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Abstract

We generalize the concept of the natural rate of interest (Laubach and

Williams, 2003; Woodford, 2003) by defining and estimating the the nat-

ural yield curve (NYC) - the term structure of natural interest rates. Our

motivation stems i.a. from the observation that at times when central

banks attempt to directly affect long-term interest rates (e.g. via quan-

titative easing) the gap between the short-term real and natural rate is

no more a good indicator of the monetary policy stance. We estimate the

NYC on US data, document its main properties and show i.a. that in

the period 2008-2011 the NYC allows to better capture the US monetary

policy stance than the short-term natural rate.

JEL: C32, E43, E52,

Keywords: Natural rate of interest, natural yield curve, unconventional

monetary policy, Kalman filter
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1 Introduction

Since its introduction to economics in the late XIXth century (Wicksell, 1898),

the natural rate of interest (NRI) has noticed up and downswings of popularity.

The recent revival of interest in the NRI concept was related to the introduction

of inflation targeting by several prominent central banks in the 1990’s. In this

strategy monetary authorities control the short-term interest rate in order to

stabilize inflation at the targeted level. As a consequence the concept of an

equilibrium level of the short-term interest rate that stabilizes the economy (and

inflation) received much attention both from the theoretical (Woodford, 2003)

and empirical (Laubach and Williams, 2003) points of view.

Despite its obvious attractiveness, the NRI also has some deficiencies. First,

it is an unobservable variable, with all consequences for its measurement and

uncertainty surrounding its estimates. While this does not diminish its appeal

as a theoretical concept, it may undermine its practical usage by policymakers

(Orphanides and Williams, 2007). Second, the NRI always provoked confusion

as to what maturity it should be applied. For Wicksell the natural rate was a

long-term concept (Amato, 2005). This notion can be also found in the con-

temporaneous literature, e.g. Bomfim (2001). However, most recent studies

approach the NRI from the short-term perspective, in line with the character of

the operational target of many central banks (e.g. Crespo Cuaresma et al., 2004;

Garnier and Wilhelmsen, 2005; Brzoza-Brzezina, 2006; Mesonnier and Renne,

2007; Edge et al., 2008; Andrés et al., 2009). While ultimately, whether the NRI

is treated as a long or short-term concept is simply a matter of definition, this

duality does certainly not help the NRI’s popularity and understanding. Finally,

the developments following the financial crisis 2007-09 changed the way central

banks look at their policy instruments. After hitting the zero lower bound on in-

terest rates several central banks (e.g. the Fed, Bank of England, ECB) decided

to engage in so called unconventional monetary policies. A primary example is

quantitative easing introduced by the Fed. One important goal of this policy was

to lower long-term interest rates. This means that central banks went beyond

their traditional policy of affecting directly only the short end of the yield curve

(with some exceptions like the Twist operation in the US in the 1960’s). It should

be noted here, that while central banks’ impact on longer-term rates has been

particularly pronounced since the outbreak of the financial crisis, even before

policymakers were actively using communication tools in order to influence the

yield curve (e.g. Blinder et al., 2008).
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While obviously not much can be done against the first deficiency, our contri-

bution is to deal with the latter two. To this end we generalize the NRI concept

by defining a new unobservable variable - the natural yield curve (NYC). Our

definition is a direct analogue to Laubach and Williams (2003) NRI definition

- the gap between the real and natural yield curves determines the output gap,

which in turn determines inflation. In particular, when the yield curve gap is

closed, so becomes the output gap and inflation stabilizes. As a result we obtain

the whole natural yield curve, which nests natural rates of various maturities.

Even more importantly, the NYC (and the associated yield curve gap) provide

a synthetic measure of policy restrictiveness, particularly usefull at times when

central banks attempt to directly affect the longer end of the yield curve. The

latter is our main motivation to develop and estimate the NYC.

In addition to the natural rate research our study is directly related to two

strands in the literature. The first is yield curve modeling. Our empirical ap-

proach must rely on a parsimonious representation of the (real) yield curve. A

number of approaches has been developed that allow for modeling the yield curve

as a function of a small number of parameters. One of them are affine models

usually with the no-arbitrage restriction imposed. These models have been origi-

nally proposed by Duffie and Kan (1996) and further developed by Duffee (2002)

(for the classification of the affine models see also Dai and Singleton, 2000). Due

to the no-arbitrage restriction affine models have been mostly used for deriva-

tive pricing, however some studies applied them for analysing the relationships

between macroeconomic variables and the yield curve as well (Rudebusch and

Wu, 2008). The second group of models originates from the decomposition of

the yield curve proposed by Nelson and Siegel (1987) and extended by Svensson

(1994) and Christensen et al. (2009). The Nelson-Siegel approach allows to de-

scribe the yield curve with a small number of latent factors, which due to certain

restrictions imposed on their loadings, can be interpreted as a long, medium and

short-term factor (often called level, curvature and slope)1. Despite the absence

of the no-arbitrage restriction these models match the yield curve quite well and

are widely used by many institutions (i.a. central banks) for yield curve modeling

(BIS, 2005). In our research we rely on the specification of Nelson and Siegel

(1987). Not only does it model relatively well our real yield curves, but also, as

will be explained later, greatly facilitates the identification of the NYC.

1Svensson (1994) adds a second curvature factor to improve the goodness of fit and Chris-
tensen et al. (2009) incorporate a second slope factor to impose the no-arbitrage restriction.
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The second strand are macro-financial models that link the yield curve to

macroeconomic developments. These describe the joint dynamics of bond yields

and macroeconomic variables i.a. by means of structural (e.g. Rudebusch and

Wu, 2008) or VAR (e.g. Ang and Piazzesi, 2003, Diebold et al., 2006) models.

The general conclusion is that relationships work in both ways - macroeconomic

developments affect the yield curve, which in turn affects the macroeconomy.

However, in contrast to our research, these models do not incorporate any latent

macroeconomic variables, in particular no measures of equilibrium interest rates.

Our model is estimated on US data for the period 1q1983 - 2q2011. Main

findings are as follows. First, our approach allows to estimate the natural yield

curve. Second, the related yield curve gap matters for the output gap and infla-

tion. Third, it shows features that make it potentially more valuable than the

traditional short-term interest rate gap. In particular it is able to document the

accommodative stance of monetary policy after the financial crisis.

The rest of the paper is structured as follows. Section 2 describes the data

and presents the yield curve and macroeconomic models. Section 3 discusses the

estimation and Section 4 concludes.
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2 Model and data

Our modeling approach is based on two steps. First, we describe the yield curve

as function of three latent factors.2 Next, we use these factors as observables

in our macroeconomic NYC model. This allows to estimate the latent macroe-

conomic variables - potential output and the natural yield curve. A two-step

estimation procedure means that we loose on efficiency. However, the big num-

ber of latent variables (level, slope, curvature, the natural slope and potential

output) as compared with a relatively small number of observable variables (in-

terest rates, GDP and inflation) would make the one-step joint estimation very

complicated numerically. Given this estimation procedure, we also describe the

two models separately.

2.1 The Nelson-Siegel model

As mentioned in the Introduction, several methods of modeling the yield curve

are available. We choose the Nelson-Siegel approach for two reasons. First, since

our purpose is macroeconomic rather than financial market oriented, we are

ready to trade off some precission in modeling the curve against simplicity of the

model and the economic interpretation of the parameters. Second, as explained in

section 2.2 the Nelson-Siegel model provides a natural and intuitive identifying

restriction that allows us estimate the NYC. The yield curve is modeled as a

function of three unobservable factors. The functional form is:

rτ,t = Lt + St

(
1− e−λτ

λτ

)
+ Ct

(
1− e−λτ

λτ
− e−λτ

)
(1)

where rτ,t is the spot interest rate of maturity τ . Lt, St and Ct are the level,

slope and curvature factors respectively and λ is a constant that governs the

exponential rate of decay of the loadings.

This model has been extensively documented in the literature and hence, we

discuss it only briefly here. In order to give some intuition behind the way the

Nelson-Siegel function works, in Figure 1 we present the loadings associated with

the three factors. The loading on the first factor is constant. Hence, it affects all

interest rates proportionally and so determines the curve’s level. The loading on

the second factor affects short rates more than long rates and hence determines

2We decided not to add a second curvature factor as proposed by Svensson because it helps
to fit the longer end of the yield curve while we use maturities up to 10 years only which can
be matched by one curvature factor. Moreover it would be difficult to find a clear economic
interpretation for this factor.
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the slope of the yield curve. The last factor is hump-shaped which means that

it exerts the largest impact on medium-term rates. As a consequence it allows

to model the curvature of the yield curve.

Nelson and Siegel show that equation (1) is appropriate for modeling nominal

yield curves. In particular it explains over 90% of their variability. In Section

3.1 we document that it performs well in modeling the real yield curve as well.

2.2 The natural yield curve model

We model the natural yield curve as an analogue to Laubach and Williams’

modeling of the natural rate of interest. The core of the model are two standard

macroeconomic equations, the IS curve and the Phillips curve. The former is:

xt = Ax(L)xt−1 + AG(L)GAPt−1 + ε1t (2)

where xt denotes the output gap (i.e. xt ≡ yt − y∗t , where yt and y∗ stand

for output and potential output respectively), GAPt is the yield curve gap to be

defined below, Ax(L) and AG(L) are polynomials in the lag operator and ε1t is a

serially uncorrelated error term.

The Phillips curve takes the form:

πt = Bπ(L)πt−1 + Bx(L)xt−1 + ε2t (3)

where πt denotes the inflation rate, Bπ(L) and Bx(L) are polynomials in the

lag operator and ε2t is a serially uncorrelated error term.

Further, we assume that potential output follows an autoregressive process:

y∗t = y0 + Cy(L)y
∗
t−1 + ε3t (4)

where y0 is a constant, Cy(L) is a polynomial in the lag operator and ε3t

is a serially uncorrelated error term. The assumed properties of the lag opera-

tors (whether they imply stationarity or unit roots in the underlying series) are

discussed in the estimation section.

Finally, the definition of the yield curve gap must be given. We define GAPt

as the area between the real and natural yield curves. Following the discussion

in section 2.1 we have:

8
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GAPt ≡
∫ T

0

(rτ − r∗τ ) dτ (5)

= (Lt − L∗
t )T + (St − S∗

t )

∫ T

0

1− e−λτ

λτ
dτ + (Ct − C∗

t )

∫ T

0

1− e−λτ

λτ
− e−λτdτ

where r∗τ is the spot natural interest rate of maturity τ , L∗
t , S

∗
t and C∗

t are

the level, slope and curvature of the NYC and T is the maturity horizon taken

into account. Unfortunately, such a definition of the gap does not allow for the

unique identification of L∗
t , S

∗
t and C∗

t . To see this note that for any given Lt, St

and Ct there is an infinite number of combinations of the natural level, slope and

curvature that yield the same value of GAPt. In other words, for any given real

curve there is an infinite number of natural curves such that the area between

the two remains the same. This means that we have to impose two additional

identifying restrictions in order to uniquely pin down the NYC.

The first restriction is based on the assumption that in the very long run the

instantaneous forward real rate equals its natural counterpart. In other words we

assume that infinitely far in the future investors’ best guess about the short-term

real rate is its natural level. This can be written as:

lim
τ→∞

rfτ,t = lim
τ→∞

rf∗τ,t (6)

where rfτ,t and rf∗τ,t are respectively the instantaneous real and natural forward

rates. In the Nelson and Siegel (1987) model the forward curve can be written

as:

rfτ,t = Lt + Ste
−λτ + Ctτe

−λτ (7)

so that assumption (6) yields the restriction Lt = L∗
t . Here we see an import-

ant reason for choosing the Nelson-Siegel model for describing the yield curve

- it provides us with a simple and intuitively appealing restriction that greatly

facilitates the estimation of the NYC. Note that this restriction yields another

interpretation of our identifying assumption - the central bank cannot influence

very (infinitely) long-term real spot interest rates.3

The second restriction assumes that the curvature of the NYC is constant.

This is in turn motivated by the fact, that in the literature macroeconomic

3This follows the observation derived from (1) that Lt = lim
τ→∞

rτ

9
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factors are found not to affect the curvature of the yield curve (see Diebold et

al., 2006). However, the curvature could be affected by the central bank aiming

for instance at flattening the yield curve after having hit the zero lower bound.

If the curvature is affected rather by monetary policy than by macroeconomic

developments we can assume that the curvature of the natural curve is constant

over time.4

Finally, we have to assume a process for the evolution of our remaining latent

variable S∗
t . Following the literature on the natural interest rate we assume that

this variable follows an AR(1) process:

S∗
t = ρsS

∗
t−1 + ε4t (8)

where ε4t is a serially uncorrelated error term. Thus we do not force the

natural slope to be a random walk process. We allow for the more general AR(1)

process and we test the level of integration later on.

2.3 Data

We estimate the model on the basis of quarterly US data starting in 3q1983

and ending in 2q2011 (114 observations). Nominal interest rates for various

maturities have been drawn from the St. Louis FED database. We used the

yields on T-Bills for maturities of 3 and 6 months and yields on zero-coupon and

fixed-coupon Treasury Bonds for 1, 2, 3, 5, 7 and 10 years maturity. Due to

substantial gaps in the data we skipped the longer-term maturities of 20 and 30

years. Hence, in our application T = 40 (measured in quarters).

The purpose of our project is to estimate the real yield curve so we had

to adjust the nominal interest rates for inflation expectations first. We used

the estimates of inflation expectations for selected maturities provided by the

Cleveland FED database as calculated by Haubrich et al. (2008).

As a measure of inflation we took the CPI core inflation measure calculated

by the BLS (CPI inflation less food and energy). Using this index instead of

CPI allows to adjust inflation for the shocks not directly related to the domestic

output gap. The level of GDP at constant prices has been taken from the BEA

database. Both macroeconomic variables: core CPI and GDP were seasonally

adjusted.

4Sometimes humps on the yield curve may result from the lack of liqudity or inefficiency of
the market. This, however, does not seem to be the case for the US T-bonds market.
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3 Estimation

As noted before, we conduct the estimation in two steps. In the first stage we

estimate the yields-only dynamic Nelson-Siegel (DNS) model. From the DNS

model we calculate the estimates of three factors, which can be interpreted as

level, slope and curvature. In the second step we use these factors as the observ-

able variables in the NYC model.

3.1 The Nelson-Siegel model

The dynamic Nelson-Siegel model can be expressed in state space form. We

follow Diebold et al. (2006) and estimate the DNS model simultaneously using

the Kalman Filter. The alternative approach proposed by Diebold and Li (2002)

relies on the estimation of the decay parameter λ with OLS for the cross-sectional

data and then on the derivation of the level, slope and curvature with λ given

from the first step as a mean or median calculated over time. Diebold et al.

(2006) argue that the one-step method is superior to the two step approach.5

The block of measurement equations consists of the stochastic version of (1)

for τ = 1, 2, 4, 8, 12, 20, 28 and 40:

rτ,t = Lt + St

(
1− e−λτ

λτ

)
+ Ct

(
1− e−λτ

λτ
− e−λτ

)
+ ετ,t (9)

The state equations form a VAR(1) process:




Lt − µL

St − µS

Ct − µC


 =




a11 a12 a13

a21 a22 a23

a31 a32 a33







Lt−1 − µL

St−1 − µS

Ct−1 − µC


+




ξ1t

ξ2t

ξ3t


 (10)

where µL, µS and µC denote the means of the respective factors. The model

can be written in compact form with measurement equations expressed as

rt = Λft + εt (11)

and the state equations as

(ft − µ) = A(ft−1 − µ) + ξt (12)

5Pooter (2007) reviews different strategies for estimation of DNS model examining both
one-step and two-step approaches.
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where ft =




Lt

St

Ct


, rt =

[
r1,t r2,t r4,t r8,t r12,t r20,t r28,t r40,t

]′
, µ =




µL

µS

µC


.

We assume that error terms in the measurement equations are not cross-

corelated, but allow for cross-correlation of the disturbances in the state equa-

tions. Moreover, we impose the restriction of no correlation between error terms

from the measurement and state equations which is a common procedure in the

estimation of the DNS model as a state space model (see Diebold et al., 2006).

Hence:

(
εt

ξt

)
∼ WN

[(
0

0

)
,

(
D 0

0 H

)]
,

where D is a diagonal matrix.

We estimate the model consisting of (11) and (12) by Maximum Likelihood us-

ing the Berndt-Hall-Hall-Hausman (BHHH) algorithm with starting values drawn

from Diebold et al. (2006).6

The results are collected in Table 1. The first row presents the mean values

of subsequent factors as defined in (10). The mean of the level factor amounts

to 0.0366. This value is very close to the sample mean of the real yield on 10Y

bonds, which is an empirical counterpart for the level factor.7 The mean of the

slope factor is negative and slightly lower then the sample mean of the spread

between 3-months and 10-years yields. The third factor is negative as well and

lower than its empirical counterpart.

6The discussion on numerical issues related to the estimation and calibration of the DNS
model can be found in Gilli et al. (2010)

7Following the literature (e.g. Diebold et al., 2006, Diebold and Li, 2002) we refer to
empirical counterparts of the estimated factors. From (1) we have lim

τ→∞
rτ,t = Lt and lim

τ→0
rτ,t −

lim
τ→∞

rτ,t = St.

It follows that the closest empirical counterpart for the level factor is the longest available
yield and for the slope factor the difference between the shortest and longest yield. For our
estimate of λ = 0.2255 these are: r40,t = Lt+0.11St+0.11Ct and r1,t−r40,t = 0.78St−0.01Ct.
The empirical counterpart for the curvature factor is in turn defined as the difference between
twice the medium-term yield and the sum of short- and long-term yields. This is 2r8,t − r1,t −
r40,t = −0.08St + 0.39Ct.
These relations show that for the finite maturities the estimated slope and curvature factors

would have higher amplitudes and variances than their empirical counterparts.
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As far as the persistence of the factors is concerned, the first factor is the most

persistent one with the autoregression coefficient equal to almost 0.99 (though

significantly bellow one). The curvature is less persistent (0.92) and the slope

even less so (0.72). The high persistence of the level factor and the lower persis-

tence of slope and curvature is mostly in line with empirical evidence (Gasha et

al., 2010). Some of the off-diagonal elements of the covariance matrix are statis-

tically significant reflecting the contemporaneous relationship between factors.

The estimate of the decay parameter λ equals 0.2255 (with standard error of

0.002). This corresponds to 0.075 for monthly data, a number very close to the

estimates reported by Diebold et al. (2006) for nominal yields (0.077).

Figures 2, 3 and 4 show the level, slope and curvature factors together with

their empirical counterparts. The level factor and the real 10Y yield move to-

gether in a downward trend across the sample. Nevertheless, there are some

periods when the yield on the 10-years bonds declined more than the level factor

- in particular in the beginning of the 1990’s, in the first half of the last decade

and at the end of the sample (2010-2011). Still, the correlation between the two

series is very high (0.98).

The correlation between the slope factor and its empirical counterpart is

strong as well (0.99). The slope factor has slightly higher volatility and the

amplitude than the spread (by construction, as pointed out in footnote 7) and

the maxima and minima occur at the same points in time.

The lowest but still high correlation can be observed between the curvature

factor and its empirical counterpart. The correlation coefficient equals to 0.98

and the curvature is also more volatile than the combination of empirical yields.

The reported correlations do not differ significantly from the corresponding

correlations for nominal yields reported by Gasha et al. (2010), while Diebold et

al. (2006) even indicate lower correlations for slope and curvature (for the sample

ending in 2000). Our conclusion is that the DNS model is suitable for modeling

the US real yield curve.

3.2 The NYC model

In the second step we estimate the natural yield curve model expressed by (2),

(3), (4) and (8). The fitted slope and curvature from the DNS model derived

in the previous step are used as observable variables. Again, it is convenient to

put the model in state space form and to use the Kalman Filter for estimation.

We use four observable variables: inflation, output, slope and curvature and two

13
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latent variables: natural slope and potential output. As mentioned above we

assume that the natural level of the real yield curve equals its current level and

that the natural curvature is constant. Hence, the only “natural” factor which

has to be estimated in this step is the natural slope.

In the measurement equations we specify the number of lags of dependent

variables on empirical basis. We find that two lags of both, the output gap and

inflation are sufficient to capture the dynamics of these variables. Moreover we

impose the restriction on the coefficients for lagged inflation in the Phillips curve

to sum to one, implying a unit root in the inflation series. The yield curve gap

in the IS curve and the output gap in the Phillips curve enter both with one lag.

As far as the state equations are concerned we assume that potential output

follows an AR(2) process imposing again a unit root via the restriction on the

autoregressive parameters to sum to one. The natural slope is assumed to follow

an AR(1) process and the error terms from all the equations are assumed to be

neither auto- nor cross-corelated.

Regarding the “pile-up problem” raised by Stock and Watson (1998) we cali-

brate the variance for potential output and natural slope, while other parameters

are estimated by Maximum Likelihood using the BHHH algorithm. Choosing the

variance for the error term in the potential output equation we used the estimates

of potential output calculated by the CBO as a benchmark. We did not have

any benchmark for the natural slope so we set the variance in the natural slope

equation slightly below the variance of the error term in the analogous equation

for the empirical slope derived from the DNS model.

Tables 2 and 3 collect the estimation results for the NYC model. The yield

curve gap proves statistically significant, entering the IS equation with a negative

sign. It means that if the real yield curve remains below the natural one the

output gap increases.

The sum of the parameters for the own lags of the output gap is significantly

below one (the hypothesis that both coefficients sum to one has been rejected by

the data at the usual significance level).

As far as the Phillips curve is concerned the output gap lagged by one period

enters the equation with a positive sign, in line with economic theory. The output

gap is statistically significant at usual significance levels.

Analysing the state equations we see that the autoregressive coefficient in the

natural slope equation takes a value significantly below one. With the Wald test

statistic we reject the hypothesis that the natural slope follows a random walk.

Moreover the ADF test for the smoothed values of natural slope strongly rejects
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the unit root. The results for the potential output equation let us conclude that

potential output is integrated of order one. The Wald test does not support the

hypothesis of a second unit root in the potential output series.

Figure 5 presents smoothed values of the natural slope together with appro-

priate standard errors. According to the results the slope of the natural yield

curve reaches its local maxima in 1989, 1998 and in 2006. Minima occur in 1992,

2002 and recently since 2008 lasting till the end of the sample.

Figure 6 shows the estimate of potential output and Figure 7 presents the

comparison of the output gap calculated from the NYC model with the output

gap published by the Congressional Budget Office (CBO). It can be seen that the

NYC output gap matches CBO’s estimates quite well with only two exceptions:

the late 1990s, when the NYC model shows a smaller positive output gap and

the recent global crisis, when the CBO negative output gap is deeper than the

gap from the NYC model. In particular, the latter result can be explained by

the fact that our output gap is identified via the Phillips curve on the basis of

the behaviour of core inflation. Despite a deep and long lasting recession core

inflation did not fall substantially due to exchange rate depreciation and the

NYC model identified a smaller output gap.

In contrast to the output gap, there is no external benchmark for the yield

curve gap. We document its relationship with macroeconomic variables on Fig-

ures 8 and 9. The former shows the estimates of the yield curve gap together

with our output gap led by 8 quarters. The correlation between these variables

is clearly visible and amounts to 0.46. The second figure shows the yield curve

gap and core inflation led by 9 quarters Here the correlation is slightly weaker

but still significant and equals -0.26. All in all, our estimates seem to match

economic theory.

The historical values of the natural yield curve have been presented on Figure

11.
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4 The natural yield curve vs. the natural inter-

est rate

In Section 3.1 we have shown our estimated natural yield curve, output gap and

yield curve gap, and how they are related to macroeconomic variables. Now it is

time to concentrate on the question whether estimating the whole natural yield

curve improves upon the (possibly simpler) estimation of the short-term natural

interest rate.

Using our estimates of the natural level, slope and curvature we can calculate

the natural interest rate of any desired maturity. This, by itself, is an advantage

of the NYC over the narrowly defined NRI. In particular we can calculate the

natural level for the short-term (3-months) real rate, corresponding to the natural

interest rate as defined by Laubach and Williams (2003).

On Figure 10 we present the estimates of the 3-months real rate gap (the

difference between the 3-month real and natural rates) and the yield curve gap.

Both indicators can be interpreted as alternative measures of the monetary pol-

icy stance. A positive value of the gap indicates restrictive monetary policy, a

negative one corresponds to accommodative monetary policy.

The behaviour of the yield curve gap shows that monetary policy was ex-

pansionary in the years 1983-89, since 1992 till the end of the 1990s (with the

exception for some quarters in 1994/95) - covering the dot-com bubble period,

between 2003 and 2004 and since the mid-2009 till the sample end. Clearly

restrictive monetary policy can be identified in the years 1989-91, 1994-95, the

beginning of the last decade (2000-2002) and since 2005 till 2009.

As mentioned before, the crucial difference between both measures is that the

short-term real rate gap does not take into account the longer end of the yield

curve, which may be meaningful for economic agents in the decision making

process. For the most of the sample the two estimates match relatively well.

This is also confirmed by the relatively high correlation coefficient (0.57). Still,

for some periods substantial divergence can be observed.

In particular at the end of the sample the short-term rate gap differs from

the yield curve gap. According to the short-term rate gap since 3q2007 till the

end of the sample monetary policy was restrictive. Due to the strongly negative

output gap and low inflationary pressure the short-term real rate which would

balance the economy should have been significantly lower than it was. As is well

known, this could, however, not be achieved because of the zero lower bound
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problem.

Instead of lowering the short term rate, the Fed launched the programme of

quantitative easing (two phases) purchasing commercial papers and longer-term

Treasury bonds. The programme allowed to lower the longer end of the yield

curve decreasing the cost of long-term financing and in fact making monetary

policy more accommodative. This effect can be observed from the yield curve

gap turning negative since 3q2009. Thus, the measure covering the whole yield

curve defines the monetary policy stance more appropriately than the short-term

rate gap only, which indicates restrictive monetary policy in this period.

The advantage of looking at the yield curve gap instead of relying on the

short-term rate gap only can be better understood by looking at Figure 12. This

shows the natural and real yield curves for specific dates. For example in 3q2003

(panel a) the Fed managed to raise the policy rate above the natural short-term

rate. However, the longer end of the yield curve was still below the natural one,

so that monetary conditions remained accommodative, leading to an overheating

of the economy. According to our model, monetary conditions became restrictive

only in 2006-07 (panel b), when the yield curve gap became positive.

After the collapse of Lehman Brothers, in spite of lowering the policy rate

almost to zero, monetary policy remained restrictive as measured by both, the

short-term rate gap and the yield curve gap (1q2009 - panel c). Yet, the intro-

ducing of the QE programme led to a substantial lowering of the longer part of

the yield curve making monetary conditions accommodative. According to the

NYC model, monetary policy was most accommodative in 1q2010 (panel d). In

contrast, the short end of the yield curve remained above its natural level in that

period.

The zero lower bound problem and the implementation of non-standard mon-

etary policy instruments like quantitative easing highlight some limitations for

the short-term rate gap as a measure of the monetary policy stance. In our view

the yield curve gap concept may fill this gap.
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5 Conclusions

In this paper we define and estimate a new equilibrium concept in monetary

economics - the natural yield curve (NYC). This can be seen as the whole term

structure of natural rates of interest (NRI), which are a popular concept both in

academia and at central banks. We motivate our innovation as follows. First, the

NRI always provoked confusion as to what maturity it should be applied. While

for several authors (including Knut Wicksell, its founder) it was a long-term

concept, most recent studies approached the NRI from the short-term perspec-

tive. Our approach generalizes the NRI and allows for the calculation of short,

medium and long-term natural rates.

Second, the usual argument for approaching the NRI from the short-term

perspective was related to the fact that central banks control short-term interest

rates. Hence, the respective NRI provides an important benchmark for their poli-

cies. However, the developments following the financial crisis 2007-09 changed

the way central banks look at their policy instruments. After hitting the zero

lower bound on interest rates several central banks extended their traditional

operational policy framework and started to exert influence on the longer end

of the yield curve. From this perspective the gap between the short-term real

and natural rates of interest looses some appeal as a measure of the monetary

policy stance. On the contrary, the gap between the real and natural yield curves

becomes more appealing.

Using a framework similar to Laubach and Williams (2003) we show how to

estimate the NYC on US data. We show that the gap between the real and

natural curves has an impact on the output gap and inflation. Furthermore we

demonstrate how, in contrast to the short-term interest rate gap, our gap is able

to document the expansionary stance of the Fed’s monetary policy during and

after the financial crisis.
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Tables and Figures

Table 1: Estimation results for DNS model
State Equations

Lt St Ct

µ
0.0366
(0.0085)

−0.0354
(0.0060)

−0.0276
(0.0040)

Lt−1
0.9885
(0.0270)

−0.0582
(0.0433)

−0.1591
(0.0696)

St−1
0.0851
(0.0259)

0.7228
(0.0441)

−0.0755
(0.0755)

Ct−1
−0.0661
(0.0215)

0.2568
(0.0406)

0.9232
(0.0593)

Residual Covariance Matrix
Lt St Ct

Lt
8.53 · 10−6

(9.57 · 10−8)
8.46 · 10−6

(1.47 · 10−6)
5.97 · 10−6

(2.30 · 10−6)

St
2.47 · 10−5

(2.71 · 10−6)
3.16 · 10−7

(3.61 · 10−6)

Ct
6.00 · 10−5

(8.96 · 10−7)
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Table 2: Estimation results for the NYC model - measurement equations
IS Curve Phillips Curve

Output Gapt Core CPIt

Output Gapt−1
0.644
(0.014)

0.104
(0.001)

Output Gapt−2
0.286
(0.003)

-

Curve Gapt−1
−0.0498
(0.0003)

-

Core CPI t−1 -
0.880
(0.087)

Core CPI t−2 - 0.120

Residual Variance 2.61 · 10−5 5.63 · 10−6

Table 3: Estimation results for the NYC model - state equations
Natural Slope Equation Potential Output Equation

Natural Slopet Potential Outputt

Natural Slopet−1
0.932
(0.004)

-

Potential Outputt -
1.271
(0.022)

Potential Outputt - −0.271

Const -
0.005

(0.0003)
Residual Variance 3.72 · 10−5 7.50 · 10−6
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Figure 1: Loadings in the Nelson-Siegel model
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Figure 2: The level factor and its empirical counterpart
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Note: the empirical counterpart is the real 10-year yield. For explanation see footnote

7.
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Figure 3: The slope factor and its empirical counterpart
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Note: the empirical counterpart is the spread between the 3-month and 10-year yield.

For explanation see footnote 7.

Figure 4: The curvature factor and its empirical counterpart
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Note: the empirical counterpart is the difference between twice the 2-year yield and

the sum of the 3-month and 10-year yields. For explanation see footnote 7.
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Figure 5: The natural slope
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Figure 6: Potential output
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Figure 7: Estimates of the output gap from the NYC model and CBO’s output
gap
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Figure 8: Yield curve gap vs. output gap
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Figure 9: Yield curve gap vs. core inflation
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Figure 10: Yield curve gap vs. short term rate gap
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Figure 11: The natural yield curve
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Figure 12: Real and natural yield curves
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b)
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