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Abstract

N a t i o n a l  B a n k  o f  P o l a n d2

Abstract

We propose a non-standard subsampling procedure to make for-

mal statistical inference about the business cycle, one of the most

important unobserved feature characterising fluctuations of eco-

nomic growth. We show that some characteristics of business cycle

can be modelled in a non-parametric way by discrete spectrum of

the Almost Periodically Correlated (APC) time series. On the

basis of estimated characteristics of this spectrum business cycle

is extracted by filtering. As an illustration we characterise the

man properties of business cycles in industrial production index

for Polish economy.

Keywords: business cycle, industrial production index, almost

periodically correlated time series, subsampling procedure.

JEL: C01, C02, C14
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1 Introduction

Seminal works, that originated interest in empirical modelling of business cycles

in macroeconomy, clearly indicated theirs inhomogeneity for both, spatial and time

domain. In particular, introductory remarks of W.C. Mitchell in Business Annals,

Mitchell (1926), contains the following suggestion: No two recurrences in all the array

seem precisely alike. Business cycles differ in their duration as wholes and in the quick-

ness and the uniformity with which they sweep from one country to another. When

identifying business cycle R.E. Lucas proposed its own conception, which, as he states

in his 1977 paper, identifies the business cycle with movements about trend in gross

national income. These movements are typically irregular in period and in amplitude.

Regularities are only observed in the co-movements among different aggregative time

series; see Lucas (1977). It is clear, that Mitchell initially suggested different time

pattern of business cycles for different economies. However, it is obvious, that from

the dynamic point of view, as Lucas states, business cycle exhibit irregular and non-

periodic character.

For developed economies some stylised facts about business cycles are known in the

literature; see King and Rebelo (1999) or Stock and Watson (1999). But, we see the

lack of precise and well established methods of formal statistical modelling of those

empirical properties. It prompts new studies resulting many different approaches and

frameworks of business cycle extraction; see for example exhaustive review presented

Diebold and Rudenbush (1996). When the lack of the theory of statistical inference

seems to be a persistent state, the consensus about empirical properties of business

cycles is based, either on an ad-hoc reasoning, or on the empirical results, that are

possible to confirm using a group of methods, built on the basis of relative different

frameworks. However, the extraction of the business cycle component from observed

time series is still a controversial issue. In particular, since there is ongoing interest

in many approaches to separate growth component from the cyclical component, and

because there is no consensus on how to detrend the data, the business cycle stylised

facts are sensitive to the adopted procedure. Hence, this has become not only a con-

troversial issue in the business cycle theory itself, but also a subject of criticism by

competing empirical approaches, as well.

The main purpose of this paper is to present a novel approach to formal business cy-

cle estimation. We propose a non-standard subsampling procedure, in order to make

formal statistical inference about the properties of the business cycle. We show, that

business cycle can be modelled by parameters of discrete spectra of the Almost Pe-

riodically Correlated (APC) stochastic process. The APC class is a generalisation of
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Periodically Correlated (PC) class of stochastic processes, introduced by Gladyshev

(1961). The vast literature confirmed substantial empirical importance and flexibility

of PC class in many time series applications, see: Parzen and Pagano (1979), Osborn

and Smith (1989), Franses and Boswijk (1996), Franses (1996), Bollerslev and Ghy-

sels (1996), Franses and Ooms (1997), Burridge and Taylor (2001), Franses and Dijk

(2005). According to Hurd and Miamee (2007), the periodically correlated stochastic

processes are nonstationary, but non-constant unconditional expectation of the pro-

cess exhibit periodic, and hence regular, evolution in time domain. The generalisation

presented in this paper assumes that the mean of the nonstationary time series can be

described by almost periodic function, i.e. the function, that belongs to the topological

closure of periodic class of functions.

From the definition, APC stochastic processes may describe irregular character of un-

conditional means for nonstationary time series. Assuming, that detrended time series

follows APC, we relax assumption of stationarity of cyclical factor, very commonly

imposed in filtering approaches. Nonstationarity of the cycle component of the series,

together with possible irregularities in time pattern of the unconditional mean, makes

our approach relatively flexible and general. Consequently, incorporating the APC fac-

tor into the model of observed discrete time series should result in much more accurate

approach to business cycle extraction than those proposed so far.

In the empirical part of the paper we analyse the cyclical behaviour of production

sector in Poland with the use of the model with APC stochastic component. We char-

acterise business cycle on the basis of industrial production index and also on some

subsector indices. We discuss the empirical results and reflect them to the previous

analyses conducted for the Polish economy.
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2 Basic notation and definitions

Formally, the second-order and real-valued time series {Xt : t ∈ Z} is called pe-

riodically correlated if both the mean function µ(t) = E(Xt) and the autocovariance

function B(t, τ) = cov(Xt, Xt+τ ) are periodic at t for every τ ∈ Z, with the same

period T . In order to introduce the class of almost periodically correlated time series

we need the definition of almost periodic function. We recall the following definition

from Corduneanu (1989):

Definition 2.1. A real-valued function f(t) : Z −→ R of an integer variable is called

almost periodic (AP in short), if for any ε > 0 there exists an integer Lε > 0, such

that among any Lε consecutive integers, there is an integer pε with the property

sup
t∈Z

|f(t + pε) − f(t)| < ε.

A second-order real-valued time series {Xt : t ∈ Z} is called almost periodically

correlated if both the mean function µ(t) = E(Xt) and the autocovariance function

B(t, τ) = cov(Xt, Xt+τ ) are almost periodic function of an integer variable, for every

τ ∈ Z. It is easy to see that any periodic function is almost periodic. Therefore,

the class of APC time series is wider than the class of PC time series. During last

five decades the APC class was broadly applied in telecommunication (Gardner (1986),

Napolitano and Spooner (2001)), climatology Bloomfield et al. (1994)) and many others

fields. For exhaustive review of possible applications see Gardner et al. (2006) and

Serpedin et al. (2005)). Empirical importance of such a class of nonstationary time

series prompted new studies concerning properties and estimation methods.

In APC case the mean function and the autocovariance function B(t, τ) for any τ ∈ Z
has the Fourier representation of the form:

µ(t) ∼
∑

ψ∈Ψ

m(ψ)eiψt, B(t, τ) ∼
∑

λ∈Λτ

a(λ, τ)eiλt, (1)

where the Fourier coefficients m(ψ) and a(λ, τ) are given by:

m(ψ) = lim
n→∞

1
n

n∑

t=1

µ(t)e−iψt, a(λ, τ) = lim
n→∞

1
n

n∑

j=1

B(j, τ)e−iλj , (2)

see Hurd (1991), Hurd and Miamee (2007)). According to Corduneanu (1989) sets Ψ =

{ψ ∈ [0, 2π) : mX(ψ) �= 0} and Λτ = {λ ∈ [0, 2π) : a(λ, τ) �= 0} are countable. Hence,

the set Λ =
⋃

τ∈Z Λτ is also countable. If the time series is PC, then representations

(1) become equations and the sets Ψ and Λ are contained in the set {2kπ/T : k =

0, 1, . . . , T − 1}.
In the problem of business cycles extraction the vast econometric literature exploit
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approaches based on the assumption of zero mean imposed on the distribution of

stochastic factor describing business fluctuations. Moreover, this stochastic factor is

usually modelled under stationarity assumption, leading to the framework that utilises

parameters of continuous spectrum. The econometric approach presented in this paper

relaxes stationary assumption, and consequently a more general dynamic model of

observed time series is subject to empirical analysis. We model business cycles in

a non-parametric way, taking into account discrete spectra of observed time series.

It means that we characterise business cycles by non-zero frequencies ψ ∈ Ψ and

by corresponding Fourier coefficients m(ψ). The definition and properties of discrete

spectra in simple representation see Priestley (1981), or in PC case in Hurd and Miamee

(2007).

Notice that any ψ0 ∈ (0, 2π) corresponds to the length of the cycle 2π/ψ0. Hence the

following testing problem:
H0 : ψ0 �∈ Ψ
H1 : ψ0 ∈ Ψ,

(3)

enables to test the statistical significance of the cycle with appropriate length. Ac-

cording to the definition of the set Ψ and Fourier coefficients m(·) our testing problem

is equivalent to the following:

H0 : |m(ψ0)| = 0
H1 : |m(ψ0)| �= 0.

(4)

We consider formulation 4 in details. Since we are interested in business cycle estima-

tion we restrict frequency ψ0 such that corresponding length of the cycle is not shorter

then 1.5 years. This formally means, that in further analysis for monthly data we

assume that ψ0 ∈ (0, 0.35).

In this paper by amplitude, which corresponds to frequency ψ ∈ Ψ ∩ (0, 0.35), we

define the distance between maximum and minimum value of the function h(t) =

2Re[m(ψ)eiψt].

The problem stated above requires statistical theory of detecting significant frequen-

cies in the set Ψ and corresponding Fourier coefficients m(·). In the next sections we

present some results given sampling model generated by APC assumption.
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3 Estimation problem

By {Xcn+1, Xcn+2, . . . , Xcn+dn} we denote a sample from APC time series {Xt : t ∈
Z}, where {dn}n∈N is any sequence of integers tending to infinity with n and {cn}n∈N is

any sequence of integers. For any ψ ∈ [0, 2π), estimator m̂cn,dn
n (ψ) (m̂c,d

n (ψ) for short) of

the parameter m(ψ), in representation (1), based on sample {Xcn+1, Xcn+2, . . . , Xcn+dn}
takes the form:

m̂c,d
n (ψ) =

1
dn

cn+dn∑

j=cn+1

Xje
−iψj . (5)

The standardised version of (5) has asymptotic normal distribution with zero mean;

see Lenart (2011b), Theorem 2.1. Additionally, the variance of this distribution is a

function of values of the generalised spectral density, calculated at arguments depen-

dent on ψ. For definition and basic properties of generalized spectral density in APC

case see Hurd (1989), Dehay and Hurd (1994)). Since the standard theory, presented

in Lenart (2011a), provides methods of estimation of generalised spectral density in

APC case only under the zero-mean assumption or under the assumption that the set

Ψ is known and finite, estimation of generalised spectral density in our case is not pos-

sible so far. Therefore, in the paper we exploit subsampling methodology, to construct

asymptotically consistent test related to (4). In this approach the asymptotic variance

estimation is not of particular interest. Similarly, subsampling methodology was also

used for PC case in time domain in Lenart et al. (2008) and for APC case in frequency

domain in Lenart (2011a).

The problem of frequency estimation ψ0 can be solved on the basis of a more gener-

alised approach than presented by Walker (1971). Given assumption that there exists

interval Iψ0 , such that Iψ0 ∩Ψ = {ψ0}, it is possible to formulate the natural estimator

of the unknown frequency ψ0 of the form ψ̂n = arg maxx∈Iψ0
{√n|m̂n(x)|}. As it was

shown in Lenart (2011b), Theorem 3.1, under some regularity conditions we have:
[

m̂c,d
n (ψ̂n)
ψ̂n

]
p−→

[
m(ψ0)

ψ0

]
. (6)

7
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4 Subsampling procedure and consistency

In this section we describe the main idea of the subsampling methodology, according

to the approach presented and developed by Politis et al. (1999). We use the same

notation. Initially we assume that the time series {Xt : t ∈ Z} is governed by unknown

probability distribution P , that belongs to a certain class of probability measures P.

Denote by {X1, X2, . . . , Xn} a sample from the time series {Xt : t ∈ Z}. Our goal is

to approximate the distribution of

υn(θ̂n − θ(P )), (7)

where θ̂n = θ̂n(X1, X2, . . . , Xn) is an estimator of θ(P ), the parameter of interests,

and υn is appropriate normalising sequence. Let b(n) (b for short) be any sequence of

integer numbers tending to infinity with n, such that b < n and b/n → 0.

One of the main assumption in subsampling methodology is that there exists asymp-

totic distribution of (7). We denote this distribution by J(P ), with J(x, P ) as a

corresponding cumulative distribution functions at point x ∈ R. Following the idea

of Politis et al. (1999) the distribution of (7) can be approximated by its subsampling

version of the form:

Ln,b(x) =
1

n − b + 1

n−b+1∑

t=1

1{υb(θ̂n,b,t − θ̂n) ≤ x}, (8)

where 1{B} is the indicator function of the set B and:

θ̂n,b,t = θ̂b(Xt, Xt+1, . . . , Xt+b−1)

as an estimator of the unknown parameter θ(P ) obtained on the basis of the sample

{Xt, Xt+1, . . . , Xt+b−1}, with t as a starting point and b as a size of subsample. Under

suitable regularity conditions it is known that (see Politis et al. (1999), Theorem 4.2.1,

page 103):

(i) if x is a continuity point of J(·, P ), then Ln,b(x)
p−→ J(x, P ),

(ii) if J(·, P ) is continuous, then supx∈R |Ln,b(x) − J(x, P )| p−→ 0,

(iii) If J(·, P ) is continuous at point c(1 − α), then

P
(
υn(θ̂n − θ(P )) ≤ cn,b(1 − α)

)
→ 1 − α, (9)

where for any α ∈ (0, 1), we define

cn,b(1 − α) = inf{x : Ln,b(x) ≥ 1 − α},

c(1 − α) = inf{x : J(x, P ) ≥ 1 − α}.

8
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The implication (iii) is crucial to construct a subsampling confidence interval for the

parameter θ(P ).

We are interested in estimation of the absolute value of coefficients of the Fourier

representation of the mean of APC process. Namely, we take θ(P ) = |m(ψ)|. Subsam-

pling procedure, with θ̂n,b,t = |mt−1,b
n (ψ)| and υn =

√
n, is consistent; see for details

Lenart (2011b), Theorem 2.3. Consequently, the confidence intervals for the parameter

θ(P ) = |m(ψ)|, obtained by subsampling procedure, are asymptotically consistent.

Now let take any ψ0 ∈ (0, π]. The test (4) with test statistics Πn({ψ}) =
√

n|m̂n(ψ)|
and subsampling critical value are asymptotically consistent. In our paper we prove

some modification of this result (see Theorem 8.2 in Appendix). We use test statistics

Π̃n({ψ}) =
√

n|r̂n(ψ)|, that can be interpreted as a value of test statistics Πn({ψ}) =
√

n|m̂n(ψ)| based on the sample {X1 − Xn, X2 − Xn, . . . , Xn − Xn}, where Xn is the

sample mean for the path {X1, X2, . . . , Xn}. The critical value c̃
{ψ}
n,b (1−α) is calculated

according to the formula that utilises subsampling procedure:

c̃
{ψ}
n,b (1 − α) = inf{x : L̃

{ψ}
n,b (x) ≥ 1 − α},

L̃
{ψ}
n,b (x) =

1
n − b + 1

n−b+1∑

t=1

1{
√

b(|r̂t−1,b
n (ψ)| − |r̂n(ψ)|) ≤ x},

where

r̂c,d
n (ψ) =

1
dn

cn+dn∑

j=cn+1

(Xj − Xn)e−iψj .

and r̂n(ψ) = r̂0,n
n (ψ).

9
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5 Statistical model of cyclical fluctuations

In this section we present the statistical framework of extraction the cyclical com-

ponent when the one-dimensional time series describing changes in economic activity

is observed. In Section 5.1 we present basic assumptions concerning the model, while

in section 5.2 we describe in details the algorithm of formal statistical extraction of

business cycle component.

5.1 Model structure and assumptions

Let consider a real-valued time series, denoted by {Pt : t ∈ Z}. At the beginning of

this section we assume that the unconditional expectation for the process {Pt : t ∈ Z}
exists for any t ∈ Z.

An interesting case, that is of particular interest in econometrics is the class of inte-

grated stochastic processes, denoted by I(d) for integration of order d ∈ N. If we are

interested in analysis of I(d) processes in our framework, some additional assumptions

should be imposed top assume the existence of unconditional moments. In the case

when {Pt : t ∈ Z} is I(1) process it is sufficient to assume additionally that there

exists t0 ∈ Z such that E(Pt0) < ∞. Hence we obtain in this case, that E(Pt) < ∞
for any t ∈ Z. More generally, if {Pt : t ∈ Z} follows I(d) process, then it is sufficient

to assume that there exists t0 ∈ Z, such that E(Pt0+k) < ∞ for k = 0, 1, . . . , d − 1, to

assure moment existence. Consequently, we formally exclude in our analysis processes

with pure integration, but some restricted cases, representing strict nonstationarity

with finite unconditional mean, may be modelled.

For further analysis we assume that the mean function µP (t) = E(Pt) is defined by the

sum of deterministic function f(t, β), parameterized by β ∈ Rp, and almost periodic

function g(t), with the Fourier expansion of the form:

g(t) =
∑

ψ∈ΨP

mP (ψ)eiψt. (10)

For convenience, we rewrite g(t) in equivalent representation:

g(t) =
∑

ψ∈ΨP∩[0,π]

aP (ψ) cos(ψt) + bP (ψ) sin(ψt).

This automatically implies, that:

µP (t) = f(t, β) + g(t) = f(t, β) +
∑

ψ∈ΨP

mP (ψ)eiψt. (11)

Equation (11) leads to a more general approach to modelling business fluctuations,

than those presented in the literature so far; see for example: Beveridge and Nelson

10
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(1981), Clark (1987), Harvey and Jaeger (1993), Hamilton (1989), Krolzig (1997). The

main advantage of our approach is, that it only relies on the specification of the first

moment of the time series {Pt : t ∈ Z}, making model assumptions much weaker. To

illustrate the importance of our assumptions and generalisation we present an example

below.

Example 5.1. Let {Pt : t ∈ Z} be a time series such that Pt = Pt−1 + εt, where

E(P0) = b and {εt : t ∈ Z} is APC time series with expectation function µε(·) such

that µε(t) = a + g(t) − g(t − 1), where g : Z → R is a function of the form:

g(t) =
∑

ψ∈Ψ

m(ψ)eiψt,

a ∈ R and card(Ψ) < ∞. Notice that for any t ≥ 1 we have

Pt = P0 + ε1 + ε2 + . . . + εt.

Therefore

E(Pt) = b +
t∑

j=1

E(εj) = b + at − g(0) + g(t) = f(t, β) + g(t),

where f(t, β) = β0+β1t, β0 = b−g(0), β1 = a. This means that time series {Pt : t ∈ Z}
can be represented as (11). If g(t) ≡ 0, then µε(t) = a, and time series {Pt : t ∈ Z}
can be interpreted as I(1) process with drift and assumption E(P0) = b.

The function f(t, β) can be interpreted as a trend component, modelled in this

paper by the polynomial. The function g(t) contains summarised information about

seasonal fluctuations, business fluctuations and long-term cyclical fluctuations. From

the Fourier representation of g(t) we split the whole set ΨP of non-zero frequencies

into the mutually exclusive sets, that are related to those three periodic attributes of

time series dynamics. Initially, we interpret long-term cyclical fluctuations as those

with the length more than 8 years, since the frequency ω is related to the length

of cycle that equals 2π/ω units. In order to distinguish cyclical fluctuations from

seasonal fluctuations we assume formally, that in the representation (10) the set ΨP =

{ψ : m(ψ) �= 0} ⊂ [0, 2π), is unknown. For the set ΨP , let consider the following

decomposition:

ΨP = ΨP,1 ∪ ΨP,2 ∪ ΨP,3. (12)

We assume that ΨP,1 ∩ (0, 0.35) = ΨP,1, and consequently the set ΨP,1 represent all

frequencies with corresponding length of the cycle greater than 17 months. Therefore

the set ΨP,1 contains frequencies that can describe business fluctuations. The set ΨP,2

contains only seasonal frequencies, namely ΨP,2 ⊂ {2kπ/12 : k = 0, 1, . . . , 11} while

ΨP,3 contains all remained frequencies. In the following section we concentrate our

attention only to parameter identification and estimation in the set ΨP,1.

11
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5.2 Cycle identification and estimation

Our approach aims at identification and estimation of cyclical fluctuations. In

order to remove trend component and to weaken seasonal effects, observed time series

is subject to some preliminary transformations, . Hence, we formulate the algorithm

of frequency identification that consists of three basic steps. The first step enables to

remove seasonal component, the second step detects the trend component, while in

the third step, parameter identification and estimation is provided.

Step 1 - removing the seasonal component. Seasonality appear in most

monthly economic time series. More formally, we allow (it is assumed), that

ΨP ∩ {2kπ/12 : k = 1, 2, . . . , 11} �= ∅. Since, the estimation of the frequencies

and corresponding Fourier coefficients, that represent seasonal frequencies is not

of particular importance in our paper, we use centered moving average filter

2×12MA (see: Makridakis et al. (1998), Brockwell and Davis (2002)) to remove

seasonal pattern. We show below that this filter does not change the elements

of the set ΨP,1, what is crucial for future estimation procedure. Denote by

{Yt : t ∈ Z} time series obtained by application of the centered moving average

filter. It means, that Yt = L2×12(B)Pt, where

L2×12(B) = (B−6 + 2B−5 + . . . + 2B−1 + 2 + 2B + . . . + 2B5 + B6)/24,

and BkPt = Pt−k for any t and k. Note that the expectation of the time series

{Yt : t ∈ Z} exists. On the basis of the Theorem 8.1 and elementary calculations

we get

µY (t) = E(Yt) = β̃0 + β̃1t + . . . + β̃pt
p

︸ ︷︷ ︸
f̃(t,β̃)

+
∑

ψ∈ΨY

mY (ψ)eiψt, (13)

where ΨY ∩ {2kπ/12 : k = 1, 2, . . . , 11} = ∅, ΨY = ΨP \ {2kπ/12 : k =

1, 2, . . . , 11} and f̃ is a function. Fourier coefficients mP (ψ) and mY (ψ) are

related according to the formula:

mY (ψ) = L2×12(e−iψ)mP (ψ). (14)

Notice that f̃(t, β̃) is also a polynomial of order p. In particular, for s ∈ {p−1, p}
we have β̃s = βs. Consequently, given model with p = 0 or p = 1 (i.e. constant

or linear trend) we have, that f̃(t, β̃) ≡ f(t, β). In case p = 2 functions f̃ and

f have different values, but f̃(t, β̃) − f(t, β) is constant over time. Additionally,

filtering the series with centered moving average operator, we obtain, that:

ΨY ∩ (0, 0.35) = ΨP,1
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and

ΨY ∩ ΨP,2 = ∅,
which means that the set ΨY still contains the same elements as ΨP,1 and dos

not contain seasonal frequencies from the set ΨP,2.

Step 2 - removing the trend component. The case when p = 0 is trivial.

Let consider the case p = 1. Application of difference operator L1(B) = (1 − B)

for the time series {Yt : t ∈ Z} results with time series {Xt : t ∈ Z}:

Xt = L1(B)Yt = Yt − Yt−1 = (Pt+6 − Pt−5 + Pt+5 − Pt−6)/24.

The expectation of the time series {Xt : t ∈ Z} exists and is described by almost

periodic function of the form:

µX(t) = β1 +
∑

ψ∈ΨX

mX(ψ)eiψt, (15)

where

ΨX ⊂ {0} ∪ ΨP \ {2kπ/12 : k = 1, 2, . . . , 11}, (16)

and

ΨX ∩ (0, 0.35) = ΨP,1, (17)

which follows from the Theorem 8.1. Additionally, we have:

mX(ψ) = L1(e−iψ)mY (ψ) = L1(e−iψ)L2×12(e−iψ)mP (ψ). (18)

and the Assumption 8.1 holds.

In the general case, when p ∈ N we use natural operator Lp(B) = (1 − B)p.

The resulting time series {Xt : t ∈ Z} can be represented by the following

transformation of Yt:

Xt = (1 − B)pYt,

and hence, the expectation of Xt takes the form:

E(Xt) = µX(t) = p!βp +
∑

ψ∈ΨX

mX(ψ)eiψt, (19)

where, according to the Theorem 8.1:

mX(ψ) = Lp(e−iψ)mY (ψ) = Lp(e−iψ)L2×12(e−iψ)mP (ψ). (20)

By estimation |Lp(e−iψ)L2×12(e−iψ)| > 0, which is true for any p ∈ N and ψ ∈
(0, 0.35), we have:

ΨX ∩ (0, 0.35) = ΨP,1. (21)

Therefore the problem of parameter identification and estimation in the set ΨP,1

reduce to the problem of parameter identification and estimation in the set ΨX ∩
(0, 0.35).

13
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Step 3 - parameter identification and estimation. The formula (21) is cru-

cial in the algorithm of parameter identification and estimation in the set ΨP,1.

Initially, in Step 3 we formulate the additional assumption that the autocovari-

ace function of time series {Xt : t ∈ Z} exists and it is almost periodic function.

Notice, that the weaker assumption concerning periodic structure of autocovari-

ance function appears in the literature concerning analysis of economic time

series; see for example: Parzen and Pagano (1979), Osborn and Smith (1989),

Franses and Boswijk (1996), Franses (1996), Franses and Ooms (1997), Franses

and Dijk (2005). We use statistics Π̃n({ψ}) =
√

n|r̂n(ψ)| and corresponding

critical value c̃n,b(0.99%) for the series generated from the previous steps of the

algorithm. The test statistics Π̃n({ψ}) can be interpret as a value of test statistics

Πn({ψ}) =
√

n|m̂n(ψ)| based on the sample {X1 −Xn, X2 −Xn, . . . , Xn −Xn},
where Xn is the sample mean for the path {X1, X2, . . . , Xn}. The critical value

is calculated according to the formula that utilises subsampling procedure pre-

sented in Politis et al. (1999):

g̃
{ψ}
n,b (1 − α) = inf{x : G̃

{ψ}
n,b (x) ≥ 1 − α},

where

G̃
{ψ}
n,b (x) =

1
n − b + 1

n−b+1∑

t=1

1{
√

b|r̂t−1,b
n (ψ)| ≤ x}.

We fix b = 2.5
√

n and we calculate test statistics and corresponding critical value

for ψ from the discrete set of frequencies on the interval (0, 0.35). If the value of

test statistics is greater than the critical value on some subinterval I ⊂ (0, 0.35)

we take this subinterval as the interval containing some elements of the set ΨP,1.

Next, we estimate the frequency connected with subinterval I using (6). By plug

in technique we estimate amplitude related to each identified frequency in almost

periodic part of the mean function of the process {Pt : t ∈ Z}.
In our algorithm step 3 is fundamental in procedure of extraction business cycle com-

ponent from the observed time series. Its main advantage is, that the frequencies

describing the cyclical dynamics of economic activity are subject to formal statistical

inference. This clearly distinguishes our approach from many other procedures pre-

sented in the literature, where the lack of statistical uncertainty in the procedure is

very common and forces ad-hoc approach; see for example polemics concerning de-

trending in Canova (1998) and Burnside (1998).

However, it is very important, that the procedure yields only statistically significant

frequencies, and extraction of the business cycle is subject to additional filtering. In the

empirical part of the paper we use the Hodrick-Prescott (HP) filter (see Hodrick and

14
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Prescott (1997)), with smoothness parameter λ. According to Gómez (1999), Gómez

(2001), Maravall and del Rı́o (2001) parameter λ can be described as the argument of

frequency ψ0:

λ =
1

4(1 − cos(ψ0))2
, (22)

where 2π/ψ0 can be interpret as a length of the cycle. Hence, on the basis of our

procedure, it is possible to choose appropriate parameter λ of the HP filter, restricting

spectrum only to significant parameters in the set ΨP,1. Alternatively it is possible to

apply any filter in cycle extraction. We choose the simplest HP filter for illustrative

purposes.
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6 Empirical illustration

In this part of the paper we analyse cyclical behaviour of production sector in

Poland. In particular we apply our model and three step procedure in order to char-

acterise business cycles in industrial production index and some subsector indices.

Figure 1 (a) presents time series of industrial production index1 in Poland from Jan-

uary 1995 to December 2009 (2005 year = 100%). This index contains: mining and

quarrying; manufacturing; electricity, gas, steam and air conditioning supply. In the

first step we applied centered moving average filter 2×12MA to eliminate strong sea-

sonal effects. The results of filtering is plotted on the Figure 1 (b). It is clear, that

centered moving average filter removes the seasonal effects and also business fluctua-

tions are clearly observable (see Figure 1 (b)).

According to our algorithm, presented in previous sections, we present in Figure 2 (a)

first differences of the centered moving average filter applied for industrial production

index. We see some evidence about the existence of cyclical behavior in time series

under consideration. The amplitude of cycle does not seem to be constant over time.

Also, the amplitude is smaller in period 1995-2001, while after year 2001 is character-

ized by greater variability. Therefore we use logarithm transformation for industrial

production index to stabilize the amplitude. Figure 2 (b) presents the first difference

of centered moving average filter applied for logarithm of industrial production index.

It is easy to see that the amplitude is more constant over time then before logarithm

transformation.

Figure 3 presents plots of the values of the test statistics Π̃n({ψ}) =
√

n|r̂n(ψ)| with

corresponding critical value c̃n,b(0.99%). The test statistics exceeds the critical value

in three subsets on the interval (0, 0.35). Hence, taking care only of significant values

of test statistic on the Figure 3 and in zoom on Figure 4, we assume that:

ΨP,1 ∩ (0, 0.35) = {ψ1, ψ2, ψ3}. (23)

The values of estimated frequencies from the set ΨP,1 were calculated according to (6).

These values with corresponding length of the cycle can be found in Table 1.

Estimated amplitude of the cycle with corresponding length 8.5 and 3.4 years equal

0.13 and 0.07 respectively. This second amplitude dominates the estimated value of

amplitude with corresponding length 2 years. We see, that 8.5-year length of the cy-

cle received data support. However we can not formally interpret such fluctuations

as a long-term growth trend or business fluctuations. We should rather look at this

fluctuations as a mixture of both long-term growth trend and business fluctuations.
1Source: Eurostat.

16



Empirical illustration

WORKING PAPER No. 107 17

6

Consequently and unquestionable, the dataset support fluctuations with correspond-

ing length 3.4 years as a basic characteristic of business cycle in industrial production

in Poland. To confirm this statement we extract cyclical fluctuations from industrial

production index (filtered by centered moving average filter 2×12MA ) with the use

of HP filter condition to the values of parameter λ fixed for λ = 5 500, λ = 12 000,

λ = 32 000, λ = 55 000. The results are plotted on Figure 5. By restricting parameter

λ to values stated above, according to the formula 22, we extract fluctuations with

the length not greater than 4.5, 5.5, 7 and 8 years respectively. Since our goal was

to extract only business fluctuations without significant influence of long-term growth

trend, we restrict filtering only to fluctuations with corresponding length shorter than

8 years.

Analysing plots presented on Figure 5 it is possible to confirm the presence of cycles in

industrial production in Poland with estimated length in the interval 3-4 years (during

the period 1995 - 2009). In Table 2 we determined the periods of recessions and expan-

sions in industrial production. We interpret turning points as margins of this periods.

In most cases the recession is shorter than expansion. Consequently, our analysis con-

firm results discussed in the literature, that business cycle in industrial production

for Poland display asymmetric behaviour. Also, the business cycle troughs are rather

sharper than peaks, which is also typical for business cycles; see Hicks (1950), Milas

et al. (2006).

In the next step we provide a more detailed analysis based on a formal identification

of business cycles in sectors and subsectors of industrial production in Poland. We use

the same statistical tools as for the total industrial production index. We considered

all categories identified for industrial production. The set of all modelled indices are

presented in Table 3.

Figure 6 presents plots of logarithms of all considered indices. Repeating the procedure,

initially applied for the total index, we use centered moving average filter 2×12MA to

remove seasonal effect from the data sets (see Figure 7). First differences are presented

on the Figure 8. It is clear, that majority of indices exemplify cyclical pattern, just

like in the case of index of total production, but with rather differential amplitudes

and length.

To identify frequencies in the unknown set ΨP,1 we applied again the test statistic

Π̃n({ψ}) =
√

n|r̂n(ψ)| and corresponding critical value c̃
{ψ}
n,b (α). The results are pre-

sented on the Figure 9, where we plotted estimated lengths of the cycles together with

appropriate estimated amplitude. In different sectors and subsectors of industrial pro-

duction the data provide evidence in favour of cycles with length in the interval 1.5-3

years. However, those cycles are characterized by much shorter estimated amplitude
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than the cycles with length in the interval 3-4 years. The cycles with estimated length

in the interval 3-4 years were supported in predominant set of subindices. Only in the

case of manufacture, food products and beverages (C10 C11), manufacture of basic

pharmaceutical products and pharmaceutical preparations (C21) and electricity, gas,

steam and air conditioning supply (D).

We see, that the largest estimated amplitude characterize cycles with the correspond-

ing length of more than 4 years. But only in a few cases the cycles with length 5-8

years were supported. It can be seen clearly on the Figure 11, where the compari-

son of all identified cycles for all 32 indices is presented. In spite of the fact, that

observed time series were subject to filtering with the use of centered moving average

filter 2×12MA , all investigated subindices provide data support in favour of the ex-

istence of cycles with length not greater than two years. However, as seen on Figure

11, those short cycles are characterized by amplitudes with values located relatively

close to zero, as compared with longer significant cycles. This makes such a short term

periodic pattern not extremely important in describing cyclical behaviour of modelled

time series. Additionally, all indices support cycles of length 3-4 years, with relatively

greater value of corresponding amplitudes as compared to characteristics of short term

fluctuations. Also, except manufacture of wearing apparel (14-th index) we see no data

support for cycles with length between 4 and 7 years. Consequently, for all considered

subindices, the set of statistically significant cycles is clearly divided in two separate

parts. The first set is constituted by short term cycles with small amplitudes together

with middle term fluctuations, attributed in most cases by stronger amplitudes. The

second set consists of frequencies, describing long term cycle, namely with length not

less than 7 years. Just like in case of the total production index, we tend not to in-

terpret those long term fluctuations as important characteristic of business cycle for

Polish economy. According to our results, just like for the total index, all considered

subindices are characterized by existence of the long term trend.

Using HP filter we extract business cycles from all industrial production indexes. Sim-

ilar as for industrial production index - total we fix the parameter λ as λ = 5 500,

λ = 12 000, λ = 32 000, λ = 55 000 (see Figure 12). The reasons why we chose those

values of λ parameter are the following. Firstly, we fix the same parameter to compare

results with those obtained for industrial production index. Secondly, the length of the

cycle that is greater than 8 years is not clearly constant over different subindices and

therefore we can not interpret those fluctuations as business fluctuations. Finally, we

can notice that in the interval from 4 to 8 years there are only a few significant lengths

of cycles and this should give rise to extract similar shape of business fluctuations for

different values of parameter λ. Almost all extracted fluctuations reveal presence of

18
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cycles with length in the interval 3-4 years. Summing up, the cycle with length in the

range 3-4 years is typical and prevalent for cyclical fluctuations in industrial production

in Poland.
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7 Concluding remarks

In this paper a novel approach in business fluctuations analysis for one dimen-

sional economic processes is proposed. Using theory of almost periodically correlated

time series and subsampling procedure we consider a formal approach to estimate the

length of business cycles. The main advantage of our approach is, that the business

cycle characteristics are treated in formal way, and are subject to statistical inference.

This clearly distinguishes presented framework from many filtering-based approaches,

broadly considered in empirical applications. We model business fluctuations by pa-

rameters of discrete spectra of time series, under assumption that amplitude of this

fluctuations is constant over time. Taking in consideration estimated length of the cy-

cles we extract business fluctuations by HP filter for parameter of smoothness chosen

on the basis of formal procedure.

The main conclusion presented in empirical illustration is that, during period 1995-

2009, we confirm (using statistical tools) the presence of 3-4 years length of business

cycle in industrial production index in Poland. This result was obtained either on the

basis of the total index and also analysing subindices. This result confirms analyses

conducted so far on the basis of Polish macroeconomic time series; see Gradzewicz et al.

(2010), Adamowicz et al. (2008), Skrzypczyński (2008) and Skrzypczyński (2006).

All indices and subindices supported significance of short term and middle term fluc-

tuations, attaching relatively small amplitudes for periodicity with length less than 2

years. Additionally, in all time series we detected existence of longer term cycle (7-8

years), interpreted in this paper as a trend or a mixture of both trend and business

cycle fluctuations.
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8 Appendix

Assumption 8.1. Let {Xt : t ∈ Z} be APC time series such that for any x ∈ [0, 2π)

there exists a constant B(x) (which dependents only on x), such that we have estimation

∑

ψ∈Ψ\{x}

∣∣∣∣m(ψ)cosec
(

ψ − x

2

)∣∣∣∣ < B(x) < ∞, (24)

Theorem 8.1. Let {Xt : t ∈ N} be a time series for which the expectation function

exists and it is almost periodic function of the form µX(t) = E(Xt) =
∑

ψ∈ΨX

mX(ψ)eiψt.

We assume that for the set Ψ and corresponding Fourier coefficients m(·) the Assump-

tion 8.1 holds. Let L(B) =
∑q

j=−p ajB
j be a linear filter, where p, q ≥ 0, {aj}q

j=−p is

a sequence of real numbers, and BjXt = Xt−j for any j ∈ Z. Then

E(Yt) = µY (t) =
∑

ψ∈ΨY

mY (ψ)eiψt,

where ΨY = ΨX and mY (ψ) = L(e−iψ)mX(ψ). Additionally, assumption 8.1 holds for

the set ΨY and corresponding coefficients mY (·).

Proof. Notice that

E(Yt) = E




p2∑

j=p1

ajB
jXt


 = E




p2∑

j=p1

ajXt−j




=
p2∑

j=p1

aj

∑

ψ∈ΨX

mX(ψ)eiψ(t−j) =
∑

ψ∈ΨX

mX(ψ)
p2∑

j=p1

aje
−iψjeiψt =

=
∑

ψ∈ΨX

mX(ψ)L(e−iψ)eiψt.

(25)

By estimation |mY (ψ)| ≤ |mX(ψ)|
p2∑

j=p1

|aj | we conclude that condition 1.1 from Lenart

(2011b) holds for the set ΨY and corresponding Fourier coefficients mY (·).

Theorem 8.2. Take any ψ ∈ (0, 2π). Let the assumptions of Theorem 2.2 in Lenart

(2011b) hold. Then

(i) L̃
{ψ}
n,b (x)

p→ J{ψ}(x), for any x ∈ R,

(ii) supx∈R |L̃{ψ}
n,b (x) − J{ψ}(x)| p−→ 0,

(iii) subsampling confidence intervals for the parameter |m(ψ)| are asymptotically con-

sistent, which means that

P
(√

n (|r̂n(ψ)| − |m(ψ)|) ≤ c̃
{ψ}
n,b (1 − α)

)
−→ 1 − α, (26)
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where b = b(n) → ∞ and b/n → 0.

Proof of the Theorem 8.2. I this proof we use the same steps as in Theorem 4.2.1,

page 103 in Politis et al. (1999). Let q = n − b + 1, τn =
√

n and

Un(x) =
1
q

q∑

t=1

1{τb(|m̂t−1,b
n (ψ)| − |m(ψ)|) ≤ x}.

Notice, that

L̃
{ψ}
n,b (x) =

1
q

q∑

t=1

1{τb[|m̂t−1,b
n (ψ)| − |m(ψ)|] + τb[(|m(ψ)| − |r̂n(ψ)|)+

+(|r̂t−1,b
n (ψ)| − |m̂t−1,b

n (ψ)|)] ≤ x}.
We need the following lemma.

Lemma 8.1. For any real x and ε > 0 we have estimation

Un(x − ε)1{En} ≤ L̃
{ψ}
n,b (x)1{En} ≤ Un(x + ε), (27)

where En = {τb max
1≤t≤q

|(|m(ψ)| − |r̂n(ψ)|) + (|r̂t−1,b
n (ψ)| − |m̂t−1,b

n (ψ)|)| ≤ ε}.

Proof. Let consider two cases:

1o 1{En} = 0, inequality (27) holds

2o 1{En} = 1, then

τb max
1≤t≤q

|(|m(ψ)| − |r̂n(ψ)|) + (|r̂t−1,b
n (ψ)| − |m̂t−1,b

n (ψ)|)| ≤ ε,

which means that for any 1 ≤ t ≤ q

ηt−1,b
n (ψ) := τb[(|m(ψ)| − |r̂n(ψ)|) + (|r̂t−1,b

n (ψ)| − |m̂t−1,b
n (ψ)|)] ∈ [−ε, ε].

Using next inequality x − ηt−1,b
n (ψ) ≥ x − ε, which is true for any 1 ≤ t ≤ q we

get

1{τb[|m̂t−1,b
n (ψ)| − |m(ψ)|] + τb[(|m(ψ)| − |r̂n(ψ)|)+

+ (|r̂t−1,b
n (ψ)| − |m̂t−1,b

n (ψ)|)] ≤ x}
= 1{τb[|m̂t−1,b

n (ψ)| − |m(ψ)|] ≤ x − ηt−1,b
n (ψ)} ≥

≥ 1{τb[|m̂t−1,b
n (ψ)| − |m(ψ)|] ≤ x − ε}.

(28)

Analogically, using inequality x − ηt−1,b
n (ψ) ≤ x + ε we get

1{τb[|m̂t−1,b
n (ψ)| − |m(ψ)|] + τb[(|m(ψ)| − |r̂n(ψ)|)+

+ (|r̂t−1,b
n (ψ)| − |m̂t−1,b

n (ψ)|)] ≤ x} =

= 1{τb[|m̂t−1,b
n (ψ)| − |m(ψ)|] ≤ x − ηt−1,b

n (ψ)} ≤
≤ 1{τb[|m̂t−1,b

n (ψ)| − |m(ψ)|] ≤ x + ε}.

(29)
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Summing inequality (28), (29) dla t = 1, 2, . . . , q we get (27). This completes the

proof of lemma.

In next step we show that P (En) → 0. Using inequality ||z1|−|z2|| ≤ |z1−z2| (which

is true for any complex numbers z1, z2) and inequality |∑q
j=p cje

ijx| ≤ cp|cosec(x/2)|,
(which is true for any x �≡ 0 modulo 2π and real numbers cp ≥ cp+1 ≥ . . . ≥ cq ) we

have

max
1≤t≤q

|ηt−1,b
n (ψ)| ≤ max

1≤t≤q
τb||m(ψ)| − |r̂n(ψ)|| + max

1≤t≤q
τb||r̂t−1,b

n (ψ)| − |m̂t−1,b
n (ψ)||

≤ τb||m(ψ)| − |r̂n(ψ)|| + max
1≤t≤q

τb|r̂t−1,b
n (ψ) − m̂t−1,b

n (ψ)|

≤ τb|m(ψ) − r̂n(ψ)| + τb

b
|Xn||cosec(ψ/2)|

≤ τb|m(ψ) − m̂n(ψ)| + τb|m̂n(ψ) − r̂n(ψ)| + τb

b
|Xn||cosec(ψ/2)|

≤ τb|m(ψ) − m̂n(ψ)| + τb

n
|Xn||cosec(ψ/2)| + τb

b
|Xn||cosec(ψ/2)|

(30)

By convergence τb|m(ψ) − m̂n(ψ)| p→ 0 and τb
b |Xn| p→ 0 we get

max
1≤t≤q

|ηt−1,b
n (ψ)| p→ 0,

which means that P (En) → 1. Using next Slutskys Lemma and Theorem 2.1 in Lenart

(2011b) we have
√

n(|rt−1,b
n (ψ)| − |m(ψ)|) d→ J{ψ}. To finish the proof it is sufficient

to follows next steps in Theorem 4.2.1, page 103 in Politis et al. (1999), therefore we

omit them.
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V. Gómez. The use of butterworth filters for trend and cycle estimation in economic

time series. Journal of Business and Economic Statistics, 19(3):365–373, 2001.
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P. Skrzypczyński. Wahania aktywnoci gospodarczej w Polsce i strefie euro. Materia�ly

i Studia Narodowego Banku Polskiego, Zeszyt nr 227, 2008.

J.H. Stock and M.W. Watson. Business cycle fluctuations in us macroeconomic time

series. In: J.B. Taylor, M. Woodford (Eds.), Handbook of Macroeconomics, 1999.

A. M. Walker. On the estimation of a harmonic component in a time series with

stationary independent residuals. Biometrika, 58(1):21–36, 1971.

26



Appendix

WORKING PAPER No. 107 27

8

’09’08’07’06’05’04’03’02’01’00’99’98’97’96’95

60

80

100

120

140

(a)

’09’08’07’06’05’04’03’02’01’00’99’98’97’96’95

60

70

80

90

100

110

120

(b)

Fig. 1: (a) Industrial production index in Poland (2005 year = 100%) from January 1995 to

December 2009; (b) Realization of centered moving average filter 2×12MA applied for industrial

production index in Poland.
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Fig. 2: (a) First difference of centered moving average filter 2×12MA applied for industrial

production index; (b) First difference of centered moving average filter 2×12MA applied for

logarithm of industrial production index.
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Fig. 4: Frequency identification (in the set ΨP,1) and corresponding amplitude estimation: (a)

the value of test statistics Π̃n({ψ}) =
√

n|r̂n(ψ)| (continuous line) and critical value c̃
{ψ}
n,b (α)

(dashed line) for α ∈ {92%, 95%, 99%} and ψ from the set {(k−1)π/720 : k = 1, 2, . . . , 100}; (b)

estimated amplitude corresponding to estimated frequencies from the set ΨP,1: X - estimated

length of the cycle, Y - estimated amplitude.

0.44 0.87 1.31 1.75 2.18 2.62 3.05

Fig. 3: Frequency identification using statistics Π̃n({ψ}) =
√

n|r̂n(ψ)| and corresponding

critical value c̃n,b(0.99%) for the realization of time series {Xt : t ∈ Z}: continuous line -

the value of test statistics Π̃n({ψ}) =
√

n|r̂n(ψ)| for ψ from the set {(k − 1)π/720 : k =

1, 2, . . . , 720}; dashed line - critical value c̃
{ψ}
n,b (99%) for ψ from the set {(k − 1)π/720 : k =

1, 2, . . . , 720}.
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The value of frequency ψ̂n,1 = 0.062 ψ̂n,2 = 0.153 ψ̂n,3 = 0.258
estimator

Corresponding length
of the cycle 8.5 3.4 2
(in years)

Tab. 1: Estimated frequencies with corresponding length of the cycle for industry production

index in Poland.
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Λ�55000

Λ�32000

Λ�12000

Λ�5500

Fig. 5: Business cycle in industrial production after logarithm and application of centered

moving average filter extracted by HP filter for λ = 5 500 (continuous line) λ = 12 000 (dotted

line) λ = 32 000 (doted and dashed line) λ = 55 000 (dashed line).

Expansion ... - Dec.97 Feb.99-May00 Sept.02-Mar.04 Jun.05-Jan.08 Apr.09-...

Recession Dec.97-Feb.99 May00-Sept.02 Mar.04-Jun.05 Jan.08-Apr.09

Tab. 2: Expansions and recessions in industrial production index in Poland in the period July

1995 - June 2009.
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B-D F - Mining and quarrying; manufacturing; electricity, gas, steam and air conditioning supply; construction

MIG ING CAG - MIG Intermediate and capital goods

MIG ING - MIG - MIG - Intermediate goods

MIG CAG - Capital goods

MIG DCOG - MIG - Durable consumer goods

MIG NDCOG - MIG - Non-durable consumer goods

B - Mining and quarrying

C - Manufacturing

C10-C12 - Manufacture of food products; beverages and tobacco products

C10 C11 - Manufacture of food products and beverages

C10 - Manufacture of food products

C11 - Manufacture of beverages

C12 - Manufacture of tobacco products

C13 C14 - Manufacture of textiles and wearing apparel

C15 - Manufacture of leather and related products

C16 - Manufacture of wood and of products of wood and cork, except

furniture; manufacture of articles of straw and plaiting materials

C17 - Manufacture of paper and paper products

C18 - Printing and reproduction of recorded media

C19 - Manufacture of coke and refined petroleum products

C20 - Manufacture of chemicals and chemical products

C21 - Manufacture of basic pharmaceutical products and pharmaceutical preparations

C22 - Manufacture of rubber and plastic products

C23 - Manufacture of other non-metallic mineral products

C24 - Manufacture of basic metals

C25 - Manufacture of fabricated metal products, except machinery and equipment

C26 - Manufacture of computer, electronic and optical products

C27 - Manufacture of electrical equipment

C28 - Manufacture of machinery and equipment n.e.c.

C29 - Manufacture of motor vehicles, trailers and semi-trailers

C29 C30 - Manufacture of motor vehicles, trailers, semi-trailers and of other transport equipment

C31 - Manufacture of furniture; other manufacturing

D - Electricity, gas, steam and air conditioning supply

Tab. 3: Categorised indices describing changes in economic activity in sectors and subsectors

of industrial production in Poland
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Fig. 6: Logarithm of industrial production indices in Poland (2005 rok = 100%) in sectors

and subsectors from January 1995 to February 2010.
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Fig. 7: Realizations of centered moving average filter 2×12MA applied for logarithm of indus-

trial production indexes in Poland in sectors and subsectors.
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Fig. 8: First difference for realization of centered moving average filter 2×12MA applied for

logarithm of industrial production indexes in sectors and subsectors.

33



Appendix

N a t i o n a l  B a n k  o f  P o l a n d34

8

0.04 0.09 0.13 0.17 0.22 0.26 0.31 0.35

C29

0.04 0.09 0.13 0.17 0.22 0.26 0.31 0.35

C29_C30

0.04 0.09 0.13 0.17 0.22 0.26 0.31 0.35

C31

0.04 0.09 0.13 0.17 0.22 0.26 0.31 0.35

D

0.04 0.09 0.13 0.17 0.22 0.26 0.31 0.35

C25

0.04 0.09 0.13 0.17 0.22 0.26 0.31 0.35

C26

0.04 0.09 0.13 0.17 0.22 0.26 0.31 0.35

C27

0.04 0.09 0.13 0.17 0.22 0.26 0.31 0.35

C28

0.04 0.09 0.13 0.17 0.22 0.26 0.31 0.35

C21

0.04 0.09 0.13 0.17 0.22 0.26 0.31 0.35

C22

0.04 0.09 0.13 0.17 0.22 0.26 0.31 0.35

C23

0.04 0.09 0.13 0.17 0.22 0.26 0.31 0.35

C24

0.04 0.09 0.13 0.17 0.22 0.26 0.31 0.35

C17

0.04 0.09 0.13 0.17 0.22 0.26 0.31 0.35

C18

0.04 0.09 0.13 0.17 0.22 0.26 0.31 0.35

C19

0.04 0.09 0.13 0.17 0.22 0.26 0.31 0.35

C20

0.04 0.09 0.13 0.17 0.22 0.26 0.31 0.35

C12

0.04 0.09 0.13 0.17 0.22 0.26 0.31 0.35

C13_C14

0.04 0.09 0.13 0.17 0.22 0.26 0.31 0.35

C15

0.04 0.09 0.13 0.17 0.22 0.26 0.31 0.35

C16

0.04 0.09 0.13 0.17 0.22 0.26 0.31 0.35

C10�C12

0.04 0.09 0.13 0.17 0.22 0.26 0.31 0.35

C10_C11

0.04 0.09 0.13 0.17 0.22 0.26 0.31 0.35

C10

0.04 0.09 0.13 0.17 0.22 0.26 0.31 0.35

C11

0.04 0.09 0.13 0.17 0.22 0.26 0.31 0.35

MIG_DCOG

0.04 0.09 0.13 0.17 0.22 0.26 0.31 0.35

MIG_NDCOG

0.04 0.09 0.13 0.17 0.22 0.26 0.31 0.35

B

0.04 0.09 0.13 0.17 0.22 0.26 0.31 0.35

C

0.04 0.09 0.13 0.17 0.22 0.26 0.31 0.35

B�D_F

0.04 0.09 0.13 0.17 0.22 0.26 0.31 0.35

MIG_ING_CAG

0.04 0.09 0.13 0.17 0.22 0.26 0.31 0.35

MIG_ING

0.04 0.09 0.13 0.17 0.22 0.26 0.31 0.35

MIG_CAG

Fig. 9: Frequency identification (in the set ΨP,1): continuous line - the value of test statistics

Π̃n({ψ}) =
√

n|r̂n(ψ)|, dashed line - critical value c̃
{ψ}
n,b (α) for α ∈ {92%, 95%, 99%} and ψ

from the set {(k − 1)π/720 : k = 1, 2, . . . , 100}.
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Fig. 10: Estimated amplitude and estimated length of the cycles connected with identified

frequencies in the set ΨP,1: X - estimated length of the cycle, Y - estimated amplitude.
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Fig. 12: Business cycle (extracted by HP filter) in sectors and subsectors of industrial produc-

tion after logarithm and application of centered moving average filter for λ = 5500 (continuous

line) λ = 12 000 (dotted line) λ = 32 000 (doted and dashed line) λ = 55 000 (dashed line).
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