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Abstract

This paper brings two new insights into the Purchasing Power Parity (PPP) debate.
First, even if PPP is thought to hold only in the long run, we show that a half-life
PPP model outperforms the random walk in real exchange rate forecasting, also at
short-term horizons. Second, we show that this result holds as long as the speed of
adjustment to the sample mean is imposed and not estimated. The reason is that
the estimation error of the pace of convergence distorts the results in favor of the
random walk model, even if the PPP holds in the long-run.

Keywords: Exchange rate forecasting; purchasing power parity; half-life.

JEL classification: C32; F31; F37
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Non-technical summary

Non-technical summary

There is broad agreement between policy makers and academics that beating the

random walk in forecasting nominal exchange rates is very difficult, if at all possible.

Views are instead less unanimous on whether real exchange rates can be forecast.

In this paper we suggest that forecasting changes in real exchange rates is equally

important if one wants to form a view on the price competitiveness and export

prospects of a given country. The task that we set ourselves is to investigate whether

forecasting real effective exchange rate of major world currencies is achieved more

accurately with an economic-theory-based model or with a naive random walk. The

standard theoretical reference on this issue is the PPP hypothesis, which suggests

that the relative price of two identical, domestic and foreign, baskets of goods is

constant when expressed in a common currency. Although PPP is one of the most

prominent theories in economics, it remains highly controversial, as it is thought

to fail in the short-run. As for the long run it is generally recognized that mean

reversion to the PPP implied rate is a factor at play.

In this paper we add to the debate on PPP by presenting new evidence in support

of PPP for nine major world currencies. We show that a trivially simple model,

which assumes slow convergence of the real exchange rate to PPP implied level,

generally outperforms, and in many cases in a significant way, the random walk

model in terms of real exchange rate forecasting. What is remarkable in comparison

to earlier studies, we show that this is true also for short-term horizons.

The article also presents an additional insight which is very telling. We indicate

that when the (slow-adjusting) PPP model is estimated, it performs poorly: the

outcome is generally worse than the random walk model. There is, nonetheless, a

simple solution that is extremely easy to apply in practice. We recommend imposing

the speed of mean reversion to PPP at values consistent with the duration of the

half-life in the range between 3 and 5 years (in line with the literature). We show

that if one does that the real exchange rate forecasts turn out to be much better

than those derived with the random walk model. The rest of the paper is devoted

to understanding this result from a theoretical point of view. We show that for

persistent processes the forecast error attributed to estimation is likely to overwhelm

the one caused by the mis-specification of imposing a calibrated model.

Overall we find that the analysis is encouraging on the usefulness of exchange

5
rates theory: by choosing a different battlefield, i.e. real exchange rate forecasting,

a theory based model outperforms the random walk.
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1 Introduction

Following the seminal papers by Meese and Rogoff (1983a,b), a consensus view

has emerged that economic theory is of very little help in forecasting exchange

rates. Although in the mid-1990s Mark (1995) and Chinn and Meese (1995) claimed

that the random walk (RW) model could be at least beaten at longer horizons,

this more optimistic perspective was short-lived and vigorously contested (see in

particular Cheung et al., 2005). Looking forward, as stated by (Rogoff, 2009) the

unpredictability of exchange rates is likely to remain the consensus view for the

conceivable future. The aim of this paper is not to challenge this assessment but

to signal some promising avenues of research. While sharing the fascination and

desire to understand the underlying forces of exchange rates, in what follows we

propose that researchers could deal first with an apparently less ambitious but still

key assignment: i.e. real exchange rate (RER) forecasting. Not only this may be

easier, it could also be more relevant from a macroeconomic perspective, if one

believes, as we do, that to assess a country’s outlook, the relevant concept is price

competitiveness and not the level of the exchange rate. The obsession with nominal

exchange rates probably explains why only a handful of studies have investigated

the predictability of RERs. The exceptions are the papers by Meese and Rogoff

(1988), Mark and Choi (1997) and Pavlidis et al. (2011) although they reach opposite

conclusions: the first rather skeptical and the two last more positive on the scope

for RER forecasting.

The standard theoretical reference on RER is the PPP hypothesis, one of the

most prominent and controversial theories in the history of economic thinking. In

their review of the PPP debate Taylor and Taylor discuss how the consensus has

shifted for and against PPP over time: in their assessment the common view is now

back to what had prevailed before the 1970s, i.e. “that short run PPP does not hold,

that long-run PPP may hold in the sense that there is significant mean reversion of

the real exchange rate, although there may be factors impinging on the equilibrium

RER through time” (Taylor and Taylor, 2004, p. 154). The empirical literature that

conducts unit root tests to evaluate the mean-reversion of RERs usually finds that it

is not possible to reject the null of RERs non-stationarity. The evidence, however, is

not conclusive owing to the low power of the tests for persistent processes. The“PPP

puzzle” literature, which estimates the speed of mean-reversion of RERs, generally

7

concludes that it takes between 3 and 5 years to halve PPP deviations (see Rogoff,

1996; Kilian and Zha, 2002).

This paper adds to the above literature in two aspects. First, we show that

a calibrated half-life PPP, which postulates a gradual adjustment of RER to the

PPP level, outperforms the RW model in forecasting real exchange rates, also in the

short-term horizon. We claim that this finding provides new evidence in the PPP

debate. Second, we show that the calibrated model also outperforms its estimated

counterpart. The reason is that in the case of persistent process the estimation error

is so high.

The rest of the paper is structured as follows. Section 2 outlines the alternative

models that we shall use in our exchange rate forecasting competition. In section 3

we provide some empirical support for the PPP hypothesis using monthly data for

real effective exchange rates of major currencies for the period between January 1975

and March 2012. In particular, we show that a calibrated model, which assumes

slow convergence to PPP, strongly outperforms the RW at both long and short-term

horizons. Finally in Section 4 we provide an analytical investigation of our empirical

findings, pointing to the important role of the estimation error.

8
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2 The models

Let us define the log of the real exchange rate as yt ≡ st + pt − p∗t , where st is the

log of the nominal exchange rate expressed as the foreign currency price of a unit

of domestic currency, and pt and p∗t are the logs of home and foreign price levels,

respectively. Let us also assume that the DGP for yt is a simple autoregression (AR)

of the form:

(yt − µ) = ρ(yt−1 − µ) + εt, εt ∼ N (0, σ2) (1)

with |ρ| < 1 measuring the speed of reversion to µ, which is interpreted as the level

of PPP. As mentioned in the introduction, the consensus view is that the half-life

of deviations from the PPP:

hl = log(0.5)/ log(ρ). (2)

is somewhere between 3 and 5 years. This view implicitly assumes that RERs are

mean reverting and hence predictable. We show that this claim is generally justified

by comparing the accuracy of RER forecasts derived from the following competing

models, which are a specific form of (1).

The first model is a random walk, for which the h step ahead forecast is:

yRW
T+h|T = yT . (3)

The next two models assume that the half-life amounts to 3 or 5 years (HL3 and

HL5), thus RERs converge to their sample mean values at pace ρ̄ consistent with

the duration of the half-life in line with (2). The h step ahead forecast is:

yHL
T+h|T = µ̄ + ρ̄h(yT − µ̄), (4)

where µ̄ is the sample mean from the last R observations. The last competitor is

the AR model of the form (1) for which:

yAR
T+h|T = µ̂ + ρ̂h(yT − µ̂), (5)

where µ̂ and ρ̂ are OLS estimates on the basis of the last R observations.
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3 Empirical evidence

To assess the predictability of RERs we gathered monthly data for nine major curren-

cies of the following countries: Australia (AUD), Canada (CAD), euro area (EUR),

Japan (JPY), Mexico (MXN), New Zealand (NZD), Switzerland (CHF), the United

Kingdom (GBP) and the United States (USD) for the period between 1975:1 and

2012:3. For all currencies we model (narrow) real effective exchange rates as calcu-

lated by the Bank for International Settlements (Klau and Fung, 2006). The values

of the analyzed series are presented in Figure 1.

The out-of-sample forecast performance is analyzed for horizons ranging from

one up to sixty months ahead, whereas the evaluation is based on data from the

period 1990:1 to 2012:3. The models are estimated using rolling samples of 15 years

(R = 180 months). The first set of forecasts is elaborated with the rolling sample

1975:1-1989:12 for the period 1990:1-1994:12. This procedure is repeated with the

rolling samples ending in each month from the period 1990:2-2012:2. Since the data

available end in 2012:3, the 1-month ahead forecasts are evaluated on the basis of

267 observations, 2-month ahead forecasts on the basis of 266 observations, and

60-month ahead forecasts on the basis of 208 observations.

The forecasting performance is measured with two standard statistics: the mean

squared forecast errors (MSFEs) and the correlation coefficient between forecast and

realized RER changes. Table 1 and Figure 2 present the values of MSFEs. As is

generally done in the forecasting literature, we report the actual MSFEs values for

the RW model, while for the remaining models the numbers are expressed as ratios,

so that values below unity indicate that a given model dominates the RW. We also

test the null of equal forecast accuracy with the two-sided Diebold and Mariano

(1995) test.

In terms of the MFSE criterion the two HL model-based forecasts are significantly

better than the RW for seven out of nine currencies (EUR, MXN, NZD, CHF,

GBP, USD, JPY). In the specific case of HL5, we find that the MSFEs are on

average 9% and 23% lower than that from the RW model at the two and five-year

horizon, respectively. Looking at the specific currencies, both H3 and H5 model-

based forecasts are much more precise than those based on the AR model for the

following five currencies (CAD, EUR, JPY, GBP and USD) while the outcomes

are broadly comparable for the other four currencies. Particularly interesting is
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that HL models are able to outperform other models also at short-term horizons - at

which the RW model is generally thought to be very difficult to beat. The short-term

forecasts from the HL models outperform significantly those based on the RW model

in the case of EUR, MXN and NZD, at the same time being broadly comparable for

the other currencies. At one year horizon, the MSFEs from the HL5 model are on

average by 3% and 12% lower than those from the RW and AR models, respectively.

Finally, at short-term horizons the AR model performs particularly poorly compared

to both the HL and RW models.

Further evidence that the HL models beat the alternatives can be found using

our second criterion, which consists in computing the correlation coefficient between

the realized and forecast changes of RERs:

rM,h = cor(yM
T+h|T − yT , yT+h − yT ), (6)

where M stands for the model name. Note that (3) and (4) imply that rRW,h is zero

and rHL,h does not depend on the duration of the half-life: for that reason in Table

2 we report only the results for two models, a common HL and the AR model. The

table shows that the correlation coefficients for the HL model are generally positive

for all currencies at all horizons, except for the AUD. The average value of rHL,h also

increases with the forecast horizon: from just 0.04 for the one-month ahead forecasts

to 0.53 for the five-year ahead forecasts. In the case of the AR model the results

are again rather disappointing: MXN is the only currency with a positive rAR,h

throughout the forecast horizon. Moreover, the average value of rAR,h is positive

only for horizons above two years. Finally, at all horizons rAR,h is visibly lower than

rHL,h.

To sum up, there appears to be convincing evidence that RERs of major curren-

cies are mean reverting and forecastable. A puzzling questions, however, remains: if

the true DGP is given by (1), why is the AR model performing so poorly compared

to the RW model? The short-answer is that estimation error plays a key role here:

even if we estimate the speed of adjustment using fairly long windows (15 years),

the error is large enough to distort the results in favor of the RW model even if PPP

holds in the long-run.
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4 Analytical interpretation of the results

In this section we show analytically the point that we have just stated. Let assume

that the DGP for yt is given by (1) so that the unbiased and efficient forecast is:

yT+h|T = µ + ρh(yT − µ), (7)

and the variance of the forecast error:

E{(yT+h − yT+h|T )2} = σ2 1 − ρ2h

1 − ρ2
. (8)

Here, the only source of forecast errors is the existence of the unobserved random

term, whose future values are unknown (random error). In the case of forecasts

given by equations (3)-(5) the variance of forecast errors is higher than that in (8)

because the coefficients µ and ρ are unknown and have to be estimated (estimation

error) or calibrated (calibration error).

Let us decompose the variance of the forecast error from a generic model

M ∈ {RW,HL,AR} into three components:

E{(yT+h − yM
T+h|T )2} = E{(yT+h − yT+h|T )2} + E{(yT+h|T − yM

T+h|T )2}+
+ 2E{(yT+h − yT+h|T )(yT+h|T − yM

T+h|T )},
(9)

The value of the first component, which is given by (8), represents the random error.

The second component quantifies the mis-specification, estimation or calibration

error. Finally, if we cannot forecast future shocks the third component is null and

can be disregarded.

In what follows we provide the analytical expressions for the second component,

which is what matters to assess the relative performance of our competing models.

In the case of the RW model the error equals:

yT+h|T − yRW
T+h|T = (1 − ρh)(yT − µ), (10)

and thus:

E{(yT+h|T − yRW
T+h|T )2} = (1 − ρh)2 × E{(yT − µ)2}, (11)

where:

12E{(yT − µ)2} =
σ2

1 − ρ2

.

For the HL model, the combination of (4) and (7) yields:

yT+h|T − yHL
T+h|T = (ρh − ρ̄h)(yT − µ) − (1 − ρ̄h)(µ̄ − µ). (12)

The first term describes the forecast error caused by the wrong calibratation of the

parameter ρ, which determines the adjustment speed to PPP; the second term is

instead the forecast error related to the estimation of µ , i.e. the constant, which

approximates the PPP value on the basis of the sample of size R. The resulting

variance is:

E{(yT+h|T − yHL
T+h|T )2} = (ρh − ρ̄h)2 × E{(yT − µ)2} + (1 − ρ̄h)2×

× E{(µ̄ − µ)2} − 2(ρh − ρ̄h)(1 − ρ̄h) × E{(yT − µ)(µ̄ − µ)}
(13)

where:

E{(µ̄ − µ)2} =
σ2

1 − ρ2
× 1

R2
× (R + 2

R−1∑
j=1

(R − j)ρj)

E{(yT − µ)(µ̄ − µ)} =
σ2

1 − ρ2
× 1

R
× 1 − ρR

1 − ρ
.

Finally, as derived in Fuller and Hasza (1980), for the AR model the variance of

the estimation error is approximately:

E{(yT+h|T − yAR
T+h|T )2} � σ2 × 1

R
×

[
h2ρ2(h−1) +

(
1 − ρh

1 − ρ

)2
]

. (14)

Given equations (8)-(14), the assumptions for the DGP coefficients (µ, ρ and

σ) and the sample size (R), one can calculate the theoretical value of MSFE for all

competing models (RW, HL and AR) at different forecast horizons (h = 1, 2, . . . , H).

It is worth noting that the theoretical MSFEs of all models do not depend on the

13
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value of µ and are proportional to the value of σ2. Consequently, the relative MSFEs

depend solely on the convergence coefficient ρ, the sample size R and forecast horizon

h.

In what follows we consider values of ρ corresponding to a half-life varying from

one to ten years, the sample size of 180 monthly observations and forecast horizons

up to 60 months ahead. These values correspond to the empirical analysis described

in Section 3. The results are presented in Figure 3, where the theoretical MSFEs

values of a given model are shown as a ratio of the MSFEs of the RW model.

The analytical results, which were cross-checked with Monte Carlo simulations,

suggest that the HL3 and HL5 model-based forecasts are considerably more accurate

than those from RW models if the half-life of DGP is below 5 years. For more

persistent deviations than that, the RW model would outperform other models.

The HL3 and HL5 model-based forecasts are instead more accurate than those from

the AR model if the DGP half-life is above one year. Finally in terms of point

forecast accuracy, the AR model outperforms the RW model only for relatively low

values of the DGP half-life, i.e. not exceeding three years. The estimation error of

the AR model is especially severe for more persistent processes.

The above results tell the following story: even if the true DGP is a simple

autoregression with the duration of the half-life between three and five years, an

estimated AR model usually will not outperform the RW model in forecasting. This

result is explained by the estimation forecast error of the AR model, which outweighs

the accuracy loss of choosing the mis-specified RW model. The remedy is, however,

simple: just employ a reasonably calibrated HL model that assumes a gradual mean

reversion to the sample mean.

14
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5 Conclusions

In this paper we have shown that a calibrated half-life model is remarkably successful

in forecasting RERs at both long and short term horizons. We highlight the impor-

tant role estimation error may play, as it could lead to wrong conclusions even if

one has identified the correct model. Overall, we find the analysis is encouraging on

the usefulness of exchange rate theory: by choosing a different battlefield, i.e. RERs

forecasting, a simple modification of PPP theory generally outperforms, and by far,

the RW model. Looking forward, RERs forecasting appear a relevant and promis-

ing avenue of research: it may prove nonetheless challenging to push the analysis

beyond the major currencies for which PPP is a natural theoretical framework. Our

suggestion to anyone pursuing this research to the case of emerging countries where

price convergence plays a role is however clear: beware of the role of the estimation

error and consider also whether simple calibrated models are competitive.
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Table 1: Mean Squared Forecast Errors (MSFEs)
h RW HL3 HL5 AR1 RW HL3 HL5 AR1 RW HL3 HL5 AR1

AUD CAD EUR
1 0.05 1.03 1.01 1.02∗ 0.05 1.04 1.02 1.03∗ 0.02 1.00 1.00 1.04∗∗
6 0.44 1.07 1.03 1.06∗ 0.46 1.10 1.03 1.11∗∗ 0.23 0.96 0.96 1.12∗
12 0.82 1.13 1.06 1.09∗ 0.89 1.17 1.06 1.20∗∗ 0.49 0.90 0.92∗ 1.14∗
24 1.53 1.22∗∗ 1.10∗ 1.09 1.68 1.24∗ 1.10 1.19∗ 1.03 0.80∗ 0.83∗∗ 1.18∗∗
36 2.10 1.25∗ 1.12 1.06 2.24 1.18 1.06 1.20∗ 1.67 0.72∗∗ 0.77∗∗ 1.13∗
60 3.00 1.22 1.11 1.06 3.17 0.99 0.94 1.45∗∗ 2.84 0.58∗∗ 0.66∗∗ 0.91

JPY MXN NZD
1 0.06 1.01 1.00 1.01 0.07 0.99 0.99 0.99 0.11 1.00 1.00 1.03∗
6 0.59 0.99 0.98 1.04 0.61 0.94 0.96∗ 0.92 0.80 0.96 0.96 1.06
12 1.00 1.00 0.97 1.10∗ 1.11 0.89∗ 0.92∗ 0.87∗ 1.42 0.90∗ 0.92∗ 1.03
24 2.34 0.92 0.91 1.17∗∗ 2.73 0.79∗∗ 0.84∗∗ 0.78∗ 2.53 0.77∗∗ 0.83∗∗ 0.89∗
36 3.53 0.86 0.86 1.19∗∗ 4.19 0.72∗∗ 0.78∗∗ 0.74∗∗ 2.85 0.65∗∗ 0.74∗∗ 0.74∗∗
60 3.12 0.97 0.89 1.19∗ 3.72 0.73∗ 0.74∗∗ 0.72∗ 2.64 0.55∗∗ 0.64∗∗ 0.62∗∗

CHF GBP USD
1 0.02 1.00 1.00 1.06 0.02 1.00 1.00 1.02 0.03 1.00 1.00 1.03∗
6 0.12 0.98 0.98 1.22∗ 0.15 0.97 0.97 1.04 0.23 0.96 0.96 1.10∗
12 0.25 0.97 0.97 1.16 0.29 0.95 0.95 1.03 0.45 0.94 0.93 1.21∗∗
24 0.50 0.84∗ 0.88∗ 0.99 0.49 0.85∗ 0.87∗ 0.98 0.92 0.84 0.84∗ 1.21∗
36 0.72 0.73∗∗ 0.80∗∗ 0.78∗∗ 0.56 0.77∗∗ 0.82∗∗ 0.93 1.21 0.71∗ 0.72∗∗ 1.13
60 0.79 0.65∗∗ 0.72∗∗ 0.69∗∗ 0.55 0.59∗∗ 0.67∗∗ 0.70∗∗ 1.32 0.45∗∗ 0.53∗∗ 0.91

Notes: For the RW model MSFEs are reported in levels (multiplied by 100), whereas for the remaining methods
they appear as the ratios to the corresponding MSFE from the RW model. Asterisks ∗∗ and ∗ denote the rejection
of the null of the Diebold and Mariano (1995) test, stating that the MSFE from RW are not significantly different
from the MSFE of a given model, at 1%, 5% significance level, respectively.

18

Table 2: Correlation of forecast and realized changes of real exchange rates
h AUD CAD EUR JPY MXN NZD CHF GBP USD av.

Half-life models
1 -0.04 -0.03 0.06 0.04 0.11 0.06 0.08 0.06 0.07 0.04
6 -0.01 0.02 0.21 0.15 0.30 0.23 0.21 0.19 0.22 0.17
12 -0.05 0.01 0.32 0.18 0.42 0.36 0.25 0.26 0.29 0.23
24 -0.10 0.02 0.46 0.31 0.60 0.56 0.50 0.43 0.43 0.36
36 -0.12 0.11 0.55 0.38 0.66 0.73 0.66 0.53 0.56 0.45
60 -0.20 0.26 0.71 0.31 0.61 0.81 0.74 0.71 0.78 0.53

AR model
1 -0.04 -0.09 -0.19 -0.04 0.13 -0.07 -0.13 -0.03 -0.09 -0.06
6 -0.07 -0.22 -0.29 -0.10 0.33 -0.05 -0.21 0.02 -0.17 -0.08
12 -0.06 -0.31 -0.24 -0.22 0.44 0.05 -0.04 0.08 -0.24 -0.06
24 0.00 -0.14 -0.22 -0.33 0.60 0.35 0.22 0.19 -0.13 0.06
36 0.07 -0.09 -0.06 -0.32 0.64 0.61 0.52 0.26 0.05 0.19
60 0.10 -0.43 0.32 0.04 0.63 0.78 0.64 0.58 0.34 0.33

19
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Figure 1: Real exchange rates (2010 = 100)
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Figure 2: Mean Squared Forecast Errors
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Notes: Each line represents the ratio of MSFE from a given method to MSFE from the
random walk, where values below unity indicate better accuracy of point forecasts. The
straight, dashed and dotted lines stand for AR, HL3 and HL5, respectively. The forecast
horizon is expressed in months.
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Figure 3: Theoretical Mean Squared Forecast Errors
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Notes: Each line represents the ratio of MSFE from a given method to MSFE from the
random walk, where values below unity indicate better accuracy of point forecasts. The
straight, dashed and dotted lines stand for AR, HL3 and HL5, respectively. The forecast
horizon is expressed in months.
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