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N a t i o n a l  B a n k  o f  P o l a n d2

Abstract

We discuss the empirical importance of long term cyclical effects in the

volatility of financial returns. Following C̆iz̆ek and Spokoiny (2009), Amado and

Teräsvirta (2012) and others, we consider a general conditionally heteroscedastic

process with stationarity property distorted by a deterministic function that

governs the possible variability in time of unconditional variance. The function

proposed in this paper can be interpreted as a finite Fourier approximation of an

Almost Periodic (AP) function as defined by Corduneanu (1989). The resulting

model has a particular form of a GARCH process with time varying parameters,

intensively discussed in the recent literature.

In the empirical analyses we apply a generalisation of the Bayesian AR(1)-t-

GARCH(1,1) model for daily returns of S&P500, covering the period of sixty

years of US postwar economy, including the recently observed global financial

crisis. The results of a formal Bayesian model comparison clearly indicate the

existence of significant long term cyclical patterns in volatility with a strongly

supported periodic component corresponding to a 14 year cycle. This may be

interpreted as empirical evidence in favour of a linkage between the business cycle

in the US economy and long term changes in the volatility of the basic stock

market index.

Keywords: Periodically correlated stochastic processes, GARCH models, Bayesian

inference, volatility, unconditional variance

JEL classification: C58, C11, G10
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1 Introduction

Starting from seminal works by Clark (1973), Engle (1982) and Bollerslev (1986)

stochastic processes used to describe observed properties of the volatility of financial

time series have been tailored to identify short term features. In particular, the

resurgence of stochastic volatility (SV) models in the 90’s relied on the assumption

that there exists a stochastic factor independent of the past of the process, which

influences volatility in the short term. The resulting literature concerning GARCH

and SV models, its properties and practical importance is enormous, however empirical

analyses of the dynamic behaviour of the volatility in the long term has not been fully

explored so far.

Recently, some attempts to model long term features of volatility have been made.

Since empirical analyses of long time series of financial returns clearly indicated that

parameters of volatility models may vary over time, it is obvious that models applied so

far may not capture properties of volatility which are important in the long term. At the

beginning of the 90’s the GARCH-type models became a very popular tool of volatility

modelling. But parallelly some problems were identified with their applications to

long time series of financial returns. For example, Lamoreux and Lastrapes (1990)

and Engle and Mustafa (1992) suggested that parameters of GARCH-type processes

are very strongly identified , because while in econometric applications their estimates

are statistically highly significant, they are not stable over time. Consequently, the

constancy of parameters initially imposed in GARCH-type processes was subject to

criticism that prompted new studies concerning generalisations. In particular Mikosh

and Stărică (2004) indicate that the IGARCH effect is often spuriously supported

by data, because in the case of long time series variability of parameters is natural.

Hence the regular GARCH(1,1) structure is unable to capture nonlinearity and

possible complex stochastic properties of the observed process. Teräsvirta (2009)

points out a more formal motivation in favour of time variability of parameters in a

parametric GARCH scheme, suggesting that constancy of parameters can be a testable

restriction and if it is rejected, the model should be generalised. Several approaches

3
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have been proposed imposing time variability of parameters in volatility models. We

see two basic fundamental approaches applied in this respect, the first one relates

to variability governed by a random process, and the second relies on deterministic

framework. Within the confines of the first approach, Hamilton and Susmel (1994)

conducted research on the empirical importance of the assumption that stock returns

are characterised by different ARCH processes at different points in time, with the shifts

between processes mediated by a Markov chain. This straightforward approach opened

new topics in financial econometrics based on the application of Markov switching

mechanisms in volatility modelling. A possible variability of parameters described

by a deterministic function was also subject to analysis. Teräsvirta (2009) modified

the smooth transition GARCH model by imposing a transition function of the form

that guarantees variability of parameters for a process observed in finite time interval.

The transition function depends on the length of the observed time series. C̆iz̆ek

and Spokoiny (2009) present a review of literature concluding that relaxing time

homogeneity of the process is a promising approach but causes serious problems with

proper estimation methods. For instance, when some or all model parameters will vary

over time, a more subtle treatment of testing structural breaks in financial returns

may be obtained; see Fan and Zhang (1999), Cai et al. (2000), Fan et al. (2003). An

approach to the specification of time varying GARCH models was developed in the field

of nonparametric statistics. Under very general conditions concerning the regularity

of parameters treated as functions of time, nonparametric methods of estimation were

proposed; see Härdle et al. (2003), Mercurio and Spokoiny (2004), Spokoiny and Chen

(2007) and C̆iz̆ek and Spokoiny (2009).

The main purpose of this paper is to propose a simple generalisation of the GARCH

model which would enable to model long term features of volatility. Our construct is

strictly related to the literature studying the properties of GARCH processes with time

varying parameters and is based on parametric approach; see Teräsvirta (2009), Amado

and Teräsvirta (2012). The variability of unconditional moments is governed by a class

of Almost Periodic (AP) functions, proposed by Corduneanu (1989) as a generalisation

of the class of periodic functions. Since in our approach the unconditional second

4

moment exhibits almost periodic variability, the process can be also interpreted as a

second order Almost Periodically Correlated (APC) stochastic process, discussed from

the theoretical point of view by Hurd and Miamee (2007). During the last five decades

the APC class of processes was broadly applied in telecommunication (Gardner (1986),

Napolitano and Spooner (2001)), climatology (Bloomfield et al. (1994)) and many other

fields. For an exhaustive review of possible applications see Gardner et al. (2006).

We make a formal statistical inference, from the Bayesian viewpoint, about the

cyclicality of volatility changes and present evidence in favour of the empirical

importance of such an effect. On the basis of very intuitive explanation of almost

periodicity, we provide an economic interpretation of time variability of unconditional

moments supported by data. The illustration is conducted on the basis of daily returns

of the S&P500 index covering the period from 18 January 1950 till 7 February 2012.

2 A simple nonstationary process obtained from the

GARCH(1,1) model

We start from a general definition of a conditionally heteroscedastic model which nests

many GARCH-type volatility models developed during more than the last four decades

in the field of financial econometrics.

Definition 1. Discrete, real valued, stochastic process {ξt, t ∈ Z} is called

conditionally heteroscedastic if:

ξt =
√

ht(ω, Ψt−1)zt, zt ∼ iid,

where ht(ω, Ψt−1) constitutes volatility equation, defined as a parametric function of

the information set Ψt−1 = (. . . , ξt−2, ξt−1), i.e. the history of the process {ξt, t ∈ Z},

and parameters ω. Random variables zt are identically and independently distributed.

Any conditionally heteroskedastic GARCH-type model, defined in the literature,

starting from the ARCH(p) model proposed by Engle (1982) and the GARCH(p,q),

proposed by Bollerslev (1986), can be obtained by imposing some particular functional
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form of ht(ω, Ψt−1).

For further analysis let us consider the discrete and real valued stochastic process

{εt, t ∈ Z} defined as follows:

εt =
√

g(t, γ)ξt, (1)

where {ξt, t ∈ Z} is defined by Definition 1, and g(., γ) is a positive real valued

function of time domain Z, parameterised by γ. The following theorem presents obvious

necessary and sufficient conditions of moment existence for the process {εt, t ∈ Z}.

The form of the process {εt, t ∈ Z} is related to the general specification considered

by Amado and Teräsvirta (2012). The aim of our study is a proper specification of

function g, so that it has an economic interpretation and is empirically important.

Theorem 1. For a process {εt, t ∈ Z} in (1), where {ξt, t ∈ Z} is given by Definition

1 we have the following equivalences:

1. For each n ∈ N , E(εn
t ) exists and E(εn

t ) = g(t, γ)
n
2 E(ξn

t ) if and only if E(ξn
t )

exists

2. For each n ∈ N , E(εn
t |Ψt−1) exists and E(εn

t |Ψt−1) = g(t, γ)
n
2 ht(θ, Ψt−1)

n
2 E(zn

t )

if and only if E(zn
t ) exists.

As an example of the process in Definition 1 let us consider the seminal Generalised

Autoregressive Conditional Heteroskedastic (GARCH) process, initially defined by

Bollerslev (1986). Formally Bollerslev (1986) defined GARCH(p,q) process for any

natural p and q by defining lag of squared residuals and conditional variance applied in

the volatility equation. According to Engle (1985) who stated that the GARCH(1,1)

is the leading generic model for almost all asset classes of returns [...] it is quite robust

and does most of the work in almost all cases, we focus our attention on the case with

p = 1 and q = 1. In the definition of GARCH(1,1) process we follow Bauwens, Lubrano

and Richard (1999) setting.

Definition 2. A discrete, real valued, stochastic process {ξt, t ∈ Z} is called

GARCH(1,1) if:

ξt =
√

htzt,

6

where

ht = α0 + α1ξ
2
t−1 + β1ht−1,

for α0 ≥ 0, α1 > 0, β1 > 0. Random variables zt are identically and independently

distributed in such a way, that:

1. E(zt) = 0

2. E(z2
t ) = 1

3. E(z3
t ) = 0

4. E(z4
t ) = λ > 0.

When analysing stochastic properties of the process in Definition 2, it is crucial to

pay attention on the restriction α1 + β1 < 1. It ensures moment existence up to the

second order and its stability over time and, consequently, covariance stationarity of the

process. The GARCH(1,1) process with α1 + β1 = 1 is called IGARCH. This case still

represents the process stationary in the strict sense, but covariance stationarity is no

longer fulfilled. Bauwens, Lubrano and Richard (1999) listed the following properties

of the GARCH(1,1) process:

Theorem 2. If the process {ξt, t ∈ Z} follows Definition 2, then:

1. E(ξt|Ψt−1) = 0

2. V (ξt) = E(ξ2
t |Ψt−1) = ht

3. E(ξ3
t |Ψt−1) = 0

4. E(ξ4
t |Ψt−1) = λh2

t

5. K(ξ4
t |Ψt−1) = λ

6. E(ξt) = 0

7. E(ξ2
t ) =

α0

1 − α1 − β1
if additionally α1 + β1 < 1

8. E(ξ3
t ) = 0

7
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9. E(ξ4
t ) = λα2

0

1 + α1 + β1

(1 − λα2
1 − β2

1 − 2α1β1)(1 − α1 − β1)
if additionally α1+β1 < 1 and

λα2
1 + β2

1 + 2α1λ < 1

10. K(ξt) = λ
(1 − α1 − β1)(1 + α1 + β1)

1 − λα2
1 − β2

1 − 2α1β1

11. Corr(ξ2
t , ξ2

t−1) =
α1(1 − β2

1 − α1β1)
1 − β2

1 − 2α1β1
if additionally α1 + β1 < 1

12. Corr(ξ2
t , ξ2

t−k) = (α1 + β1)Corr(ξ2
t , ξ2

t−k−1) = (α1 + β1)k−1 α1(1 − β2
1 − α1β1)

1 − β2
1 − 2α1β1

if

additionally α1 + β1 < 1,

where K(ξ) denotes kurtosis for a random variable ξ and Corr(ξ1, ξ2) denotes

correlation between ξ1 and ξ2.

According to Theorem 2, given restriction α1 +β1 < 1, process {ξt, t ∈ Z} is covariance

stationary with unconditional zero mean and finite unconditional variance V (ξt) =

E(ξ2
t ) =

α0

1 − α1 − β1
. Also, autocovariance function for any nonzero lag is equal to

zero. However for squares of the process, again if α1 +β1 < 1, autocorrelation function

is not constant and decays at exponential rate as a function of lag. Now let consider the

process {εt, t ∈ Z} defined by (1), generated by the GARCH(1,1) process {ξt, t ∈ Z}.

Automatically from Theorem 1 we obtain the following properties:

Theorem 3. If the process {εt, t ∈ Z} is defined by equation (1) and {ξt, t ∈ Z} in

(1) follows Definition 2, then:

E(εt|Ψt−1) = 0

E(ε2
t |Ψt−1) = g(t, γ)ht

E(ε3
t |Ψt−1) = 0

E(ε4
t |Ψt−1) = λg(t, γ)2h2

t

K(ε4
t |Ψt−1) = λ

E(εt) = 0

V (εt) = E(ε2
t ) = g(t, γ)

α0

1 − α1 − β1
, if additionally α1 + β1 < 1

E(ε3
t ) = 0

8

E(ε4
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Corr(ε2
t , ε

2
t−1) = Corr(ξ2

t , ξ2
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Corr(ε2
t , ε

2
t−k) = Corr(ξ2

t , ξ2
t−k) if additionally α1 + β1 < 1.

It is clear from Theorem 3, that process {εt, t ∈ Z} is nonstationary in the strict

sense and also covariance nonstationary. Function g(f(., γ) assures variability of

unconditional moments, especially the unconditional variance given by formula 7 in

Theorem 3. Also variability over time of conditional variance of yt is decomposed

into GARCH(1,1) effect and deterministic component, that changes dispersion of the

conditional distribution according to the form of function g. From the definition of

process {zt, t ∈ Z} we keep the first and the third moment, and also kurtosis of

εt, unchanged. Consequently our construct generates a nonstationary process with

time-varying unconditional second order moments and with an additional source of

variability of the conditional variance.

Another interesting feature of {εt, t ∈ Z} can be observed if we rewrite the equation

for conditional variance in GARCH-type form. If the process {εt, t ∈ Z} is defined by

equation (1) and {ξt, t ∈ Z} in (1) follows Definition 2, we have:

E(ε2
t |Ψt−1) = g(t, γ)ht = α0,t + α1,tξ

2
t−1 + β1,tht−1, (2)

where α0,t = g(t, γ)α0, α1,t = g(t, γ)α1 and β1,t = g(t, γ)β1. Hence, the process {εt, t ∈

Z} can be also interpreted as a GARCH(1,1) model with time varying parameters.

3 A model for periodic volatility

The main purpose of the paper is a proper definition of function g in (1), that would

enable the testing the variability of parameters in (2) but also provide an economic

interpretation of such an effect.The vast literature concerning time-varying GARCH

models does not seem to explore this aspect in detail, focusing only on the statistical
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properties of estimation methods, given very general assumptions about the variability

of parameters.

Some attempts to interpret time heterogeneity of processes describing volatility have

been made. One of them was adopted by Hamilton (1989). In this seminal paper formal

statistical representation of the old idea that expansion and contraction constitute two

distinct economic phases was considered. Hamilton proposed to model real output

growth by two autoregressions, depending on whether the economy is expanding or

contracting. Possible changes between those autoregressions were governed by a Markov

chain. The main contribution of Hamilton (1989) was a very intuitive economic

interpretation of a purely random construct as a factor governing changes between

states of different intensity of economic activity. This idea was easily instilled in

modelling financial time series, where Markov switching ARCH and GARCH models

were specifically developed for volatility modelling; see Hamilton and Susmel (1994),

Susmel (2000), Haas et al. (2004), Li and Lin (2004) and many others. Just like in the

case of the business cycle, Markov switching volatility models are able to distinguish

phases of low and high volatility, or - in the case of many regimes - many different

levels of risk intensity. However, as concluded by Langa and Rahbek (2009), in spite of

the fact that Markov switching volatility models have recently received much interest

in applications, a sufficiently complete theory for these models is still missing. Some

theoretical aspects concerning properties of forecasts were presented; see for example

Amendola and Niglio (2004). Yet, in Markov switching conditionally heteroscedastic

models basic conditions that would guarantee stationarity are still unknown.

Another disadvantage of Hamilton’s approach is that different phases of intensity

of volatility change abruptly, according to a random process in time domain. The

resulting path of the volatility process has discontinuities at points where a change

of regime was observed. This leaves the application of the whole Hamilton’s idea in

volatility modelling with doubts. Analogously to modelling economic activity of the

real sector, the volatility of financial time series also seems to have phases of expansion

and contraction in the long term. An analysis of financial returns in the span of

decades shows that changes between states are much closer to continuous rather than

10

discrete. Since those phases alternate in cases of boom and bust on the market, on a

large scale volatility should also exhibit cyclical behaviour. In order to test for such an

effect, a stochastic process with an approximately periodic structure of unconditional

moments should be considered. For a process {εt, t ∈ Z} defined by equation (1),

where {ξt, t ∈ Z} in (1) follows Definition 2, it can easily be done on the basis of

an appropriately defined function g(., γ), which describes the variability of moments.

In general, we follow the idea of generalisation of periodicity of real valued functions

proposed by Corduneanu (1989).

Definition 3. A real-valued function f : Z −→ R of an integer variable is called almost

periodic (AP in short), if for any ε > 0 there exists an integer Lε > 0, such that among

any Lε consecutive integers, there is an integer pε with the property

sup
t∈Z

|f(t + pε) − f(t)| < ε.

Any periodic function is also almost periodic. Conditions from Definition 3 constitute

a class of almost periodically correlated (APC) stochastic processes as a generalisation

of periodically correlated (PC) stochastic processes. In the case of APC processes,

an almost periodic function, and in the case of PC processes, a periodic function,

determines the cyclical variability of conditional and unconditional moments. Therefore

PC stochastic processes are also called cyclostationary. During the last five decades

the APC class was broadly applied in telecommunication (Gardner (1986)), Napolitano

and Spooner (2001)), climatology (Bloomfield et al. (1994)) and many other fields. For

exhaustive review of possible applications see Gardner et al. (2006).

The main properties of the APC class was presented by Corduneanu (1989). In

particular, any almost periodic function from Definition 3 has its unique Fourier

expansion of the form:

f(t) =
∞∑
i=1

(gsi sin(hit) + gci cos(hit)) , (3)

with the series of coefficients (gsi)∞i=1, (gci)∞i=1 and (hi)∞i=1 that express amplitude and
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frequency of individual cyclical component in (3).

For further research concerning cyclical behavior of volatility, we consider the following

function g(., γ) in (1):

g(t, γ) = ef(t,γ), (4)

where

f(t, γ) =
F∑

i=1

(γsi sin(φit) + γci cos(φit)) , (5)

with γ = (γs1, ..., γsF , γc1, ..., γcF , φ1, ..., φF ). Function f(., γ) is defined as a sum of

periodic functions, with parameters φi determining frequencies, while γsi and γci control

amplitudes. Since we limit the infinite series to its finite substitute, formula (5) yields

finite approximation of order F of the almost periodic function, that governs moment

variability of the process.

The case γsi = 0 and γci = 0 for all i = 1, ..., F , in (5), determines constant function

g(., γ) ≡ 1. According to Hurd and Miamee (2007), the process {εt, t ∈ Z} defined by

equation (1), where {ξt, t ∈ Z} in (1) follows Definition 2 is also Almost Periodically

Correlated. According to the properties shown in the previous section, the function

g(., γ) in (5) enables to model the existence of cyclicality in the conditional and

unconditional variance of the process. This property will be subject to formal statistical

inference in the empirical part of the paper.

4 Basic model framework and posterior inference

We model logarithmic returns on the financial instrument with price xt at time t.

Suppose, we observe time series of logarithmic returns given by the form:

yt = 100 ln
xt

xt−1
, t = −1, 0, 1, . . . , T.

Denote by y = (y1, . . . , yT ) the vector of modelled observations. Daily returns y−1 and

y0 are used as initial values.

Just like many authors, in order to model the dynamics of financial returns we assume

an AR(1) process with nonstationary disturbances of the following form; see for example

12

Bauwens, Lubrano and Richard (1999) for univariate case or Osiewalski and Pipień

(2004) for multivariate setting:

yt = µt + εt, t = 1, . . . , T, (6)

where µt = δ + ρ(yt−1 − δ) and εt is a process defined by (3), i.e.:

εt =
√

f(t, γ)ξt, t = 1, . . . , T,

with the GARCH(1,1) process ξt from Definition 2:

ξt =
√

htzt, ht = α0 + α1ξ
2
t−1 + β1ht−1 t = 1, . . . , T,

and function f given by (3). We assume, that random variables zt in Definition 2 are

independent and follow Student-t distribution with zero mean, unit variance and ν > 4

degrees of freedom. In the literature, conditional Student-t distribution is applied in

GARCH models, with standard restriction ν > 2 imposed, that assures existence of

conditional variance. However, in order to keep all conditions in definition 2 fulfilled,

we have to assume, that ν > 4. Given this stronger restriction E(z4
t ) = λ = 3

ν − 2
ν − 4

.

The density of zt is given by the formula:

fs(zt|0, 1, ν) =
Γ(ν+1

2 )

Γ(ν
2 )

√
π(ν − 2)

[
1 +

z2
t

ν − 2

]− ν+1
2

,

where fs(zt|m, s2, ν) denotes the density of the Student-t distribution with mean m,

variance s2 and ν > 4 degrees o freedom.

The conditional distributions of ξt and εt are Student-t distributions with zero mean,

ν > 4 degrees o freedom and variances ht and g(t, γ)ht respectively:

p(ξt|Ψt−1) = fs(ξt|0, ht, ν) =
Γ(ν+1

2 )

Γ(ν
2 )

√
π(ν − 2)ht

[
1 +

ξ2
t

(ν − 2)ht

]− ν+1
2

,

p(εt|Ψt−1) = fs(εt|0, g(t, γ)ht, ν) =
Γ(ν+1

2 )

Γ(ν
2 )

√
π(ν − 2)g(t, γ)ht

[
1 +

ε2
t

(ν − 2)g(t, γ)ht

]− ν+1
2

,
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4

where Ψ0 = (h0, y−1, y0), and Ψt−1 = (Ψ0, y1, . . . , tt−1) = (Ψ0, y
(t−1)). Consequently,

the conditional distribution of daily return in (6) is Student-t distribution with mean

µt = δ + ρ(yt−1 − δ), variance g(t, γ)ht and ν > 4 degrees of freedom:

p(yt|Ψt−1) = fs(yt|µt, g(t, γ)ht, ν) =
Γ(ν+1

2 )

Γ(ν
2 )

√
π(ν − 2)g(t, γ)ht

[
1 +

(yt − µt)2

(ν − 2)g(t, γ)ht

]− ν+1
2

.

(7)

Let θ denote the vector, that contains all model parameters. We assume, that

θ = (µ‘, σ2‘, ν, γ‘)‘ where vectors µ = (δ, ρ)‘, σ2 = (α0, α1, β1)‘ and γ =

(γs1, ..., γsF , γc1, ..., γcF , φ1, ..., φF ) collect parameters of the conditional mean of yt,

the conditional variance of ε and function g respectively. According to (7), we define

the sampling model for a vector y as follows:

p(y|θ) =
T∏

t=1

p(yt|Ψt−1) =
T∏

t=1

fs(yt|µt, g(t, γ)ht, ν).

The Bayesian model, i.e. the joint distribution of observables and parameters, requires

specification of the prior distribution p(θ). We assume the following prior independence:

p(y, θ) = p(y|θ)p(θ) = p(y|θ)p(δ)p(ρ)p(α0)p(α1, β1)p(ν)p(γ),

where p(δ) is normal distribution, p(ρ) is uniform over (-1,1), p(α0) is exponential

distribution with unit mean, p(α1, β1) is bivariate uniform distribution on the unit

square [0, 1]2, p(ν) is exponential distribution with mean 10 truncated at ν > 4,

p(γ) is multivariate normal, p(φ) is multivariate uniform over the set generated by

identification restrictions that eliminates label-switching effect in (5). We assume,

that L < φ1 < . . . < φF < U , for appropriately chosen L and U , which eliminates

frequencies of length shorter than a quarter and longer than the time interval covering

the observed time series.
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5 Empirical analysis

In this section we present the empirical analysis and make formal Bayesian inference

about the empirical importance of the cyclical component in the volatility of daily

returns of one of the most important US Stock Market indices. Our dataset consists

of T = 15615 observations of daily logarithmic returns of the S&P500 index, covering

the period starting from the postwar era of the US economy till the beginning of 2012.

The time series starts on 18 January 1950 and ends on 7 February 2012.

In Table 1 we present results of Bayesian model comparison, conducted for four

competing specifications. Initially we consider conditionally a Student-t AR(1)-

GARCH(1,1) process (denoted by M0). We also add APC(F)-GARCH(1,1) models

(denoted by MF ) for F=1,2 and 3 frequencies describing the variability of unconditional

moments according to (5). In Table 1 we show decimal logarithms of marginal data

densities, approximated by the Newton and Raftery (1994) estimator and decimal

logarithms of the Bayes factor in favour of the best model. The dataset strongly

supports time variability of parameters in GARCH(1,1) specification and consequently

nonstationarity in the strict sense. The original GARCH(1,1) model receives little data

support, as the marginal data density value is more than three orders of magnitude

lower than in the case of the worst APC model, i.e. in the case when unconditional

variance is described by a single cyclical component. The strongest data support goes

to APC(2)-GARCH(1,1) model, with the marginal data density value greater than in

the case of M0 by more than six orders of magnitude. Among competing specifications

with time-varying parameters the data substantially support the case where variability

of unconditional moments can be described by an Almost Periodic function of the form

(4) with different frequencies. The case with frequencies is also supported, however it

does not receive as great data support as the APC(2)-GARCH(1,1) case.

Table 2 presents results of Bayesian estimation of parameters in AR(1)-GARCH(1,1)

and APC(2)-GARCH(1,1) models (M0 and M2 respectively). We report the following

posterior summaries: the mean (E(.|y)), the modal value (Mod(.|y)) and the standard

deviation (D(.|y)) of the marginal distributions of parameters in both models. Posterior
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p(y|θ) =
T∏

t=1

p(yt|Ψt−1) =
T∏

t=1

fs(yt|µt, g(t, γ)ht, ν).

The Bayesian model, i.e. the joint distribution of observables and parameters, requires

specification of the prior distribution p(θ). We assume the following prior independence:

p(y, θ) = p(y|θ)p(θ) = p(y|θ)p(δ)p(ρ)p(α0)p(α1, β1)p(ν)p(γ),

where p(δ) is normal distribution, p(ρ) is uniform over (-1,1), p(α0) is exponential

distribution with unit mean, p(α1, β1) is bivariate uniform distribution on the unit

square [0, 1]2, p(ν) is exponential distribution with mean 10 truncated at ν > 4,

p(γ) is multivariate normal, p(φ) is multivariate uniform over the set generated by

identification restrictions that eliminates label-switching effect in (5). We assume,

that L < φ1 < . . . < φF < U , for appropriately chosen L and U , which eliminates

frequencies of length shorter than a quarter and longer than the time interval covering

the observed time series.
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5 Empirical analysis

In this section we present the empirical analysis and make formal Bayesian inference

about the empirical importance of the cyclical component in the volatility of daily

returns of one of the most important US Stock Market indices. Our dataset consists

of T = 15615 observations of daily logarithmic returns of the S&P500 index, covering

the period starting from the postwar era of the US economy till the beginning of 2012.

The time series starts on 18 January 1950 and ends on 7 February 2012.

In Table 1 we present results of Bayesian model comparison, conducted for four

competing specifications. Initially we consider conditionally a Student-t AR(1)-

GARCH(1,1) process (denoted by M0). We also add APC(F)-GARCH(1,1) models

(denoted by MF ) for F=1,2 and 3 frequencies describing the variability of unconditional

moments according to (5). In Table 1 we show decimal logarithms of marginal data

densities, approximated by the Newton and Raftery (1994) estimator and decimal

logarithms of the Bayes factor in favour of the best model. The dataset strongly

supports time variability of parameters in GARCH(1,1) specification and consequently

nonstationarity in the strict sense. The original GARCH(1,1) model receives little data

support, as the marginal data density value is more than three orders of magnitude

lower than in the case of the worst APC model, i.e. in the case when unconditional

variance is described by a single cyclical component. The strongest data support goes

to APC(2)-GARCH(1,1) model, with the marginal data density value greater than in

the case of M0 by more than six orders of magnitude. Among competing specifications

with time-varying parameters the data substantially support the case where variability

of unconditional moments can be described by an Almost Periodic function of the form

(4) with different frequencies. The case with frequencies is also supported, however it

does not receive as great data support as the APC(2)-GARCH(1,1) case.

Table 2 presents results of Bayesian estimation of parameters in AR(1)-GARCH(1,1)

and APC(2)-GARCH(1,1) models (M0 and M2 respectively). We report the following

posterior summaries: the mean (E(.|y)), the modal value (Mod(.|y)) and the standard

deviation (D(.|y)) of the marginal distributions of parameters in both models. Posterior
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inference about common parameters (degrees of freedom ν and AR-GARCH parameters

i.e subvectors µ,σ2 in θ) remains almost the same in both models, as posterior

summaries change only slightly after incorporating a deterministic function f into the

volatility equation. The data support strong persistence of conditional variance, as

the sum α1 + β1 is located close to unity in case of model M0. The deterministic

component in the volatility equation of model M2 is empirically important, but it does

not change posterior location of α1 + β1 qualitatively. Also the posterior inference

about tails of the conditional distribution of returns is almost the same in both models,

leading to the conclusion that conditional normality is rejected even in the case of

nonstationarity of the error term. On the other hand, moment existence as imposed

according to Definition 2, is decisively supported, because posterior standard deviation

makes a less than 4 degrees of freedom parameter improbable in view of the data.

Generally, marginal posterior distributions of common parameters are very regular,

symmetric and qualitatively the same in the case of both models. In contrast, the

posterior distributions of model specific parameters in the APC(2)-GARCH(1,1) model

are irregular, as expectation and modal value in those cases may be located in different

areas of the parameter space. We see relative strong dispersion of parameters controlling

amplitudes in (5), namely γs1, γs2, γc1 and γc2. For frequency parameters φ1 and φ2 a

more regular posterior distribution was obtained.

Figure 1 presents results of posterior inference about the length of the period pi of

a single cyclical component in (3) induced by posterior distribution of the frequency

parameter φi. We show histograms of the length in years, according to the formula:

pi =
2π

φi251
,

assuming 251 trading days per year. We compare histograms between the best model

M2, where f is defined as a sum of two different cyclical components, and slightly worse

(but still enjoying strong data support) M1 model, with f defined by a single cyclical

component. In the case of the M2 model we see that one component, of approximately

14 years, is very precisely identified, as the majority of the probability mass of the

16

posterior distribution of p2 is located between the values of 13 and 15 years with the

mode and median equal approximately 14 years. However, the posterior inference

about the second cyclical component might be problematic due to a rather irregular

and dispersed posterior distribution. The posterior median for parameter p1 indicates

the existence of a much longer cycle, with the length greater than 30 years. However,

the probability mass of the posterior distribution is very dispersed, leaving considerably

greater uncertainty about the length of this longer cycle in unconditional variance.

In contrast to model M2, we obtain a very irregular posterior distribution of the length

of the cycle in model M1. According to the plot of the histogram of p1 we see how

problematic the inference about the possible cyclical behavior on unconditional variance

may be, given APC(1)-GARCH(1,1) specification. Since the marginal posterior

distribution of p1 is bimodal, any inference based on posterior summaries leads to

wrong conclusions. Posterior expectation is located in areas of domain completely

precluded in view of the data. We see, that the mass of posterior distribution is

located either around the value of p1 = 14 and in the regions, where p1 > 35. Formally

in model M1 the data support the length of the cycle equal approximately to 14 years,

as the posterior median is slightly greater than 14.17. But taking into account regions

identified by both local extremes we see that inference about the length of the cycle in

unconditional variance and the qualitative profile of the cyclical effect is rather similar

in both models M1 and M2. Since in model M1 there is only one cyclical component in

function f , the irregular shape of posterior distribution of p1 can be explained as clear

data support for two different frequencies in the equation for unconditional variance,

just like in model M2.

The effect of cyclicality in unconditional variance of the error term in (6) and its

empirical importance is depicted in Figure 2. We present the plot with absolute returns

and posterior means of unconditional variance calculated for each data point, with

bounds covering the range of two posterior standard deviations. We also plotted the

posterior mean of the unconditional variance in model M0, as a constant function

at E(V (εt)|y, M0) = 0.9889. Again, the data clearly support the variability of

unconditional variance. The constancy of parameters is precluded since the changes of
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in model M1 the data support the length of the cycle equal approximately to 14 years,

as the posterior median is slightly greater than 14.17. But taking into account regions

identified by both local extremes we see that inference about the length of the cycle in

unconditional variance and the qualitative profile of the cyclical effect is rather similar

in both models M1 and M2. Since in model M1 there is only one cyclical component in

function f , the irregular shape of posterior distribution of p1 can be explained as clear

data support for two different frequencies in the equation for unconditional variance,

just like in model M2.

The effect of cyclicality in unconditional variance of the error term in (6) and its

empirical importance is depicted in Figure 2. We present the plot with absolute returns
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bounds covering the range of two posterior standard deviations. We also plotted the
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unconditional variance. The constancy of parameters is precluded since the changes of
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variance in time are characterised by a considerably greater amplitude in the case of

the M2 model. The plots of E(V (εt)|y,M1)are characterised by fluctuations, strongly

associated with long term changes in volatility in line with boom and bust periods on

the US Stock Exchange. Another interesting aspect of the posterior inference about

unconditional variance is connected with changes in the spread of posterior distributions

of V (εt). We see that it strongly declines in periods characterised by low volatility, but

it becomes much greater in the case of periods of intensified volatility. This leaves much

greater uncertainty about the possible deterministic profile of the cyclical component

in the volatility equation in periods associated with crises when abnormal volatility is

observed.

The main advantage of deterministic construct (3) is that the variability of

unconditional variance in such a case can be easily fitted with economic interpretation.

By definition, APC(F)-GARCH(1,1) processes are able to capture the long term cyclical

behaviour of volatility. If some properties of the long term cycles in volatility are

identified, one may ask the question whether those cycles are linked with changes in

the economic activity of the real sector. Since the theory assumes a clear linkage

between the real sector and the financial market, some crises exhibited by abnormal

volatility should be associated with the decline of business activity. In Figure 3 we

plotted again the results of posterior inference about unconditional variance in the

best model (M2) and additionally drew a plot representing time intervals attributed to

recessions, as marked by NBER. Starting from the 50’s, the NBER marked recession

in the US economy on 10 occasions. For the postwar period the longest recession is

linked with the global financial crisis which started in 2008. Also recessions in the mid

70’s and at the beginning of the 80’s were serious. In the vast literature concerning the

empirical properties of the US business cycle, an interesting analysis was conducted

by Chauvet and Potter (2001). According to the Bayesian analysis presented in that

paper, the posterior expectation of time to wait until the next recession (if we are

in recession currently) is equal approximately to 14 years. This fully corresponds to

our posterior inference about frequencies φi and length in years pi discussed above.

However, according to Figure 3 we see how difficult it is to find a linkage between
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long term volatility cycles and the business cycle. Only in the case of the recession

in the mid 70’s and during the dotcom crisis at the beginning of the 21st century, a

visible increase in unconditional variance accompanies economic slowdown. Also some

short recessions in the 50’s coexist with a long-term but relatively small increase in

unconditional volatility.

6 Conclusion

The main purpose of this paper was to investigate properties of a simple generalisation

of the GARCH model that would enable to model long term features of volatility.

Variability of unconditional moments was governed by a class of Almost Periodic

(AP) functions, proposed by Corduneanu (1989). Since in our approach the

unconditional second moment exhibits an almost periodic variability, the process can

also be interpreted as a second order Almost Periodically Correlated (APC) stochastic

processes; see Hurd and Miamee (2007).

We make a formal statistical inference, from the Bayesian viewpoint, about the

cyclicality of volatility changes and present evidence in favour of the empirical

importance of such an effect. The illustration was conducted on the basis of daily

returns of the S&P500 index covering the period from the 18 January 1950 till the 7

February 2012.

According to Bayesian model comparison, the cyclical behavior of unconditional

variance was strongly supported, making the AR(1)-GARCH(1,1) specification with

constant parameters improbable. Among competing specifications, the greatest data

support was received by the model where the time variability of the unconditional

variance is described by a combination of two different cycles, with periods equal about

14 and 30 years. Those cycles were attributed to relatively different amplitudes, making

the dynamic pattern of the unconditional volatility rather complex. Some evidence was

obtained in favour of the linkage between the long term cyclical component in volatility

and the business cycle for the postwar US economy.
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Figure 1: Comparison between the M1 and M2 models of posterior inference about the
length of the period (in years) pi induced by frequency parameters φi according to the

transformation pi =
2π

251φi
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Figure 1: Comparison between the M1 and M2 models of posterior inference about the
length of the period (in years) pi induced by frequency parameters φi according to the

transformation pi =
2π
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Figure 2: Posterior inference about unconditional variance of APC(2)-GARCH(1,1) for
each data point
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Figure 3: Coexistence of changes in unconditional variance and recession periods for
postwar US economy marked by the National Bureau of Economic Research, NBER
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