 69,79 79,98 79,3121

Italy 86,48 89,35 79,06 90,80 94,16 86,88 88,86 87,9423

Japan 88,96 89,80 84,75 95,24 97,96 90,86 93,42 91,5687

Netherlands 87,65 88,77 84,61 99,44 95,96 87,74 82,07 89,4644

Norway 95,65 97,47 106,95 117,41 106,75 91,47 105,44 103,0207

Portugal 54,63 51,63 50,10 50,45 49,11 46,44 45,30 49,6670

Spain 83,84 84,00 78,79 86,54 88,25 81,49 79,39 83,1846

Sweden 77,87 76,74 74,65 82,20 75,21 74,36 75,66 76,6692

Switzerland 92,40 95,70 96,58 112,68 103,47 93,85 98,26 98,9913

UK 67,96 68,79 68,65 68,12 67,42 67,24 64,52 67,5301

USA 86,52 95,99 93,22 81,39 81,66 82,35 79,74 85,8386

Corr. with DEA 0,9184 0,9494 1,0000 0,9093 0,8613 0,8704 0,9057

RMSE Dev. / DEA 5,5053 3,9030 0,0000 8,5495 7,1559 6,6828 5,9600

Corr. with SFA-TL 0,9552 0,9137 0,9057 0,9502 0,9449 0,9110 1,0000

RMSE Dev. / SFA-TL 4,7802 6,2994 5,9600 9,7674 6,4254 5,1412 0,0000

nonparametric frontier seem to identify a similar location of the WTF. Let us now

assess its curvature properties.

4.2 Partial elasticities

Another test, aiming at defining the desirable properties of the aggregate production

function, is to check if its partial elasticities tend to vary across countries and time

if they are not restricted against such behavior.20 To this end, we have computed

the partial elasticities of the aggregate production function both with DEA and SFA

(under the translog specification).

In the DEA approach, partial elasticities have been computed on the basis of the

solution to each unit’s optimal program. Knowing its maximum attainable output

given inputs as well as the neighboring efficient units, we have identified each of its

partial elasticities on the basis of the local slope of the (piecewise linear) production

function, projected along the axis associated with the respective factor of production.

20In related studies, Bernanke and Gürkaynak (2001) as well as Gollin (2002) have documented

substantial variability of capital and labor income shares across countries. Our current exercise, doc-

umenting the variability of implied partial elasticities, is complementary to theirs: partial elasticities

and factor shares coincide under the Cobb–Douglas specification but the former depend on factor

endowments otherwise.
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We have also endowed these partial elasticities with confidence intervals and cor-

rected them for the DEA bias using the Simar–Wilson bootstrap. Unfortunately, these

augmented results are somewhat less convincing than original ones. The reason is that

whereas DEA guarantees the production function to be increasing and concave, the

bootstrap-based production function need not satisfy these properties. It turns out

that when the bootstrap predicts large DEA biases, it also suggests unacceptably high

partial elasticities there, in line with local convexity of the function. For this reason, we

have decided to concentrate only on the original DEA results in the current discussion.

Another related issue is that under the DEA approach, efficient units are located

in vertices of the technology set. For such units, left-sided and right-sided partial

elasticities do not coincide. We have decided to report only the right-sided partial

elasticities here (i.e., percentage changes in output given a 1% increase in the respective

input, holding everything else constant).21

Tables 10–11, based on the DEA approach, document a negative correlation be-

tween the estimated partial elasticities and the scale of the economy. Hence, they

confirm that the nonparametric WTF has more curvature than the Cobb–Douglas pro-

duction function for which this correlation is zero. Another finding is that while the

average partial elasticities are generally in line with the ones present in the established

literature, they tend to vary largely across countries and have visible trends across

time. The DEA production function specification implies a consistent falling trend in

the partial elasticity of unskilled labor,22 a moderately increasing trend in the physical

capital elasticity, and an essentially flat trend in skilled labor elasticity.

The finding that some of the reported right-sided partial elasticities are very low

or even zero, is an artifact of the construction of the DEA frontier as a convex hull of

observed input-output pairs, with zero slope imposed on the function to the right of

the highest efficient unit. Also by construction, left-sided partial elasticities must be

greater or equal to the right-sided ones here. Hence, on the basis of right-sided partial

elasticities reported here, one cannot make any inference regarding returns to scale.

This will be done separately in the following subsection.

21Left-sided partial elasticities as well as partial elasticities based on the Simar–Wilson bootstrap

are available from the authors upon request.
22The huge drop in this partial elasticity in 1996 remains a caveat, though. We cannot offer an

explanation of this apparent “discontinuity” in our results, apart from the fact that it coincides in time

with Switzerland and Japan’s significant departures from full efficiency.
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Table 10: Partial elasticities estimated from the DEA (piecewise linear) production

function. Cross-country averages.
EK EHU EHS Scale

Australia 0,35 0,16 0,48 0,99

Austria 0,39 0,21 0,41 1,01

Belgium 0,32 0,31 0,37 1,00

Canada 0,32 0,21 0,65 0,90

Denmark 0,45 0,20 0,43 1,03

Finland 0,46 0,24 0,32 1,02

France 0,21 0,25 0,51 0,98

Greece 0,47 0,30 0,24 1,01

Ireland 0,26 0,25 0,38 0,37

Italy 0,57 0,00 0,23 0,53

Japan 0,00 0,00 0,75 0,75

Netherlands 0,13 0,35 0,55 0,94

Norway 0,00 0,20 0,32 0,40

Portugal 0,54 0,25 0,15 0,94

Spain 0,34 0,25 0,23 0,65

Sweden 0,55 0,18 0,43 1,03

Switzerland 0,30 0,73 0,57 1,05

UK 0,65 0,06 0,07 0,70

USA 0,00 0,00 0,00 0,00

mean 0,42 0,27 0,40 0,85

corr.with Y/L -0,19 -0,22 -0,15 -0,39

Note: means have been computed excluding zeros.

Under the translog specification, partial elasticities are computed as follows:

ELK =
∂ lnYit

∂ lnKit

= αK + αKK lnKit + αKHu lnH
U
it + αKHs lnH

S
it , (7)

ELHU =
∂ lnYit

∂ lnHU
it

= αHu + αKHu lnKit + αHuHu lnH
U
it + αHuHs lnH

S
it , (8)

ELHS =
∂ lnYit

∂ lnHS
it

= αHs + αKHs lnKit + αHuHs lnH
U
it + αHsHs lnH

S
it . (9)

They are then, by definition, dependent on factor endowments. It is however not auto-

matically certain that this would generate substantial variability of partial elasticities

across countries and time. This is only the case if second-order terms are important in

the above specification.

Tables 12–13, based on the translog specification, show partial elasticities do vary

strongly across countries and time. Moreover, similar patterns are observed both in

the CRS case (estimated according to an intensive form of the translog production

function), and in the VRS case.

In sum, partial elasticities presented above share a few common properties. First,

they vary largely across countries and time. Second, they are generally negatively

correlated with output per worker (apart from the skilled labor elasticity under the

43

Table 10: Partial elasticities estimated from the DEA (piecewise linear) production

function. Cross-country averages.
EK EHU EHS Scale

Australia 0,35 0,16 0,48 0,99

Austria 0,39 0,21 0,41 1,01

Belgium 0,32 0,31 0,37 1,00

Canada 0,32 0,21 0,65 0,90

Denmark 0,45 0,20 0,43 1,03

Finland 0,46 0,24 0,32 1,02

France 0,21 0,25 0,51 0,98

Greece 0,47 0,30 0,24 1,01

Ireland 0,26 0,25 0,38 0,37

Italy 0,57 0,00 0,23 0,53

Japan 0,00 0,00 0,75 0,75

Netherlands 0,13 0,35 0,55 0,94

Norway 0,00 0,20 0,32 0,40

Portugal 0,54 0,25 0,15 0,94

Spain 0,34 0,25 0,23 0,65

Sweden 0,55 0,18 0,43 1,03

Switzerland 0,30 0,73 0,57 1,05

UK 0,65 0,06 0,07 0,70

USA 0,00 0,00 0,00 0,00

mean 0,42 0,27 0,40 0,85

corr.with Y/L -0,19 -0,22 -0,15 -0,39

Note: means have been computed excluding zeros.

Under the translog specification, partial elasticities are computed as follows:

ELK =
∂ lnYit

∂ lnKit

= αK + αKK lnKit + αKHu lnH
U
it + αKHs lnH

S
it , (7)

ELHU =
∂ lnYit

∂ lnHU
it

= αHu + αKHu lnKit + αHuHu lnH
U
it + αHuHs lnH

S
it , (8)

ELHS =
∂ lnYit

∂ lnHS
it

= αHs + αKHs lnKit + αHuHs lnH
U
it + αHsHs lnH

S
it . (9)

They are then, by definition, dependent on factor endowments. It is however not auto-

matically certain that this would generate substantial variability of partial elasticities

across countries and time. This is only the case if second-order terms are important in

the above specification.

Tables 12–13, based on the translog specification, show partial elasticities do vary

strongly across countries and time. Moreover, similar patterns are observed both in

the CRS case (estimated according to an intensive form of the translog production

function), and in the VRS case.

In sum, partial elasticities presented above share a few common properties. First,

they vary largely across countries and time. Second, they are generally negatively

correlated with output per worker (apart from the skilled labor elasticity under the

43



Implications for the shape of the aggregate production function

N a t i o n a l  B a n k  o f  P o l a n d40

4

Table 10: Partial elasticities estimated from the DEA (piecewise linear) production

function. Cross-country averages.
EK EHU EHS Scale

Australia 0,35 0,16 0,48 0,99

Austria 0,39 0,21 0,41 1,01

Belgium 0,32 0,31 0,37 1,00

Canada 0,32 0,21 0,65 0,90

Denmark 0,45 0,20 0,43 1,03

Finland 0,46 0,24 0,32 1,02

France 0,21 0,25 0,51 0,98

Greece 0,47 0,30 0,24 1,01

Ireland 0,26 0,25 0,38 0,37

Italy 0,57 0,00 0,23 0,53

Japan 0,00 0,00 0,75 0,75

Netherlands 0,13 0,35 0,55 0,94

Norway 0,00 0,20 0,32 0,40

Portugal 0,54 0,25 0,15 0,94

Spain 0,34 0,25 0,23 0,65

Sweden 0,55 0,18 0,43 1,03

Switzerland 0,30 0,73 0,57 1,05

UK 0,65 0,06 0,07 0,70

USA 0,00 0,00 0,00 0,00

mean 0,42 0,27 0,40 0,85

corr.with Y/L -0,19 -0,22 -0,15 -0,39

Note: means have been computed excluding zeros.

Under the translog specification, partial elasticities are computed as follows:

ELK =
∂ lnYit

∂ lnKit

= αK + αKK lnKit + αKHu lnH
U
it + αKHs lnH

S
it , (7)

ELHU =
∂ lnYit

∂ lnHU
it

= αHu + αKHu lnKit + αHuHu lnH
U
it + αHuHs lnH

S
it , (8)

ELHS =
∂ lnYit

∂ lnHS
it

= αHs + αKHs lnKit + αHuHs lnH
U
it + αHsHs lnH

S
it . (9)

They are then, by definition, dependent on factor endowments. It is however not auto-

matically certain that this would generate substantial variability of partial elasticities

across countries and time. This is only the case if second-order terms are important in

the above specification.

Tables 12–13, based on the translog specification, show partial elasticities do vary

strongly across countries and time. Moreover, similar patterns are observed both in

the CRS case (estimated according to an intensive form of the translog production

function), and in the VRS case.

In sum, partial elasticities presented above share a few common properties. First,

they vary largely across countries and time. Second, they are generally negatively

correlated with output per worker (apart from the skilled labor elasticity under the

43

Table 11: Partial elasticities estimated from the DEA (piecewise linear) production

function. Annual averages.
EK EHU EHS Scale

1980 0,30 0,43 0,39 0,90

1981 0,31 0,41 0,40 0,90

1982 0,30 0,39 0,40 0,88

1983 0,28 0,42 0,39 0,89

1984 0,35 0,38 0,41 0,91

1985 0,33 0,43 0,41 0,93

1986 0,42 0,33 0,41 0,85

1987 0,36 0,33 0,42 0,83

1988 0,35 0,33 0,40 0,82

1989 0,33 0,32 0,42 0,82

1990 0,31 0,29 0,43 0,80

1991 0,31 0,29 0,41 0,83

1992 0,39 0,30 0,43 0,91

1993 0,45 0,30 0,41 0,93

1994 0,47 0,31 0,39 0,94
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translog specification), indicating that the frontier production function has more cur-

vature than suggested by the Cobb–Douglas production function. Both these findings

provide evidence against the latter functional specification.

Third, we also find that the unskilled labor elasticity is robustly falling over time,

in line with the concept of skill-biased technical change: the larger and more techno-

logically advanced is the economy, the less it relies on unskilled labor for production.

Fourth, this fall is counteracted by respective increases in the skilled labor elasticity (in

the translog specification), and also partially by increases in the physical capital elas-

ticity (in the DEA case). Both these trends are in line with the skill-biased technical

change hypothesis, too, although the latter is conditional on some degree of capital–skill

complementarity. As we shall see shortly, the analysis of Allen–Uzawa and Morishima

elasticities of substitution provides evidence of such complementarity. Fifth, we find a

marked difference between partial elasticities estimated on the basis of DEA and SFA:

44

Table 11: Partial elasticities estimated from the DEA (piecewise linear) production

function. Annual averages.
EK EHU EHS Scale

1980 0,30 0,43 0,39 0,90

1981 0,31 0,41 0,40 0,90

1982 0,30 0,39 0,40 0,88

1983 0,28 0,42 0,39 0,89

1984 0,35 0,38 0,41 0,91

1985 0,33 0,43 0,41 0,93

1986 0,42 0,33 0,41 0,85

1987 0,36 0,33 0,42 0,83

1988 0,35 0,33 0,40 0,82

1989 0,33 0,32 0,42 0,82

1990 0,31 0,29 0,43 0,80

1991 0,31 0,29 0,41 0,83

1992 0,39 0,30 0,43 0,91

1993 0,45 0,30 0,41 0,93

1994 0,47 0,31 0,39 0,94

1995 0,46 0,32 0,40 0,92

1996 0,46 0,15 0,43 0,82

1997 0,50 0,14 0,42 0,80

1998 0,55 0,12 0,38 0,79

1999 0,53 0,12 0,40 0,81

2000 0,50 0,16 0,38 0,81

2001 0,49 0,17 0,37 0,81

2002 0,51 0,14 0,38 0,79

2003 0,51 0,12 0,36 0,77

2004 0,57 0,11 0,34 0,76

mean 0,42 0,27 0,40 0,85

corr.with Y/L -0,19 -0,22 -0,15 -0,39

Note: means have been computed excluding zeros.

translog specification), indicating that the frontier production function has more cur-

vature than suggested by the Cobb–Douglas production function. Both these findings

provide evidence against the latter functional specification.

Third, we also find that the unskilled labor elasticity is robustly falling over time,

in line with the concept of skill-biased technical change: the larger and more techno-

logically advanced is the economy, the less it relies on unskilled labor for production.

Fourth, this fall is counteracted by respective increases in the skilled labor elasticity (in

the translog specification), and also partially by increases in the physical capital elas-

ticity (in the DEA case). Both these trends are in line with the skill-biased technical

change hypothesis, too, although the latter is conditional on some degree of capital–skill

complementarity. As we shall see shortly, the analysis of Allen–Uzawa and Morishima

elasticities of substitution provides evidence of such complementarity. Fifth, we find a

marked difference between partial elasticities estimated on the basis of DEA and SFA:

44

Table 11: Partial elasticities estimated from the DEA (piecewise linear) production

function. Annual averages.
EK EHU EHS Scale

1980 0,30 0,43 0,39 0,90

1981 0,31 0,41 0,40 0,90

1982 0,30 0,39 0,40 0,88

1983 0,28 0,42 0,39 0,89

1984 0,35 0,38 0,41 0,91

1985 0,33 0,43 0,41 0,93

1986 0,42 0,33 0,41 0,85

1987 0,36 0,33 0,42 0,83

1988 0,35 0,33 0,40 0,82

1989 0,33 0,32 0,42 0,82

1990 0,31 0,29 0,43 0,80

1991 0,31 0,29 0,41 0,83

1992 0,39 0,30 0,43 0,91

1993 0,45 0,30 0,41 0,93

1994 0,47 0,31 0,39 0,94

1995 0,46 0,32 0,40 0,92

1996 0,46 0,15 0,43 0,82

1997 0,50 0,14 0,42 0,80

1998 0,55 0,12 0,38 0,79

1999 0,53 0,12 0,40 0,81

2000 0,50 0,16 0,38 0,81

2001 0,49 0,17 0,37 0,81

2002 0,51 0,14 0,38 0,79

2003 0,51 0,12 0,36 0,77

2004 0,57 0,11 0,34 0,76

mean 0,42 0,27 0,40 0,85

corr.with Y/L -0,19 -0,22 -0,15 -0,39

Note: means have been computed excluding zeros.

translog specification), indicating that the frontier production function has more cur-

vature than suggested by the Cobb–Douglas production function. Both these findings

provide evidence against the latter functional specification.

Third, we also find that the unskilled labor elasticity is robustly falling over time,

in line with the concept of skill-biased technical change: the larger and more techno-

logically advanced is the economy, the less it relies on unskilled labor for production.

Fourth, this fall is counteracted by respective increases in the skilled labor elasticity (in

the translog specification), and also partially by increases in the physical capital elas-

ticity (in the DEA case). Both these trends are in line with the skill-biased technical

change hypothesis, too, although the latter is conditional on some degree of capital–skill

complementarity. As we shall see shortly, the analysis of Allen–Uzawa and Morishima

elasticities of substitution provides evidence of such complementarity. Fifth, we find a

marked difference between partial elasticities estimated on the basis of DEA and SFA:

44



Implications for the shape of the aggregate production function

WORKING PAPER No. 102 41

4

Table 12: Partial elasticities estimated from the translog production function. Cross-

country averages.
EK EHU EHS Scale

Australia 0,61 0,06 0,28 0,95

Austria 0,65 0,02 0,22 0,89

Belgium 0,66 0,09 0,18 0,93

Canada 0,51 0,02 0,40 0,93

Denmark 0,66 -0,04 0,21 0,83

Finland 0,66 0,00 0,18 0,84

France 0,60 0,21 0,29 1,10

Greece 0,67 0,09 0,16 0,92

Ireland 0,72 -0,06 0,12 0,78

Italy 0,57 0,33 0,23 1,13

Japan 0,53 0,28 0,37 1,17

Netherlands 0,56 0,14 0,26 0,96

Norway 0,50 0,01 0,28 0,80

Portugal 0,68 0,15 0,09 0,91

Spain 0,63 0,26 0,18 1,07

Sweden 0,64 -0,01 0,24 0,87

Switzerland 0,49 0,00 0,34 0,83

UK 0,72 0,16 0,23 1,11

USA 0,45 0,20 0,50 1,15

mean 0,60 0,10 0,25 0,96

corr.with Y/L -0,55 -0,06 0,58 0,05

Note: translog parameters, computed for the 1980–2000 dataset, have been assumed constant over time.

in the former case, partial elasticities are much closer to the benchmark values found in

other (not WTF-based) literature (e.g., Kydland and Prescott,1982) than in the latter

case. The average capital elasticity is around 0.4 in DEA as compared to 0.6 in SFA

translog, and the skilled labor elasticity is around 0.4 in DEA as compared to 0.25 in

SFA translog. This could be suggestive of some production function misspecification

issues inherent in the parametric estimations.

Table 14 documents the correlations between partial elasticities computed for each

of the 19 countries in each of the 25 years in question according to different specifica-

tions. Some of coefficients are driven by the relatively poor quality of bootstrap-based

elasticity measures (by construction, Simar–Wilson bootstraps are not meant for cap-

turing the curvature of the WTF but for improving the estimates of its location). We

also conjecture, however, based on our other results, that (i) the DEA provides biased

predictions on the elasticities in the cases of “atypical” units due to its piecewise linear

character, (ii) the translog function provides a relatively poor fit to the data in the

cases of “typical” units.
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Table 13: Partial elasticities estimated from the translog production function. Annual

averages.
EK EHU EHS Scale

1980 0,63 0,13 0,20 0,96

1981 0,63 0,13 0,20 0,96

1982 0,63 0,12 0,20 0,96

1983 0,63 0,12 0,21 0,96

1984 0,63 0,12 0,21 0,96

1985 0,63 0,11 0,21 0,96

1986 0,63 0,11 0,22 0,96

1987 0,63 0,11 0,22 0,96

1988 0,62 0,11 0,23 0,96

1989 0,62 0,11 0,24 0,96

1990 0,61 0,11 0,24 0,96

1991 0,61 0,11 0,24 0,96

1992 0,61 0,10 0,25 0,96

1993 0,62 0,10 0,25 0,96

1994 0,62 0,09 0,25 0,96

1995 0,61 0,09 0,26 0,96

1996 0,61 0,09 0,26 0,96

1997 0,60 0,09 0,27 0,96

1998 0,59 0,09 0,28 0,95

1999 0,58 0,08 0,29 0,95

2000 0,57 0,08 0,30 0,95

2001 0,56 0,08 0,30 0,95

2002 0,56 0,08 0,31 0,95

2003 0,55 0,08 0,32 0,94

2004 0,54 0,08 0,32 0,94

mean 0,60 0,10 0,25 0,96

corr.with Y/L -0,55 -0,06 0,58 0,05

Note: translog parameters, computed for the 1980–2000 dataset, have been assumed constant over time.

Table 14: Correlations between partial elasticities estimated from the DEA, DEA+SW

bootstrap, and translog production function.
corr(DEA,TL) corr(SW,TL) corr(DEA,SW)

EK 0,5234 0,0377 -0,0631

EHU -0,2717 -0,3654 0,0986

EHS 0,0954 0,0191 -0,1364

Scale -0,2337 -0,3458 -0,3997
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4.3 Returns to scale

Apart from the issues discussed above, our WTF estimates also provide interesting

conclusions on local and global returns to scale. One advantage of methods used

in the current analysis is that they do not require the researcher to impose a priori

restrictions on whether returns to scale are decreasing, increasing, or constant. Instead,

this property is obtained as a result and can be statistically tested against the null of

constant returns. We have conducted such tests for our DEA-based estimates of the

aggregate production function, according to Löthgren and Tambour (1999) and Simar

and Wilson (2002) procedures.

Results of tests carried out for all units in the sample separately are summarized in

Table 15. Comparing the bias-corrected DEA-based efficiency estimates under variable,

non-increasing, and constant returns to scale leads, in most cases, to the conclusion

that local returns to scale are constant. It is not always the case, though. In particular,

decreasing returns have been found in 29.1% of all cases, and in some countries such

as Japan, France, Italy and the Netherlands, they have been found for all or almost

all considered years. We also observe a tendency of decreasing returns becoming more

widespread in the recent years. On the other hand, increasing returns are found rarely

(in 4.4% of all considered cases), and Finland in 1981-89 is the only case when increasing

returns were found in more than two consecutive years.

Going beyond local returns to scale, measured for individual observations, we have

also carried out the Simar–Wilson (2002) statistical test of global returns to scale. The

results are illustrated in Figure 6, showing how each of the quantiles of the Shephard

distance ratios shifts across time. The most important feature of this Figure is that all

these lines are located below ŜCRS
obs , for all years under consideration. Therefore, under

all conventional significance levels (including α = 1%), the null of constant returns to

scale has to be rejected for the alternative of variable returns to scale, in all years.23

In sum, DEA-based returns-to-scale tests provide mixed evidence on this property.

On the one hand, the aggregate production function is often locally indistinguishable

from CRS; on the other hand, it is also robustly identified as globally VRS.

Some inference on returns to scale can also be done using our SFA results. As

is visible in Table 16, results of estimations of the Cobb–Douglas and the translog

production function without the CRS restriction lead to a conclusion that returns to

23A change in pattern of development of all our DEA-based returns-to-scale statistics is observed in

1995–96, coinciding with a sudden drop in the average unskilled labor elasticity and marked departures

of Switzerland and Japan from full efficiency.
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Figure 6: Simar and Wilson’s (2002) test of global returns to scale. The black line cor-

responds to the test statistic ŜCRS
obs , other lines are respective quantiles of the underlying

distribution.

scale are generally country-specific, yet globally close to constant. When computed

for the entire sample of countries, the scale elasticity is slightly below unity but not

distinguishable from unity in the statistical sense. Country-specific translog produc-

tion function estimates indicate, however, that returns to scale depend on the size of

the economy. Unlike in the DEA case, they are decidedly increasing in the US and

decreasing in smaller economies such as Norway and Ireland. This result might also

reflect the misspecification of the estimated translog production function, though, so it

should be treated with care. The relationship between the estimated scale elasticities

and per capita variables is generally very weak.

In sum, the parametric and nonparametric approaches both tend to invalidate the

assumption of constancy of global returns to scale (although on average, returns to

scale might be approximately constant), and the constancy of local returns to scale,

in numerous cases. At the level of individual observations, there is however little

congruence between results obtained with either method.
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and Wilson (2002) procedures.

Results of tests carried out for all units in the sample separately are summarized in

Table 15. Comparing the bias-corrected DEA-based efficiency estimates under variable,

non-increasing, and constant returns to scale leads, in most cases, to the conclusion

that local returns to scale are constant. It is not always the case, though. In particular,

decreasing returns have been found in 29.1% of all cases, and in some countries such

as Japan, France, Italy and the Netherlands, they have been found for all or almost

all considered years. We also observe a tendency of decreasing returns becoming more

widespread in the recent years. On the other hand, increasing returns are found rarely

(in 4.4% of all considered cases), and Finland in 1981-89 is the only case when increasing

returns were found in more than two consecutive years.

Going beyond local returns to scale, measured for individual observations, we have

also carried out the Simar–Wilson (2002) statistical test of global returns to scale. The

results are illustrated in Figure 6, showing how each of the quantiles of the Shephard

distance ratios shifts across time. The most important feature of this Figure is that all

these lines are located below ŜCRS
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scale are generally country-specific, yet globally close to constant. When computed

for the entire sample of countries, the scale elasticity is slightly below unity but not

distinguishable from unity in the statistical sense. Country-specific translog produc-

tion function estimates indicate, however, that returns to scale depend on the size of

the economy. Unlike in the DEA case, they are decidedly increasing in the US and

decreasing in smaller economies such as Norway and Ireland. This result might also

reflect the misspecification of the estimated translog production function, though, so it

should be treated with care. The relationship between the estimated scale elasticities

and per capita variables is generally very weak.

In sum, the parametric and nonparametric approaches both tend to invalidate the

assumption of constancy of global returns to scale (although on average, returns to

scale might be approximately constant), and the constancy of local returns to scale,

in numerous cases. At the level of individual observations, there is however little

congruence between results obtained with either method.
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49Table 16: Returns to scale – evidence from stochastic frontier estimates.
mean (IRS >1,

DRS <1)

1970 2000

SFA-CD(K,Hu,Hs) 0,960

Australia 0,947 0,939 0,953

Austria 0,889 0,896 0,881

Belgium 0,929 0,924 0,933

Canada 0,939 0,962 0,897

Denmark 0,835 0,840 0,827

Finland 0,840 0,827 0,842

France 1,104 1,111 1,087

Greece 0,911 0,890 0,929

Ireland 0,780 0,771 0,782

Italy 1,119 1,096 1,139

Japan 1,177 1,180 1,160

Netherlands 0,956 0,939 0,957

Norway 0,804 0,821 0,763

Portugal 0,898 0,868 0,926

Spain 1,057 1,023 1,089

Sweden 0,879 0,893 0,854

Switzerland 0,830 0,834 0,822

UK 1,114 1,125 1,091

USA 1,164 1,199 1,124

Translog(K,Hu,Hs) mean 0,956 0,955 0,950

Corr. with K/L 0,041 -0,065 -0,028

Corr. with Hu/L -0,017 -0,227 0,136

Corr. with Hs/L 0,212 0,214 0,078

Corr. with Y/L 0,028 0,203 -0,059

Corr. with L 0,709 0,759 0,638

Corr. with Y 0,654 0,708 0,582

4.4 Morishima and Allen–Uzawa elasticities of substitution

Another important characteristic of the shape of a production function is its elasticity

of substitution. In the two-input world, this characteristic is uniquely defined and

interpreted as local curvature of the isoquant (contour line of the production function),

i.e., percentage change in the marginal rate of substitution between inputs given a 1%

change in their relative price. The elasticity of substitution is an important measure of

flexibility of production processes or the ease with which the inputs can be substituted.

However, since our results described above (as well as the respective ones due to e.g.,

Caselli and Coleman, 2006; Growiec, 2012) provide evidence against homogeneity of

human capital, we are considering three-input production functions here, for which the

elasticity of substitution is no longer a unique concept.

The two most frequently mentioned concepts of elasticity of substitution for n-input

functions are the Allen–Uzawa and the Morishima elasticity (cf. Blackorby and Russell,
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scale are generally country-specific, yet globally close to constant. When computed

for the entire sample of countries, the scale elasticity is slightly below unity but not

distinguishable from unity in the statistical sense. Country-specific translog produc-

tion function estimates indicate, however, that returns to scale depend on the size of

the economy. Unlike in the DEA case, they are decidedly increasing in the US and

decreasing in smaller economies such as Norway and Ireland. This result might also

reflect the misspecification of the estimated translog production function, though, so it

should be treated with care. The relationship between the estimated scale elasticities

and per capita variables is generally very weak.

In sum, the parametric and nonparametric approaches both tend to invalidate the

assumption of constancy of global returns to scale (although on average, returns to

scale might be approximately constant), and the constancy of local returns to scale,

in numerous cases. At the level of individual observations, there is however little

congruence between results obtained with either method.
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Table 16: Returns to scale – evidence from stochastic frontier estimates.
mean (IRS >1,

DRS <1)

1970 2000

SFA-CD(K,Hu,Hs) 0,960

Australia 0,947 0,939 0,953

Austria 0,889 0,896 0,881

Belgium 0,929 0,924 0,933

Canada 0,939 0,962 0,897

Denmark 0,835 0,840 0,827

Finland 0,840 0,827 0,842

France 1,104 1,111 1,087

Greece 0,911 0,890 0,929

Ireland 0,780 0,771 0,782

Italy 1,119 1,096 1,139

Japan 1,177 1,180 1,160

Netherlands 0,956 0,939 0,957

Norway 0,804 0,821 0,763

Portugal 0,898 0,868 0,926

Spain 1,057 1,023 1,089

Sweden 0,879 0,893 0,854

Switzerland 0,830 0,834 0,822

UK 1,114 1,125 1,091

USA 1,164 1,199 1,124

Translog(K,Hu,Hs) mean 0,956 0,955 0,950

Corr. with K/L 0,041 -0,065 -0,028

Corr. with Hu/L -0,017 -0,227 0,136

Corr. with Hs/L 0,212 0,214 0,078

Corr. with Y/L 0,028 0,203 -0,059

Corr. with L 0,709 0,759 0,638

Corr. with Y 0,654 0,708 0,582

4.4 Morishima and Allen–Uzawa elasticities of substitution

Another important characteristic of the shape of a production function is its elasticity

of substitution. In the two-input world, this characteristic is uniquely defined and

interpreted as local curvature of the isoquant (contour line of the production function),

i.e., percentage change in the marginal rate of substitution between inputs given a 1%

change in their relative price. The elasticity of substitution is an important measure of

flexibility of production processes or the ease with which the inputs can be substituted.

However, since our results described above (as well as the respective ones due to e.g.,

Caselli and Coleman, 2006; Growiec, 2012) provide evidence against homogeneity of

human capital, we are considering three-input production functions here, for which the

elasticity of substitution is no longer a unique concept.

The two most frequently mentioned concepts of elasticity of substitution for n-input

functions are the Allen–Uzawa and the Morishima elasticity (cf. Blackorby and Russell,
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1989). The first one is defined as (cf. Hoff, 2004):

σA
ij =

∑n
k=1 XkFXk

XiXj

Hij

|H|
, i ̸= j, (10)

for any two inputs Xi, Xj ∈ {K,HU , HS}, with |H| being the determinant of the

bordered Hessian matrix:

H =




0 FK FHU FHS

FK FKK FKHU FKHS

FHU FKHU FHUHU FHUHS

FHS FKHS FHUHS FHSHS


 , (11)

and Hij being the cofactor of (i, j)-th element in the H matrix. The Allen–Uzawa elas-

ticity of substitution is symmetric and simplifies to the unique elasticity of substitution

in the two-input case. Unfortunately, as forcefully argued by Blackorby and Russell

(1989), it does not measure the curvature of the underlying production function or

the ease of input substitution appropriately, nor does it provide information about the

comparative statics of income shares.

These two important critisms do not apply to the Morishima elasticity of substi-

tution, which it thus a more theoretically sound concept of elasticity of substitution.

The Morishima elasticity of substitution is defined as

σM
ij =

FXj

Xi

Hij

|H|
−

FXj

Xj

Hij

|H|
, i ̸= j, (12)

and thus σM
ij ≠ σM

ji , signifying that the current measure is not symmetric.

It is not possible to compute meaningful estimates of the elasticity of substitution

for the DEA-based WTF, because – by construction – the production function is then

piecewise linear, and for any linear function, the elasticity of substitution must be infi-

nite. In turn, we have computed these estimates only under the translog specification.

The results are presented in Tables 17–18.

The translog-based estimates of Morishima and Allen–Uzawa elasticities of substi-

tution imply the following regularities:

• According to Allen–Uzawa elasticities of substitution, capital and unskilled labor,

as well as capital and skilled labor, are gross substitutes on average. Skilled and

unskilled labor are generally complementary. There is substantial variation in

these elasticities of substitution across countries.
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Table 17: Morishima and Allen-Uzawa elasticities of substitution, inferred from the

translog production function. Cross-country averages.
Morishima EoS Allen–Uzawa EoS

E(K,HU ) E(K,HS) E(HU , K) E(HU , HS) E(HS , K) E(HS , HU ) E(K,HU ) E(K,HS) E(HU , HS)

Australia -16,37 -7,19 0,93 -0,93 0,29 0,61 1,46 0,46 -4,92

Austria -2,37 -8,57 0,73 -0,39 0,41 0,06 1,02 0,57 -3,45

Belgium -8,06 -6,61 0,69 -0,11 0,33 0,07 0,99 0,47 -8,21

Canada 2,46 -12,51 0,89 -0,89 0,30 0,32 1,65 0,57 -2,69

Denmark 6,13 -8,21 0,74 -0,31 0,45 -0,14 0,94 0,58 -2,22

Finland 0,13 -8,12 0,67 -0,15 0,41 -0,03 0,87 0,54 -3,31

France 16,80 -32,20 -0,26 1,29 1,02 -2,10 -0,51 1,92 8,88

Greece -5,30 -7,61 0,58 1,05 0,38 -0,52 0,81 0,53 -12,18

Ireland 3,62 -4,33 0,57 -0,03 0,27 -0,01 0,65 0,31 -2,89

Italy -9,71 -30,44 0,22 -0,45 0,60 0,33 0,45 1,20 3,41

Japan 12,73 -36,51 -0,07 0,85 0,76 -2,05 -0,17 1,73 4,13

Netherlands -63,48 23,46 2,09 -2,51 -0,70 1,93 3,56 -1,18 -24,26

Norway 2,32 -20,30 0,75 -0,29 0,34 -0,03 1,20 0,56 -2,69

Portugal 0,46 -16,35 -0,11 3,87 1,17 -2,27 -0,14 1,57 -22,14

Spain -7,57 -16,32 0,33 -0,83 0,51 0,60 0,56 0,89 5,84

Sweden 3,58 -9,17 0,76 -0,41 0,44 -0,10 1,05 0,61 -2,84

Switzerland 2,16 -19,60 0,79 -0,57 0,36 -0,02 1,35 0,62 -1,95

UK -190,52 66,19 5,84 -12,44 -3,00 20,51 9,90 -5,31 -50,22

USA 431,60 -65,92 -1,33 4,15 1,22 -21,34 -3,62 3,26 10,12

mean 9,40 -11,59 0,78 -0,48 0,29 -0,22 1,16 0,52 -5,87

Note: translog parameters, computed for the 1980–2000 dataset, have been assumed constant over time.

• According to Allen–Uzawa elasticities of substitution, for all pairs of factors,

substitutability does not exhibit any clear time trend. In some countries, the

trend is increasing, whereas in others it is decreasing.

• According to Morishima elasticities of substitution, when capital price increases,

capital can be relatively easily substituted with unskilled labor, but not with

skilled labor.

• According to Morishima elasticities of substitution, when unskilled labor wage

increases, some of it can be substituted with capital, somewhat more easily than

with skilled labor.

• According to Morishima elasticities of substitution, when skilled labor wage in-

creases, it can be relatively easily substituted with capital, easier than with un-

skilled labor.

• Neither definition of the elasticity of substitution supports its constancy across

countries and time (required in the CES case). None of the computed values of

elasticity is close to unity on average (as required in the Cobb–Douglas specifi-

cation).

Thus, our analysis provides some evidence for the disputed concept of capital-skill

complementarity. Using the translog specification instead of the CES, and basing our

discussion on Morishima elasticities of substitution, we can say more on this issue
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4 Table 18: Morishima and Allen-Uzawa elasticities of substitution, inferred from the

translog production function. Annual averages.
Morishima EoS Allen–Uzawa EoS

E(K,HU ) E(K,HS) E(HU , K) E(HU , HS) E(HS , K) E(HS , HU ) E(K,HU ) E(K,HS) E(HU , HS)

1980 -2,36 -15,43 0,42 0,29 0,52 -0,53 0,60 0,86 -2,36

1981 -1,87 -15,26 0,42 0,34 0,52 -0,60 0,61 0,85 -2,11

1982 -0,61 -15,37 0,41 0,25 0,54 -0,63 0,58 0,88 -0,88

1983 0,64 -15,57 0,39 0,26 0,55 -0,71 0,55 0,91 -0,03

1984 1,78 -15,64 0,39 0,19 0,56 -0,72 0,53 0,92 0,42

1985 3,08 -16,04 0,37 0,17 0,57 -0,77 0,51 0,95 0,84

1986 4,59 -16,90 0,35 0,18 0,59 -0,84 0,47 0,98 1,34

1987 7,22 -19,03 0,29 0,23 0,65 -0,92 0,36 1,08 2,34

1988 13,74 -25,47 0,09 0,39 0,80 -1,08 0,04 1,35 5,38

1989 -41,73 33,85 2,03 -1,13 -0,71 0,01 3,31 -1,21 -29,35

1990 -0,40 -9,36 0,65 0,09 0,38 -0,93 0,97 0,65 -5,37

1991 6,14 -13,95 0,49 0,36 0,51 -1,25 0,70 0,87 -3,09

1992 11,15 -15,40 0,42 0,46 0,56 -1,51 0,57 0,96 -1,44

1993 16,97 -16,33 0,35 0,57 0,61 -1,86 0,44 1,04 0,52

1994 23,80 -17,46 0,29 0,69 0,66 -2,23 0,32 1,12 1,78

1995 33,94 -18,96 0,22 0,87 0,70 -2,77 0,18 1,22 2,90

1996 45,90 -21,15 0,10 1,19 0,79 -3,50 -0,04 1,38 4,79

1997 55,27 -23,40 -0,02 1,49 0,87 -4,05 -0,24 1,52 6,15

1998 74,04 -31,55 -0,63 3,06 1,31 -6,49 -1,24 2,26 15,58

1999 -99,19 46,92 5,99 -13,50 -3,41 19,36 9,59 -5,57 -85,27

2000 23,23 -10,96 1,20 -1,54 0,00 0,87 1,81 0,10 -12,21

2001 29,28 -14,43 0,96 -0,91 0,17 -0,05 1,42 0,40 -8,37

2002 30,78 -15,34 0,91 -0,78 0,20 -0,19 1,37 0,45 -7,42

2003 23,73 -12,85 1,10 -1,24 0,08 0,61 1,72 0,23 -9,14

2004 -24,10 5,18 2,28 -3,96 -0,70 5,31 3,82 -1,16 -21,78

mean 9,40 -11,59 0,78 -0,48 0,29 -0,22 1,16 0,52 -5,87

Note: translog parameters, computed for the 1980–2000 dataset, have been assumed constant over time.

that is usually said in the related literature. In particular, we observe a one-sided

relationship here: capital-skill complementarity is observed on average only when their

relative price changes due to changes in capital price, not the skilled wage.
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mean 9,40 -11,59 0,78 -0,48 0,29 -0,22 1,16 0,52 -5,87

Note: translog parameters, computed for the 1980–2000 dataset, have been assumed constant over time.

that is usually said in the related literature. In particular, we observe a one-sided

relationship here: capital-skill complementarity is observed on average only when their

relative price changes due to changes in capital price, not the skilled wage.
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Table 17: Morishima and Allen-Uzawa elasticities of substitution, inferred from the

translog production function. Cross-country averages.
Morishima EoS Allen–Uzawa EoS

E(K,HU ) E(K,HS) E(HU , K) E(HU , HS) E(HS , K) E(HS , HU ) E(K,HU ) E(K,HS) E(HU , HS)

Australia -16,37 -7,19 0,93 -0,93 0,29 0,61 1,46 0,46 -4,92

Austria -2,37 -8,57 0,73 -0,39 0,41 0,06 1,02 0,57 -3,45

Belgium -8,06 -6,61 0,69 -0,11 0,33 0,07 0,99 0,47 -8,21

Canada 2,46 -12,51 0,89 -0,89 0,30 0,32 1,65 0,57 -2,69

Denmark 6,13 -8,21 0,74 -0,31 0,45 -0,14 0,94 0,58 -2,22

Finland 0,13 -8,12 0,67 -0,15 0,41 -0,03 0,87 0,54 -3,31

France 16,80 -32,20 -0,26 1,29 1,02 -2,10 -0,51 1,92 8,88

Greece -5,30 -7,61 0,58 1,05 0,38 -0,52 0,81 0,53 -12,18

Ireland 3,62 -4,33 0,57 -0,03 0,27 -0,01 0,65 0,31 -2,89

Italy -9,71 -30,44 0,22 -0,45 0,60 0,33 0,45 1,20 3,41

Japan 12,73 -36,51 -0,07 0,85 0,76 -2,05 -0,17 1,73 4,13

Netherlands -63,48 23,46 2,09 -2,51 -0,70 1,93 3,56 -1,18 -24,26

Norway 2,32 -20,30 0,75 -0,29 0,34 -0,03 1,20 0,56 -2,69

Portugal 0,46 -16,35 -0,11 3,87 1,17 -2,27 -0,14 1,57 -22,14

Spain -7,57 -16,32 0,33 -0,83 0,51 0,60 0,56 0,89 5,84

Sweden 3,58 -9,17 0,76 -0,41 0,44 -0,10 1,05 0,61 -2,84

Switzerland 2,16 -19,60 0,79 -0,57 0,36 -0,02 1,35 0,62 -1,95

UK -190,52 66,19 5,84 -12,44 -3,00 20,51 9,90 -5,31 -50,22

USA 431,60 -65,92 -1,33 4,15 1,22 -21,34 -3,62 3,26 10,12

mean 9,40 -11,59 0,78 -0,48 0,29 -0,22 1,16 0,52 -5,87

Note: translog parameters, computed for the 1980–2000 dataset, have been assumed constant over time.

• According to Allen–Uzawa elasticities of substitution, for all pairs of factors,

substitutability does not exhibit any clear time trend. In some countries, the

trend is increasing, whereas in others it is decreasing.

• According to Morishima elasticities of substitution, when capital price increases,

capital can be relatively easily substituted with unskilled labor, but not with

skilled labor.

• According to Morishima elasticities of substitution, when unskilled labor wage

increases, some of it can be substituted with capital, somewhat more easily than

with skilled labor.

• According to Morishima elasticities of substitution, when skilled labor wage in-

creases, it can be relatively easily substituted with capital, easier than with un-

skilled labor.

• Neither definition of the elasticity of substitution supports its constancy across

countries and time (required in the CES case). None of the computed values of

elasticity is close to unity on average (as required in the Cobb–Douglas specifi-

cation).

Thus, our analysis provides some evidence for the disputed concept of capital-skill

complementarity. Using the translog specification instead of the CES, and basing our

discussion on Morishima elasticities of substitution, we can say more on this issue
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5 Conclusion

Summing up, the objective of the current paper has been to investigate the shape

of the aggregate (country-level) production function based on the estimates of the

World Technology Frontier (WTF). Using annual data on inputs and output in 19

highly developed OECD countries in 1970–2004, we have estimated the WTF both non-

parametrically and parametrically (using the bias-corrected DEA and SFA approach,

respectively) and then used these estimates to assess several properties of the implied

production function.

We have obtained the following principal results:

• the CRS Cobb–Douglas production function fails to reproduce the important

properties of our data (inferred inefficiency levels, estimated partial elasticities,

elasticities of substitution),

• the (non-parametric) bootstrap-augmented DEA frontier is not only markedly

different from the CRS Cobb–Douglas production function specification, but also

from the unrestricted Cobb–Douglas and the translog, even though the latter

offers much more flexibility and can be fitted to the data relatively well,

• regardless of the approach taken, the ranking of countries with respect to their

technical efficiency is relatively stable (although individual distances to the fron-

tier may vary),

• partial elasticities of the aggregate production function are correlated with in-

puts both in the DEA and in the translog case, and they vary substiantially

across countries and time, providing strong evidence against the Cobb–Douglas

specification, and also providing support for the skill-biased technical change hy-

pothesis,

• tests of returns to scale based on the DEA, Cobb–Douglas and translog repre-

sentations of the frontier provide mixed evidence on this property, although DRS

seems more prevalent in smaller economies, and IRS – in larger economies,

• unskilled and skilled labor are not perfectly substitutable,

• elasticities of substitution vary largely across countries and time, but there are

some indications of capital–skill complementarity, postulated in the related liter-

ature.
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[14] Färe, R., S. Grosskopf, M. Noriss, Z. Zhang (1994), “Productivity Growth, Techni-

cal Progress, and Efficiency Change in Industrialized Countries”, American Economic

Review 84(1), 66-83.

[15] Felipe, J., Fisher, F. M. (2003), “Aggregation in Production Functions: What

Applied Economists Should Know”, Metroeconomica 54(2-3), 208–262.

[16] Gollin, D. (2002), “Getting Income Shares Right”, Journal of Political Economy

110(2), 458-474.

[17] Greene, W. (2003), “Maximum Simulated Likelihood Estimation of the Normal-

Gamma Stochastic Frontier Function”, Journal of Productivity Analysis 19(2-3), 179-

190.

[18] Growiec, J. (2010), “On the Measurement of Technological Progress Across Coun-

tries”, National Bank of Poland Working Paper 73.

[19] Growiec, J. (2012), “The World Technology Frontier: What Can We Learn from

the US States?”, Oxford Bulletin of Economics and Statistics, forthcoming.

[20] Hall, R.E., C.I. Jones (1999), “Why Do Some Countries Produce So Much More

Output Per Worker Than Others?”, Quarterly Journal of Economics 114(1), 83-116.

[21] Henderson, D. J., R. R. Russell (2005), “Human Capital and Convergence: A

Production–Frontier Approach”, International Economic Review 46(4), 1167-1205.

[22] Heston, A., R. Summers, B. Aten (2006), “Penn World Table Version 6.2”, Center

for International Comparisons of Production, Income and Prices at the University

of Pennsylvania.

[23] Hodrick, R. J., E. C. Prescott (1997),“Postwar U.S. Business Cycles: An Empirical

Investigation”, Journal of Money, Credit and Banking 29(1), 1-16.

56



References

WORKING PAPER No. 102 51

[12] Cornwell, C., P. Schmidt, R.C. Sickles (1990), “Production Frontiers With Cross-

Sectional and Time-Series Variation in Efficiency Levels”, Journal of Econometrics

46(1-2), 185-200.
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[29] Koop, G., J. Osiewalski, M.F.J. Steel (1999),“The Components of Output Growth:

A Stochastic Frontier Analysis”, Oxford Bulletin of Economics and Statistics 61(4),

455-487.

[30] Koop, G., J. Osiewalski, M.F.J. Steel (2000), “Measuring the Sources of Output

Growth in a Panel of Countries”, Journal of Business and Economic Statistics 18(3),

284-299.

[31] Koop, G., M.F.J. Steel, J. Osiewalski (1995), “Posterior Analysis of Stochastic

Frontier Models Using Gibbs Sampling”, Computational Statistics 10, 353-373.

[32] Koop, G., M.F.J. Steel (2001), “Bayesian Analysis of Stochastic Frontier Models”

[In:] Baltagi, B., ed., A Companion to Theoretical Econometrics, Blackwell, Oxford,

pp. 520-573.

[33] Kumar, S., R. R. Russell (2002), “Technological Change, Technological Catch-

up, and Capital Deepening: Relative Contributions to Growth and Convergence”,

American Economic Review 92(3), 527-548.

[34] Kumbhakar, S.C., C.A. Knox Lovell (2000), Stochastic Frontier Analysis. Cam-

bridge University Press, Cambridge.

57



References

N a t i o n a l  B a n k  o f  P o l a n d52

[24] Hoff, A. (2004), “The Linear Approximation of the CES Function with n Input

Variables”, Marine Resource Economics 19, 295-306.

[25] Jerzmanowski, M. (2007), “Total Factor Productivity Differences: Appropriate

Technology Vs. Efficiency”, European Economic Review 51, 2080-2110.

[26] Jondrow, J., C.A. Knox Lovell, I.S. Materov, P. Schmidt (1982), “On the Estima-

tion of Technical Inefficiency in the Stochastic Frontier Production Function Model”,

Journal of Econometrics 19(2-3), 233-238.

[27] Kneip, A., L. Simar, P.W. Wilson (2008), “Asymptotics and Consistent Bootstraps

of DEA Estimators in Non-parametric Frontier Models”, Econometric Theory 24,

1663-1697.

[28] Kneip A., L. Simar, P.W. Wilson (2009), “A Computationally Efficient, Consistent

Bootstrap for Inference with Non-paramteric DEA Estimators”, Discussion Paper

0903, Institut de Statistique, Université catholique de Louvain.
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A Appendix

Apart from the positive motivation, followed throughout this article, knowing the shape

of the aggregate production function also has important corollaries for development

and growth accounting exercises. As is clear from numerous earlier contributions (e.g.

Koop, Osiewalski and Steel, 1999, 2000; Kumar and Russell, 2002; Henderson and

Russell, 2005; Jerzmanowski, 2007; Bos et al., 2010), the fractions of cross-country

productivity differentials attributed to differences in efficiency, technology, and inputs

are largely dependent on the methodology and dataset used in each study. The same

caveat applies to decompositions of total GDP growth.

Detailed development and growth accounting exercises can (and should) also be

conducted on the basis of the alternative WTF production functions identified in the

current study. Let us now discuss several of such results in the form of the current

appendix.

A.1 Development accounting: DEA vs. the Cobb–Douglas

production function

The DEA-based non-parametric production frontier approach is very useful for the

purposes of development accounting (cf. Kumar and Russell, 2002; Henderson and

Russell, 2005; Jerzmanowski, 2007; Growiec, 2012). Within the DEA paradigm, the

ratio of GDP per worker between two countries (here, between each particular OECD

country and the US) can be easily decomposed into a product of (i) the efficiency

ratio, and (ii) fractions of the potential output ratio attributed to differences in the

endowment of each separate factor of production.

The latter group of factors cannot be determined uniquely because when we assess

the impact on output of differences in one factor holding other factors constant, we

can hold them constant at different levels : either at US levels, or country’s levels, or a

mixture of the two. For three factors of production (physical capital K, unskilled labor

HU and skilled labor HS; see also Growiec, 2012), the “Fisher-ideal” decomposition (cf.

Henderson and Russell, 2005) has to satisfy the following:
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Please note that in each of the fractions indicated above, the numerator and denomi-

nator differ by a single variable only, being the variable whose contribution to the total

GDP ratio we are about to measure.

The results according to the above decomposition, for 1980 and 2004, are presented

in Table 19. Results for other years are available from the authors upon request.

Shifting to the parametric approach, and taking the well-established assumption

of a Cobb–Douglas production function, coupled with the usual assumption of perfect

substitutability between skilled and unskilled labor (made here to attain comparability

to the established literature), the development accounting relationship can be written

down as:
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U
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S
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S
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, (14)

where α is the capital share in output. We take its (country-specific) values from Gollin

(2002).24 The results are viewed in Table 20.

Development accounting exercises may also be conducted on the basis of SFA, under

the assumption of Cobb–Douglas or translog frontiers (cf. Koop, Osiewalski and Steel,

1999, 2000). We leave this for further research.

A.2 Growth accounting: DEA vs. the Cobb–Douglas produc-

tion function

Analogously to the development accounting exercise described above, we have also

conducted a growth accounting exercise where we decomposed the total 1980–2004

24Specifically, we apply Gollin’s adjustment no. 2, where capital and labor shares are adjusted for

self-employment in the economy (self-employed income is attributed to capital and labor in the same

proportion as it is split in the rest of the economy.)
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Please note that in each of the fractions indicated above, the numerator and denomi-

nator differ by a single variable only, being the variable whose contribution to the total

GDP ratio we are about to measure.

The results according to the above decomposition, for 1980 and 2004, are presented

in Table 19. Results for other years are available from the authors upon request.

Shifting to the parametric approach, and taking the well-established assumption

of a Cobb–Douglas production function, coupled with the usual assumption of perfect

substitutability between skilled and unskilled labor (made here to attain comparability

to the established literature), the development accounting relationship can be written

down as:
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where α is the capital share in output. We take its (country-specific) values from Gollin

(2002).24 The results are viewed in Table 20.

Development accounting exercises may also be conducted on the basis of SFA, under

the assumption of Cobb–Douglas or translog frontiers (cf. Koop, Osiewalski and Steel,

1999, 2000). We leave this for further research.

A.2 Growth accounting: DEA vs. the Cobb–Douglas produc-

tion function

Analogously to the development accounting exercise described above, we have also

conducted a growth accounting exercise where we decomposed the total 1980–2004

24Specifically, we apply Gollin’s adjustment no. 2, where capital and labor shares are adjusted for

self-employment in the economy (self-employed income is attributed to capital and labor in the same

proportion as it is split in the rest of the economy.)
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Please note that in each of the fractions indicated above, the numerator and denomi-

nator differ by a single variable only, being the variable whose contribution to the total

GDP ratio we are about to measure.

The results according to the above decomposition, for 1980 and 2004, are presented

in Table 19. Results for other years are available from the authors upon request.

Shifting to the parametric approach, and taking the well-established assumption

of a Cobb–Douglas production function, coupled with the usual assumption of perfect

substitutability between skilled and unskilled labor (made here to attain comparability

to the established literature), the development accounting relationship can be written

down as:
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where α is the capital share in output. We take its (country-specific) values from Gollin

(2002).24 The results are viewed in Table 20.

Development accounting exercises may also be conducted on the basis of SFA, under

the assumption of Cobb–Douglas or translog frontiers (cf. Koop, Osiewalski and Steel,

1999, 2000). We leave this for further research.

A.2 Growth accounting: DEA vs. the Cobb–Douglas produc-

tion function

Analogously to the development accounting exercise described above, we have also

conducted a growth accounting exercise where we decomposed the total 1980–2004

24Specifically, we apply Gollin’s adjustment no. 2, where capital and labor shares are adjusted for

self-employment in the economy (self-employed income is attributed to capital and labor in the same

proportion as it is split in the rest of the economy.)
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increase in GDP per worker into the impacts of (i) change in efficiency relative to the

WTF, (ii) technological progress at the WTF, (iii) factor accumulation.

As compared to development accounting, there is one additional factor which ought

to be disentangled here: technological progress at the frontier which pushes the WTF

forward so that potential productivity is increased. Formally, with three factors of

production, K,HU , HS, the “Fisher-ideal” (cf. Henderson and Russell, 2005; Growiec,

2012) decomposition of the 2004/1980 (or 2004/1990)25 productivity ratio is the fol-

lowing (denoting s = 1980, 1990, n = 2004):
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The decomposition of GDP growth defined by Eq. (15) singles out dynamic changes

in technical efficiency, shifts in the technology frontier given factor endowments, and

factor accumulation holding the technological frontier fixed.

The product of the “efficiency change” and “technological progress” factors is also

known as the (output-oriented) Malmquist productivity index in the DEA literature

(cf. Fried, Knox Lovell, and Schmidt, 1993). It measures, for each country and time

period, the total change in productivity which resulted from anything but factor ac-

cumulation. In other words, the Malmquist productivity index captures the total pro-

ductivity improvement under technologies actually used in the given country, whereas

our “technological progress” index measures the total productivity improvement under

frontier technology, given the country’s factor endowments.

The results are presented in the form of annualized growth rates in Table 21.

The parametric approach, based on the Cobb-Douglas production function assump-

tion, the 2004 / 1980 (or 2004 / 1990) provides an alternative decomposition of the

productivity ratio into contributions attributable to technological progress shifting To-

tal Factor Productivity, and factor accumulation: Formally, the “Fisher-ideal” decom-

position, taking full account of technological change, is obtained from the following

25Results for other years are available from the authors upon request.
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Please note that in each of the fractions indicated above, the numerator and denomi-

nator differ by a single variable only, being the variable whose contribution to the total

GDP ratio we are about to measure.

The results according to the above decomposition, for 1980 and 2004, are presented

in Table 19. Results for other years are available from the authors upon request.

Shifting to the parametric approach, and taking the well-established assumption

of a Cobb–Douglas production function, coupled with the usual assumption of perfect

substitutability between skilled and unskilled labor (made here to attain comparability

to the established literature), the development accounting relationship can be written
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where α is the capital share in output. We take its (country-specific) values from Gollin

(2002).24 The results are viewed in Table 20.

Development accounting exercises may also be conducted on the basis of SFA, under

the assumption of Cobb–Douglas or translog frontiers (cf. Koop, Osiewalski and Steel,

1999, 2000). We leave this for further research.

A.2 Growth accounting: DEA vs. the Cobb–Douglas produc-

tion function

Analogously to the development accounting exercise described above, we have also

conducted a growth accounting exercise where we decomposed the total 1980–2004

24Specifically, we apply Gollin’s adjustment no. 2, where capital and labor shares are adjusted for

self-employment in the economy (self-employed income is attributed to capital and labor in the same

proportion as it is split in the rest of the economy.)
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The decomposition of GDP growth defined by Eq. (15) singles out dynamic changes

in technical efficiency, shifts in the technology frontier given factor endowments, and

factor accumulation holding the technological frontier fixed.

The product of the “efficiency change” and “technological progress” factors is also

known as the (output-oriented) Malmquist productivity index in the DEA literature

(cf. Fried, Knox Lovell, and Schmidt, 1993). It measures, for each country and time

period, the total change in productivity which resulted from anything but factor ac-

cumulation. In other words, the Malmquist productivity index captures the total pro-

ductivity improvement under technologies actually used in the given country, whereas

our “technological progress” index measures the total productivity improvement under

frontier technology, given the country’s factor endowments.

The results are presented in the form of annualized growth rates in Table 21.

The parametric approach, based on the Cobb-Douglas production function assump-

tion, the 2004 / 1980 (or 2004 / 1990) provides an alternative decomposition of the

productivity ratio into contributions attributable to technological progress shifting To-

tal Factor Productivity, and factor accumulation: Formally, the “Fisher-ideal” decom-

position, taking full account of technological change, is obtained from the following

25Results for other years are available from the authors upon request.
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increase in GDP per worker into the impacts of (i) change in efficiency relative to the

WTF, (ii) technological progress at the WTF, (iii) factor accumulation.

As compared to development accounting, there is one additional factor which ought

to be disentangled here: technological progress at the frontier which pushes the WTF

forward so that potential productivity is increased. Formally, with three factors of

production, K,HU , HS, the “Fisher-ideal” (cf. Henderson and Russell, 2005; Growiec,

2012) decomposition of the 2004/1980 (or 2004/1990)25 productivity ratio is the fol-

lowing (denoting s = 1980, 1990, n = 2004):
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The decomposition of GDP growth defined by Eq. (15) singles out dynamic changes

in technical efficiency, shifts in the technology frontier given factor endowments, and

factor accumulation holding the technological frontier fixed.

The product of the “efficiency change” and “technological progress” factors is also

known as the (output-oriented) Malmquist productivity index in the DEA literature

(cf. Fried, Knox Lovell, and Schmidt, 1993). It measures, for each country and time

period, the total change in productivity which resulted from anything but factor ac-

cumulation. In other words, the Malmquist productivity index captures the total pro-

ductivity improvement under technologies actually used in the given country, whereas

our “technological progress” index measures the total productivity improvement under

frontier technology, given the country’s factor endowments.

The results are presented in the form of annualized growth rates in Table 21.

The parametric approach, based on the Cobb-Douglas production function assump-

tion, the 2004 / 1980 (or 2004 / 1990) provides an alternative decomposition of the

productivity ratio into contributions attributable to technological progress shifting To-

tal Factor Productivity, and factor accumulation: Formally, the “Fisher-ideal” decom-

position, taking full account of technological change, is obtained from the following

25Results for other years are available from the authors upon request.
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Table 19: Development accounting results – DEA method.
GDP ratio Effic. K diff HU diff HS diff

Australia 1980 0,826 0,814 1,006 1,175 0,860

Austria 1980 0,815 0,834 0,989 1,233 0,801

Belgium 1980 0,951 0,903 1,017 1,393 0,743

Canada 1980 0,902 0,933 1,008 1,072 0,894

Denmark 1980 0,748 0,767 0,990 1,170 0,841

Finland 1980 0,624 0,731 0,987 1,324 0,653

France 1980 0,881 0,879 1,022 1,292 0,758

Greece 1980 0,753 0,805 1,015 1,492 0,618

Ireland 1980 0,651 0,881 0,777 1,321 0,720

Italy 1980 0,859 0,984 1,029 1,621 0,523

Japan 1980 0,678 0,744 1,008 1,191 0,759

Netherlands 1980 0,945 0,945 1,065 1,504 0,625

Norway 1980 0,950 0,991 1,056 1,377 0,659

Portugal 1980 0,473 0,979 0,635 1,503 0,507

Spain 1980 0,788 1 0,878 1,645 0,546

Sweden 1980 0,714 0,830 0,998 1,203 0,716

Switzerland 1980 0,948 0,944 1,037 1,151 0,841

UK 1980 0,716 0,986 0,754 1,141 0,844

USA 1980 1 1 1 1 1

Australia 2004 0,825 0,760 0,964 1,125 1,002

Austria 2004 0,860 0,774 0,928 1,168 1,025

Belgium 2004 0,928 0,772 0,941 1,273 1,004

Canada 2004 0,815 1 1,036 0,832 0,946

Denmark 2004 0,767 0,806 0,843 1,118 1,011

Finland 2004 0,776 0,759 0,854 1,169 1,025

France 2004 0,868 0,774 0,964 1,131 1,028

Greece 2004 0,712 0,747 0,790 1,174 1,027

Ireland 2004 0,969 1 0,874 1,228 0,903

Italy 2004 0,800 0,728 0,885 1,298 0,957

Japan 2004 0,708 0,635 0,990 1,112 1,012

Netherlands 2004 0,802 0,737 0,933 1,168 0,998

Norway 2004 1,089 1 1,014 1,199 0,895

Portugal 2004 0,493 0,829 0,684 1,254 0,694

Spain 2004 0,751 0,772 0,897 1,292 0,839

Sweden 2004 0,773 0,910 0,785 1,065 1,017

Switzerland 2004 0,735 0,664 1,004 1,128 0,977

UK 2004 0,786 1,000 0,707 1,087 1,022

USA 2004 1 1 1 1 1
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increase in GDP per worker into the impacts of (i) change in efficiency relative to the

WTF, (ii) technological progress at the WTF, (iii) factor accumulation.

As compared to development accounting, there is one additional factor which ought

to be disentangled here: technological progress at the frontier which pushes the WTF

forward so that potential productivity is increased. Formally, with three factors of

production, K,HU , HS, the “Fisher-ideal” (cf. Henderson and Russell, 2005; Growiec,

2012) decomposition of the 2004/1980 (or 2004/1990)25 productivity ratio is the fol-

lowing (denoting s = 1980, 1990, n = 2004):
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The decomposition of GDP growth defined by Eq. (15) singles out dynamic changes

in technical efficiency, shifts in the technology frontier given factor endowments, and

factor accumulation holding the technological frontier fixed.

The product of the “efficiency change” and “technological progress” factors is also

known as the (output-oriented) Malmquist productivity index in the DEA literature

(cf. Fried, Knox Lovell, and Schmidt, 1993). It measures, for each country and time

period, the total change in productivity which resulted from anything but factor ac-

cumulation. In other words, the Malmquist productivity index captures the total pro-

ductivity improvement under technologies actually used in the given country, whereas

our “technological progress” index measures the total productivity improvement under

frontier technology, given the country’s factor endowments.

The results are presented in the form of annualized growth rates in Table 21.

The parametric approach, based on the Cobb-Douglas production function assump-

tion, the 2004 / 1980 (or 2004 / 1990) provides an alternative decomposition of the

productivity ratio into contributions attributable to technological progress shifting To-

tal Factor Productivity, and factor accumulation: Formally, the “Fisher-ideal” decom-

position, taking full account of technological change, is obtained from the following

25Results for other years are available from the authors upon request.

64

Table 20: Development accounting results – the Cobb–Douglas production function.
GDP ratio TFP ratio K diff H diff

Australia 1980 0,826 0,810 1,011 1,009

Austria 1980 0,815 0,832 0,989 0,990

Belgium 1980 0,951 0,888 1,031 1,038

Canada 1980 0,902 0,910 1,032 0,960

Denmark 1980 0,748 0,766 0,992 0,984

Finland 1980 0,624 0,696 0,989 0,906

France 1980 0,881 0,845 1,046 0,997

Greece 1980 0,753 0,742 1,043 0,973

Ireland 1980 0,651 0,794 0,882 0,929

Italy 1980 0,859 0,846 1,084 0,936

Japan 1980 0,678 0,729 1,011 0,920

Netherlands 1980 0,945 0,796 1,208 0,983

Norway 1980 0,950 0,608 1,564 0,999

Portugal 1980 0,473 1,090 0,443 0,981

Spain 1980 0,788 0,997 0,879 0,900

Sweden 1980 0,714 0,792 0,998 0,903

Switzerland 1980 0,948 0,893 1,116 0,951

UK 1980 0,716 0,848 0,884 0,956

USA 1980 1 1 1 1

Australia 2004 0,825 0,814 0,997 1,017

Austria 2004 0,860 0,826 0,981 1,061

Belgium 2004 0,928 0,837 1,008 1,100

Canada 2004 0,815 0,787 1,001 1,034

Denmark 2004 0,767 0,837 0,929 0,988

Finland 2004 0,776 0,787 0,943 1,044

France 2004 0,868 0,813 0,997 1,070

Greece 2004 0,712 0,781 0,872 1,045

Ireland 2004 0,969 1,173 0,946 0,872

Italy 2004 0,800 0,797 0,968 1,036

Japan 2004 0,708 0,670 1,009 1,047

Netherlands 2004 0,802 0,815 0,985 0,998

Norway 2004 1,089 0,897 1,216 0,998

Portugal 2004 0,493 0,948 0,529 0,984

Spain 2004 0,751 0,806 0,966 0,965

Sweden 2004 0,773 0,855 0,896 1,010

Switzerland 2004 0,735 0,726 1,027 0,986

UK 2004 0,786 0,887 0,889 0,996

USA 2004 1 1 1 1
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Table 21: Growth accounting results – DEA method.
GDP growth Effic. Techn. Factors

Australia 1980-2004 1,56% -0,27% 0,89% 0,93%

Austria 1980-2004 1,78% -0,30% 0,75% 1,32%

Belgium 1980-2004 1,47% -0,63% 0,85% 1,25%

Canada 1980-2004 1,15% 0,28% 3,21% -2,27%

Denmark 1980-2004 1,67% 0,20% 0,71% 0,75%

Finland 1980-2004 2,45% 0,15% 0,88% 1,41%

France 1980-2004 1,50% -0,51% 0,94% 1,07%

Greece 1980-2004 1,33% -0,30% 0,58% 1,05%

Ireland 1980-2004 3,19% 0,51% 0,89% 1,76%

Italy 1980-2004 1,28% -1,20% 0,72% 1,78%

Japan 1980-2004 1,74% -0,63% 1,12% 1,25%

Netherlands 1980-2004 0,90% -0,99% 1,02% 0,88%

Norway 1980-2004 2,12% 0,03% 1,63% 0,44%

Portugal 1980-2004 1,73% -0,66% 0,33% 2,07%

Spain 1980-2004 1,37% -1,03% 0,60% 1,81%

Sweden 1980-2004 1,89% 0,37% 0,67% 0,83%

Switzerland 1980-2004 0,53% -1,40% 1,64% 0,32%

UK 1980-2004 1,94% 0,05% 0,21% 1,67%

USA 1980-2004 1,56% 0,00% 2,61% -1,02%

Australia 1990-2004 1,79% -0,46% 1,17% 1,08%

Austria 1990-2004 1,74% -0,56% 0,99% 1,32%

Belgium 1990-2004 1,27% -1,10% 1,05% 1,33%

Canada 1990-2004 1,27% 1,28% 3,15% -3,07%

Denmark 1990-2004 1,65% -0,28% 0,83% 1,09%

Finland 1990-2004 2,32% -0,03% 1,19% 1,14%

France 1990-2004 1,18% -0,93% 1,14% 0,99%

Greece 1990-2004 1,57% -0,25% 0,60% 1,22%

Ireland 1990-2004 3,10% 0,38% 1,13% 1,55%

Italy 1990-2004 0,95% -2,04% 1,12% 1,91%

Japan 1990-2004 1,13% -1,63% 1,61% 1,19%

Netherlands 1990-2004 1,09% -0,97% 1,77% 0,30%

Norway 1990-2004 2,13% 0,00% 2,43% -0,29%

Portugal 1990-2004 1,53% -1,14% 0,34% 2,36%

Spain 1990-2004 0,57% -1,71% 0,90% 1,40%

Sweden 1990-2004 2,23% 0,57% 0,60% 1,04%

Switzerland 1990-2004 0,77% -2,17% 2,27% 0,72%

UK 1990-2004 1,92% 0,03% 0,18% 1,70%

USA 1990-2004 1,68% 0,00% 2,36% -0,67%
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The results obtained taking the (country-specific) values of the capital share α from

Gollin (2002) are viewed in Table 22.

Growth accounting exercises may also be conducted on the basis of SFA, under

the assumption of Cobb–Douglas or translog frontiers (cf. Koop, Osiewalski and Steel,

1999, 2000). This is beyond the scope of the current paper.

In sum, the principal findings of our development accounting and growth accounting

studies are the following:

• according to DEA, differences in GDP per worker between the USA and most

Western European countries in 1980 have been mostly due to differences in effi-

ciency and skilled labor endowments, whereas in 2004 they have been mostly due

to differences in efficiency and physical capital endowments. Average efficiency

differences have grown visibly between 1980 and 2004;

• according to the Cobb–Douglas production function specification, the differences

in GDP per worker between the USA and other countries in the sample have been

predominantly Total Factor Productivity (TFP)-driven, with a few exceptions

where physical capital differences played an equally important role;

• according to DEA, factor accumulation and technological progress have provided

significant positive contributions to GDP growth in 1980–2004, with technolog-

ical progress being particularly powerful in 1990–2004. Average efficiency levels

have been declining, on the other hand, providing negative contributions to GDP

growth;

• according to the Cobb–Douglas production function specification, TFP growth,

physical capital accumulation, and human capital accumulation have all provided

positive contributions to GDP growth throughout 1980–2004. The variance of

their relative strength across countries and time was large.
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The results obtained taking the (country-specific) values of the capital share α from

Gollin (2002) are viewed in Table 22.

Growth accounting exercises may also be conducted on the basis of SFA, under

the assumption of Cobb–Douglas or translog frontiers (cf. Koop, Osiewalski and Steel,

1999, 2000). This is beyond the scope of the current paper.

In sum, the principal findings of our development accounting and growth accounting

studies are the following:

• according to DEA, differences in GDP per worker between the USA and most

Western European countries in 1980 have been mostly due to differences in effi-

ciency and skilled labor endowments, whereas in 2004 they have been mostly due

to differences in efficiency and physical capital endowments. Average efficiency

differences have grown visibly between 1980 and 2004;

• according to the Cobb–Douglas production function specification, the differences

in GDP per worker between the USA and other countries in the sample have been

predominantly Total Factor Productivity (TFP)-driven, with a few exceptions

where physical capital differences played an equally important role;

• according to DEA, factor accumulation and technological progress have provided

significant positive contributions to GDP growth in 1980–2004, with technolog-

ical progress being particularly powerful in 1990–2004. Average efficiency levels

have been declining, on the other hand, providing negative contributions to GDP

growth;

• according to the Cobb–Douglas production function specification, TFP growth,

physical capital accumulation, and human capital accumulation have all provided

positive contributions to GDP growth throughout 1980–2004. The variance of

their relative strength across countries and time was large.
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Table 22: Growth accounting results – the Cobb–Douglas production function.
GDP growth TFP ratio K diff H diff

Australia 1980-2004 1,56% 0,68% 0,62% 0,26%

Austria 1980-2004 1,78% 0,50% 0,80% 0,47%

Belgium 1980-2004 1,47% 0,35% 0,67% 0,44%

Canada 1980-2004 1,15% 0,12% 0,50% 0,54%

Denmark 1980-2004 1,67% 0,96% 0,47% 0,23%

Finland 1980-2004 2,45% 1,09% 0,56% 0,78%

France 1980-2004 1,50% 0,45% 0,55% 0,50%

Greece 1980-2004 1,33% 0,53% 0,36% 0,44%

Ireland 1980-2004 3,19% 2,31% 0,87% -0,01%

Italy 1980-2004 1,28% 0,18% 0,51% 0,58%

Japan 1980-2004 1,74% 0,51% 0,43% 0,79%

Netherlands 1980-2004 0,90% 0,65% -0,02% 0,27%

Norway 1980-2004 2,12% 1,22% 0,89% 0,00%

Portugal 1980-2004 1,73% -0,84% 2,56% 0,03%

Spain 1980-2004 1,37% -0,37% 1,28% 0,47%

Sweden 1980-2004 1,89% 0,92% 0,29% 0,67%

Switzerland 1980-2004 0,53% -0,01% 0,14% 0,41%

UK 1980-2004 1,94% 0,93% 0,58% 0,41%

USA 1980-2004 1,56% 0,84% 0,45% 0,27%

Australia 1990-2004 1,79% 0,82% 0,68% 0,28%

Austria 1990-2004 1,74% 0,50% 0,82% 0,42%

Belgium 1990-2004 1,27% 0,21% 0,78% 0,29%

Canada 1990-2004 1,27% 0,53% 0,45% 0,28%

Denmark 1990-2004 1,65% 0,76% 0,65% 0,23%

Finland 1990-2004 2,32% 1,14% 0,40% 0,76%

France 1990-2004 1,18% 0,21% 0,57% 0,39%

Greece 1990-2004 1,57% 0,41% 0,67% 0,48%

Ireland 1990-2004 3,10% 2,99% 0,95% -0,84%

Italy 1990-2004 0,95% -0,23% 0,56% 0,62%

Japan 1990-2004 1,13% -0,24% 0,37% 1,00%

Netherlands 1990-2004 1,09% 0,78% 0,13% 0,18%

Norway 1990-2004 2,13% 1,30% 0,82% 0,00%

Portugal 1990-2004 1,53% -1,27% 2,80% 0,04%

Spain 1990-2004 0,57% -0,80% 1,22% 0,16%

Sweden 1990-2004 2,23% 0,95% 0,39% 0,88%

Switzerland 1990-2004 0,77% -0,14% 0,12% 0,79%

UK 1990-2004 1,92% 0,76% 0,64% 0,50%

USA 1990-2004 1,68% 0,93% 0,51% 0,23%
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A.3 DEA results based on decadal data – a robustness check

There is an indication that when the DEA-based frontier is computed on the basis

of decadal data (instead of annual ones), and is not corrected for DEA bias with the

Simar andWilson bootstrap, then the cross-country correlation between Debreu–Farrell

technical efficiencies computed on the basis of DEA and SFA is significantly reduced.

Some indicative results are summarized in Table 23.

It is not clear how to interpret this shift in correlation, since at least three effects

could be at work here. On the one hand, it may be true that by reducing the dataset

in the current robustness check, we have substantially increased the randomness in our

results, which should naturally drive all correlations towards zero. On the other hand,

the impact of bootstrapping out the bias in DEA efficiency estimates should not be ne-

glected either: with a much smaller dataset, the percentage of frontier observations goes

up so the expected value of this bias goes up as well. Thirdly and most interestingly,

it may also be the case that due to having an expanded time-series dimension of our

original dataset in the DEA case, we have been able to capture more of its time-series

variation then than in the SFA case, estimated using primarily the cross-sectional vari-

ation of data. Consequently, when we apply both methods to exactly the same dataset,

we may get some new information on the distance of each given parametric form of the

aggregate production function to its nonparametric benchmark.

Our tentative result is somewhat mixed here, though: the Cobb–Douglas function

exhibits slightly larger average deviations of technical efficiency estimates from their

nonparametric counterparts, but the estimates are slightly more correlated.
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The results obtained taking the (country-specific) values of the capital share α from

Gollin (2002) are viewed in Table 22.

Growth accounting exercises may also be conducted on the basis of SFA, under

the assumption of Cobb–Douglas or translog frontiers (cf. Koop, Osiewalski and Steel,

1999, 2000). This is beyond the scope of the current paper.

In sum, the principal findings of our development accounting and growth accounting

studies are the following:

• according to DEA, differences in GDP per worker between the USA and most

Western European countries in 1980 have been mostly due to differences in effi-

ciency and skilled labor endowments, whereas in 2004 they have been mostly due

to differences in efficiency and physical capital endowments. Average efficiency

differences have grown visibly between 1980 and 2004;

• according to the Cobb–Douglas production function specification, the differences

in GDP per worker between the USA and other countries in the sample have been

predominantly Total Factor Productivity (TFP)-driven, with a few exceptions

where physical capital differences played an equally important role;

• according to DEA, factor accumulation and technological progress have provided

significant positive contributions to GDP growth in 1980–2004, with technolog-

ical progress being particularly powerful in 1990–2004. Average efficiency levels

have been declining, on the other hand, providing negative contributions to GDP

growth;

• according to the Cobb–Douglas production function specification, TFP growth,

physical capital accumulation, and human capital accumulation have all provided

positive contributions to GDP growth throughout 1980–2004. The variance of

their relative strength across countries and time was large.
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Table 23: Technical efficiency – comparison of alternative measurements for the year

2000. All results based on decadal data.
DEA

(K,Hu,Hs)

[CRS]

DEA

(K,Hu,Hs)

[VRS]

SFA-CD

(K,Hu,Hs)

SFA-CD

(K,Hu,Hs)

[CRS]

SFA-

Translog

(K,Hu,Hs)

[CRS]

SFA-

Translog

(K,Hu,Hs)

mean

Australia 1,157 1,057 1,2029 1,0438 1,0979 1,0810 1,1067

Austria 1,000 1,000 1,1959 1,0395 1,0869 1,0857 1,0680

Belgium 1,000 1,000 1,1506 1,0328 1,0655 1,0580 1,0512

Canada 1,242 1,185 1,1599 1,0320 1,0772 1,0590 1,1259

Denmark 1,059 1,000 1,2376 1,0466 1,1070 1,1296 1,0967

Finland 1,005 1,000 1,3015 1,0634 1,1446 1,1688 1,1139

France 1,017 1,000 1,1552 1,0421 1,0884 1,0876 1,0651

Greece 1,581 1,579 1,2452 1,0553 1,1263 1,1231 1,2850

Ireland 1,000 1,000 1,1174 1,0166 1,0324 1,0922 1,0431

Italy 1,002 1,000 1,1355 1,0424 1,0818 1,0870 1,0581

Japan 1,025 1,019 1,2724 1,0728 1,1686 1,1991 1,1262

Netherlands 1,444 1,437 1,2641 1,0637 1,1250 1,1016 1,2392

Norway 1,129 1,000 1,2700 1,0563 1,1038 1,1409 1,1167

Portugal 1,153 1,153 1,0205 1,0035 1,0118 1,0198 1,0603

Spain 1,000 1,000 1,0346 1,0122 1,0243 1,0221 1,0155

Sweden 1,285 1,279 1,2281 1,0476 1,1052 1,1073 1,1753

Switzerland 1,035 1,000 1,3335 1,0688 1,1369 1,1547 1,1215

UK 1,000 1,000 1,0396 1,0109 1,0235 1,0229 1,0162

USA 1,000 1,000 1,0152 1,0051 1,0181 1,0355 1,0123

Corr. with DEA 0,9748 1,0000 0,2231 0,2356 0,2553 0,0534 0,8581

RMSE Dev. / DEA 0,0430 0,0000 0,1918 0,1681 0,1588 0,1689 0,1101

Corr. with SFA-TL 0,1077 0,0534 0,9014 0,9027 0,9139 1,0000 0,5251

RMSE Dev. / SFA-TL 0,1663 0,1689 0,1009 0,0625 0,0217 0,0000 0,0617
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