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1 Introduction

This paper presents a new, simple and efficient way of pricing products whose values depend

on credit correlation between the counterparty and the reference entity. A prominent exam-

ple of such instruments is a credit default swap (CDS), i.e. a contract through which parties

agree to exchange the credit risk of a given issuer. In a typical CDS, the protection buyer

pays a periodic fee to the swap seller and in exchange receives compensation if the issuer

undergoes a credit event, including e.g. failure to service outstanding debt obligations, debt

restructuring or bankruptcy. Thus, it might seem straightforward that the protection buyer

profits whenever the credit standing of the reference entity worsens, however in practice, the

value of the swap will be affected also by the credit standing of the counterparty, and in

particular by how the credit of the counterparty correlates with that of the reference entity.

The case of positive dependence between the two is called “wrong-way risk”, whereby the

probability of default by the counterparty is high exactly at the time when the protection

buyer’s exposure to the counterparty – i.e. the present value of the swap – is high (one

example would be banks selling CDSs on themselves or their own sovereign reference coun-

tries). In the extreme case when the default of the reference asset coincides with the default

of the swap seller, the protection buyer would suffer considerable losses on both the under-

lying asset and the present value of the swap. Hence, to properly value a CDS contract –

or more generally any contingent claim whose value depends on credit correlation between

the counterparty and the reference entity – a model of credit correlation, or dependence, is

needed.1 This is underscored not only by the experiences of the 2008 financial crisis, and in

particular the cases of Lehman Brothers, monoline insurers and AIG, but also by the recent

regulatory trends under the heading of Basel III which stipulate that CVA risk, arising from

changes in counterparties’ credit spreads, should be identified and included in the calcula-

tion of economic capital (see also ECB, 2009 for an overview of post-crisis reflections on the

pricing of counterparty risk in credit derivatives).

The need to include counterparty risk in the valuation of contingent claims has been

well recognized in the literature. Hull and White (2001) provide what is considered today

the first consistent and market-based methodology for valuing single-name and basket credit

default swaps under counterparty risk. Their approach builds on Merton’s (1974) structural

credit risk model, whereby the creditworthiness of companies is defined by credit indices (or

equity returns) which follow correlated Wiener processes, with default triggered by the first

passage time of the firm’s credit index to the threshold level, rather than some pre-specified

time horizon as in the original formulation (cf. also Zhou, 1997). The model is calibrated

to market data, in that the default barrier is chosen so that the default probabilities in the

1In what follows we shall use the words “correlation” and “dependence” interchangeably to express asso-
ciation (not necessarily linear) between random variables.
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model are consistent with those implied from bond prices or CDS spreads. More recently,

Walker (2006), Blanchet-Scalliet and Patras (2008), Brigo and Chourdakis (2009) as well as

Buckley, Wilkens, and Chorniy (2011) have also proposed models for pricing derivatives in

the presence of correlation between the counterparty and the reference entity, while Leung

and Kwok (2005) and Brigo and Capponi (2010) derived CDS prices allowing in addition for

correlation between the protection buyer, protection seller and the reference entity.

The counterparty risk models proposed so far fall roughly into one of the two broad

strands of the literature. The first strand comprises models based on Merton’s (1974) struc-

tural approach to credit risk where – as in Hull and White (2001) – default of an obligor

is triggered when the market value of assets falls below a certain threshold level set by the

level of debt at some maturity. Perhaps the greatest virtue of the Hull-White model, as well

as other Merton-type approaches (see most recently Buckley, Wilkens, and Chorniy, 2011),

is an intuitive setup and ease of calibration. The drawback, however, is that simultaneous

default of a number of entities is jointly simulated by sampling from the multivariate nor-

mal distribution, which is well known to underestimate tail dependence (see e.g. McNeil,

Frey, and Embrechts, 2005). Although this can be circumvented by enforcing a stronger

dependence structure via a copula, the choice of a particular transformation of the distribu-

tion of the random vector would remain more or less arbitrary. Moreover, as pointed out

by Mikosch (2006), for all their mathematical attractiveness, copulas are essentially static,

suited to modeling spatial dependence, but inherently incapable of tackling complex space-

time dependence structures which are at the heart of default time correlations.

The second major strand in the literature relates to the so called reduced form, or

intensity-based, credit risk models, where default is not conditioned on the firm’s asset

values, but instead is considered a Poiosson-type event, occurring unexpectedly, according

to some intensity process (see e.g. Lando, 2004, chap. 5 for an overview of the intensity-

based approach). The general problem associated with standard reduced form models, as

observed by Yu (2007), is that default correlation is induced by the correlation of default

intensities – i.e. the default intensity of one party increases when the default of another party

occurs – and default times themselves are independent conditional on the sample paths of

default intensities (see e.g. Leung and Kwok, 2005 who price a CDS with counterparty risk

in such a framework). Unfortunately, this means that such models can only produce de-

fault correlations that are very low and of the same order as default probabilities themselves

(see e.g. Das, Duffie, Kapadia, and Saita, 2007 who show that empirically observed default

correlations cannot be accounted for merely by correlated default intensities). With such

a ceiling in place, it could prove challenging to calibrate the model to default correlations

implied from quoted prices of various financial instruments, which in turn severely limits

the scope for practical applications of such models. Several remedies have been proposed
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to this shortcoming (see e.g. Jarrow and Yu, 2001 or Gagliardini and Gouriéroux, 2003),

but in general allowing for dependent defaults has rendered the models analytically rather

challenging (see also Bielecki and Rutkowski, 2010, chap. 10, for a discussion of models with

dependent intensities).

Thus, we propose a model that strives to address both limitations discussed above: is

sufficiently flexible to yield a continuous interpolation between independence and comono-

tonicity of default times, while being intuitive and still tractable. Specifically, the model,

which extends the idea presented in Gatarek (2010), is a generalization of Gaussian factor

models and is similar in spirit to Giesecke (2003) and Elouerkhaoui (2006), but unlike the

previous approaches which were suited mainly to the pricing of basket credit derivatives, our

framework offers a general formula for the valuation of cash flows in the presence of coun-

terparty risk, with particular formulas for CDS, first-to-default swaps, default swaptions etc.

with stochastic recovery rates. Similarly to Giesecke (2003), we assume that a firm’s default is

determined by both firm-specific and systematic factors affecting all firms alike. However, we

propose to think of a systematic factor as an increasing sequence of default times which allows

preserving the martingale property. The model can accommodate any number of systematic

factors and allows different obligors to have different correlation with each factor (sector),

which is an improvement upon the Gaussian latent variable one factor model underlying the

Creditmetrics approach and Basel regulations (Gordy 2003). The factors themselves can

be chosen freely from the whole class of probability distributions on R+, allowing also for

stochastic hazard rates. The dependence structure is imposed by the minimum function, so

that – the factors being naturally interpreted as economy-wide, industry-specific, sectoral,

regional etc. – a firm can default either due to own mismanagement or an adverse systematic

shock – whichever hits it sooner.

The rest of the paper is structured as follows. Section 2 gives an overview of our framework

for modeling default dependence. Section 3 derives the key valuation formulas along with

some examples, while Section 4 concludes.

4
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2 Modeling dependent defaults

In this section we present a general framework for modeling dependence that will be used

later on for pricing contingent liabilities in the presence of counterparty risk. To set the

stage, we start with a brief overview of the standard Gaussian factor model of dependence,

then explain its deficiencies in modeling default correlation in a reduced-form framework

and finally suggest a straightforward generalization based on the minimum function. For

modeling purposes, we assume that all processes and variables are defined on a filtered

probability space (Ω,F ,P) with F modeling the information flow and P being the risk-

netrual (martingale) measure ensuring that all security prices discounted by the risk-free

interest rate process are martingales.

2.1 Gaussian factor model

Let X1, X2, ..., Xd be a family of Gaussian random variables. The most striaghtforward way

to introduce dependence among them is to assume the following representation:

Xi = yiYi +
N∑
j=1

zi,jZj, (1)

where Y1, .., Yd and Z1, ..., ZN are standard normal variables such that cov(Yi, Yk) =

cov(Zj, Zn) = cov(Yi, Zj) = 0 for i �= k and j �= n, while yi, zi,j > 0 for i = 1, 2, ..., d

and j = 1, ..., N . By analogy with the capital asset pricing model (Sharpe, 1964), variables

Yi are called idiosyncratic risk factors and describe individual behavior of entities under inves-

tigation. Variables Z1, ..., ZN are called systematic and describe N common factors driving

the behavior of the whole population or parts of it containing more than one element. The

idiosyncratic factor can be thought of as relating to firm-specific issues, as e.g. management

quality, while the systematic factors capture the common link between entities, as it may

result e.g. from operating in the same sector, selling the same type of product, etc.

A particularly interesting case is when all Xi are standard normal and there is only one

systematic factor (the so called one factor model):

Xi = yiYi + ziZ. (2)

Since var(Xi) = 1, then y2i + z2i = 1, and coefficients zi control the strength of the linear

correlation between Xi and Z, with corr(Xi, Xj) = zizj.

The simple factor-type dependence framework described above arises naturally in the

context of structural, or asset value models of credit risk inspired by Merton (1974) (see

also Schönbucher, 2001 for a review). The structural models rest on the idea that corporate

5

liabilities can be viewed as contingent claims on the assets of the firm, with default triggered

by the fall in market value of assets below some debt threshold. If it is assumed that the

firm’s assets Xi are driven by a combination of idiosyncratic and systematic factors as in

(1), then (using the fact that the sum of Gaussian variables is still Gaussian) probabilities

of default and default correlations can be estimated which in turn allows to assess portfolio

losses in a bottom-up fashion. The key assumption of the structural approach is that the

value of assets and their volatility, the debt threshold, and thus also default time, are all

based on a filtration that is observed by the market, even though in fact such information

would normally be available only to the firm’s management. O’Kane (2008) mentions two

other important defficiencies of the structural model: (i) highly simplified capital structure,

not allowing for a straightforward implementation of different levels of subordination and

different maturities of the respective liabilities; (ii) unrealistic assumption of all liabilities

being in the form of zero coupon bonds (coupon paying bonds can be viewed as compound

options and thus significantly more complex computationally).

2.2 Ordered and idiosyncratic defaults in a reduced form frame-

work

These shorcomings are to a large extent fixed in the so called reduced form credit risk models,

suggested initially by Jarrow and Turnbull (1995), where it is assumed that that the modeler,

much like the rest of the market, has only an incomplete knowledge of the firm, which seems

more realistic and is thus recommended for pricing and risk management purposes (see

also Jarrow and Protter, 2004 for a discussion of the information-based distinction of the

two approaches). Also the modeling logic is completely reversed: while in the standard

structural model the purpose was to find the probability of default conditioned on time and

the firm’s asset values, in the reduced form framework the objective is to model default time

itself, which is considered a Poiosson-type event, occurring unexpectedly, according to some

intensity process (see Lando, 2004, chap. 5 for an overview). The intensity, or hazard rate,

can be interpreted as the instantaneous default probability and is mathematically expressed

as:

λ(t) = lim
∆t→0

P(t < τ ≤ t+∆t | τ > t)

∆t
= lim

∆t→0

P(τ ≤ t+∆t)− P(τ ≤ t)

∆t(1− P(τ ≤ t))
=

1

1− F (t)

dF (t)

dt
,

(3)

where τ is a continuous random variable which measures the default time of a certain

obligor and F (t) is its distribution function. It then follows that F (t) = 1−exp
(
−
´ t
0
λ(s)ds

)

and in the particular case of a costant hazard rate we obtain the familiar exponential distri-
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bution with F (t) = 1− exp(−λt).

Note that even with the tools developed so far we can already represent two key insights of

independent and co-monotonic defaults. To see this, suppose there are d obligors (“names”)

with default times τ1, . . . , τd and consider two extreme types of economies: (i) an idiosyncratic

economy, i.e. one where default times are affected only by idiosyncratic factors; and (ii) an

ordered economy, where there are no idiosyncratic factors and there is only one systematic

factor which amounts to default times τ1, ..., τd being ordered so that τi ≤ τj whenever i ≤ j.

Denote by τfirst = min{τi : 1 ≤ i ≤ d} the first default in either economy. If default times

are completely independent, i.e. triggered by idiosyncratic factors, then

Pidio(τfirst ≥ t) =
d∏

i=1

(1− Fi(t)) = exp

(
−
ˆ t

0

d∑
i=1

λi(s)ds

)
. (4)

In contrast, when defaults are ordered

Porder(τfirst ≥ t) = 1− F1(t) = exp

(
−
ˆ t

0

λ1(s)ds

)
. (5)

Hence,
Porder(t ≤ τfirst ≤ t+ dt | τfirst > t)

Pidio(t ≤ τfirst ≤ t+ dt | τfirst > t)
=

λ1(t)∑d
i=1 λi(t)

< 1, (6)

which leads to an intuitive conclusion that the probability of multiple defaults (driven by

a systematic factor) is lower than that of single defaults. Note, however, that although

defaults in the ordered economy are less frequent, their overall impact is more severe due to

clustering. This also suggests that while counterparty risk (specifically, correlation between

the reference credit and the counterparty) would not be a serious concern in the idiosyncratic

economy, it could have a considerable impact on pricing contingent claims in the ordered

economy, as e.g. buying protection might entail taking on wrong way risk.2

Clearly, no economy is either completely idiosyncratic or completely ordered, so what we

need is a continuous interpolation between the two cases discussed above. Unfortunately,

the convenient representation (1) cannot be readily used to describe dependence in a re-

duced form framework, as it relied crucially on the fact that the sum of Gaussian variables

remained Gaussian – a property that does not in general hold for other distributions. One

way to get around this problem would be to apply a copula transformation of the risk factor

2This observation has another interesting implication. Consider a CDO made up of names {1, ..., d}.
Investors in the senior tranche would prefer the economy to be idiosyncratic – they can afford to suffer even
a few uncorrelated defaults, but they fear hitting a cluster in an ordered economy. In contrast, investors in
the equity tranche would prefer an ordered economy: they blow up irrespective of whether a single name
defaults or a whole cluster, but – like the blindfolded cat in JP Morgan’s parable – with clusters they can at
least find a way among the “mousetraps.”
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=
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< 1, (6)

which leads to an intuitive conclusion that the probability of multiple defaults (driven by

a systematic factor) is lower than that of single defaults. Note, however, that although

defaults in the ordered economy are less frequent, their overall impact is more severe due to

clustering. This also suggests that while counterparty risk (specifically, correlation between
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economy, it could have a considerable impact on pricing contingent claims in the ordered
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distributions, but such a trick would be artificial and would entail breaking the natural corre-

spondence between the described reality and suitable mathematical tools. We propose what

seems to be a more elegant solution, namely to preserve the risk factor decomposition from

(1), but use the minimum function instead of the sum. Since in the reduced form framework

default is a one-time event – i.e. once a name goes bust it can never default again – it is

intuitive to assume that default occurs whenever an obligor is hit by one of the shocks for

the first time (this is also the assumption behind the familiar Marshall-Olkin copula used by

Giesecke, 2003).

2.3 A general model of dependence

By analogy with the Gaussian factor model, let {1, . . . , d} be the set of all obligors in the

economy with default times X1, . . . , Xd driven by two sets of risk factors: idiosyncratic and

systematic. To proceed we first need to formalize the definition of a systematic factor

Definition 1. A family of random variables Zi, 1 ≤ i ≤ d, with given distributions is called

a systematic factor if and only if there exists a permutation Φ of the set {1, 2, . . . , d} such

that the sequence ZΦ(i) is increasing i.e. ZΦ(i) ≤ ZΦ(i+1) for i = 1, ..., d.

We say that factors Z and Y are independent if all pairs of random variables Zi and Yj

(i, j = 1, ..., d) in the respective families are independent. Definition (1) brings an important

change: while in (1) a systematic factor was a single random variable, from now on it will be

understood as a family of random variables which can be put in increasing order. Although

such a change may seem unintuitive at first, in fact it is the only way to allow different

obligors to have different correlation with the systematic factors, without sacrificing the

martingale property. To see this, suppose a contrario that each Xi is represented in the

following way:

Xi = min {Yi, zi,1Z1, ..., zi,NZN} , (7)

where Y1, ..., Yd and Z1, ..., ZN are independent positive random variables and zi,j are

positive constants. In line with (1), random variables Yi can be interpreted as idiosyncratic

factors and Zj as systematic risk factors, with hazard rates λ1(t), . . . , λN(t). Note, that if

zk,j < zi,j, for some i, k ∈ {1, ..., n}, j ∈ {1, ..., N}, then zi,jZj = φ(zk,jZj) for a deterministic

and increasing function φ(x) =
zi,j
zk,j

x, which guarantees that zk,jZj < zi,jZj in all possible

“states of the world” and zi,jZj can be fully predicted based on zk,jZj. This is an extreme

case of co-monotonicity, particularly unwelcome in modeling default times, since – apart

from the case of parent companies and their subsidiaries – it is in practice unintuitive to

assume that the default time of one company is deterministically followed by the default of
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zk,j < zi,j, for some i, k ∈ {1, ..., n}, j ∈ {1, ..., N}, then zi,jZj = φ(zk,jZj) for a deterministic

and increasing function φ(x) =
zi,j
zk,j

x, which guarantees that zk,jZj < zi,jZj in all possible

“states of the world” and zi,jZj can be fully predicted based on zk,jZj. This is an extreme

case of co-monotonicity, particularly unwelcome in modeling default times, since – apart

from the case of parent companies and their subsidiaries – it is in practice unintuitive to

assume that the default time of one company is deterministically followed by the default of
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another company. Brigo and Morini (2010) go even so far as to call such an assumption:

“a feature with scarce financial meaning that can lead to misleading results.” Such co-

monotonicity implies in particular that for a default indicator process defined as Ni,j(t) =

{zi,jZj>t}, Nk,j(t) ≥ Ni,j(t) and the process Nk,j(t) predicts Ni,j(t). It follows that Ni,j(t) +´ t
0
Ni,j(s)

1
zi,j

λj(s)ds is not a martingale for all i with respect to the expanded filtration

Fi,j(t) = σ(Ni,j(t), i = 1, ..., d), which in turn implies that λj(t)/zi,j are not hazard rates,

which is counter-intuitive. Therefore, the set {zi,jZi,j : 1 ≤ i ≤ d} cannot represent a

systematic factor.

Systematic factors in the sense of Definition 1 can be constructed in the following way. Let

τ1, ..., τd be a sequence of positive random variables conditionally independent upon hazard

rate processes λ1(t), ..., λd(t). Let Φ(·) be a permutation of {1, ..., d} such that τΦ(1) ≤ ... ≤
τΦ(d) (i.e. τΦ(i) is the i-th order statistic). Then the family Zi = min{τΦ(j) : Φ

−1(i) ≤ j ≤ d}
is a systematic factor. Indeed, the sequence ZΦ(i) = min{τΦ(j) : i ≤ j ≤ d} is increasing.

Moreover, by the Doob-Meyer theorem, the decreasing one-jump event indicator process

Ni(t) = {Zi>t} associated with each Zi can be compensated so that Ni(t) +
´ t
0
Ni(s)ξids is

a martingale and hence ξi(t) =
∑d

j=i λΦ(j)(t) is the hazard rate (see e.g. Schönbucher, 2003,

chap. 4). Obviously, the above construction can be extended to any number of systematic

factors which lays the ground for our model of dependent defaults.

Definition 2. (Dependent defaults) Let {1, ..., d} be the set of all obligors and let U ={
Yi, Z

1
i , . . . , Z

N
i : 1 ≤ i ≤ d

}
be the set of positive random variables describing default times

of all risk factors, both idiosyncratic, Yi, and systematic Z1
i , . . . , Z

N
i (in the sense of Defi-

nition 1). Let λτ (t), τ ∈ U be a family of continuous stochastic processes, not necessarily

independent, forming hazard rates for risk factors τ . Then we define dependent default times

as

Xi = min
{
Yi, Z

1
i , . . . , Z

N
i

}
= min

τ∈U(i)
τ, (8)

where

U(i) = {Yi, ξ
j
Φj(k)

: Φ−1
j (i) ≤ k ≤ d, 1 ≤ j ≤ N} ⊂ U (9)

and Φj(·) are the permutations ordering the sequences (ξji.)
d
i=1, j = 1, ..., N .

It follows from Definition 2 that

{τ>t} +

ˆ t

0
{τ>s}λτ (s)ds (10)

is a martingale. Furthermore, since {Xi>t} =
∏

ξ∈U(i) {ξ>t}, where the variables ξ are or-

der statistics of systematic factors τ (we omit subscripts to simplify notation), then assuming

that all risk components τ are conditionally independent upon hazard rate processes,

9
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It follows from Definition 2 that

{τ>t} +
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{τ>s}λτ (s)ds (10)

is a martingale. Furthermore, since {Xi>t} =
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ξ∈U(i) {ξ>t}, where the variables ξ are or-

der statistics of systematic factors τ (we omit subscripts to simplify notation), then assuming

that all risk components τ are conditionally independent upon hazard rate processes,

9
{Y >t} +

ˆ t

0
{Xi>s}

∑
τ∈V

λτ (s)ds, (11)

is also a martingale for any subset V ⊆ U and Y = minτ∈V τ .

The following example should help clarify the idea behind our model of dependent de-

faults.

Example 1. Consider an economy which consists of only three obligors {1, 2, 3} subject to

two systematic factors {τ1, τ2, τ3} and {ϑ1,, ϑ2, ϑ3} (to simplify the exposition assume there

are no idiosyncratic factors). Suppose Φ1 : {1, 2, 3} → (3, 2, 1) and Φ2 : {1, 2, 3} → (2, 3, 1)

are permutations of {1, 2, 3} such that τΦ1(1) ≤ τΦ1(2) ≤ τΦ1(3) and ϑΦ2(1) ≤ ϑΦ2(2) ≤ ϑΦ2(3).

In other words, when τ hits, obligor “3” is the first to suffer, followed by “2” and “1”. With

ϑ, on the other hand, problems first hit “2”, then “3” and finally “1”, whereby of course

defaults triggered by each factor can occur at different times. Now, suppose we want to

identify the default time of obligor “2”. Since Φ1(2) = 2 and Φ2(2) = 1, applying (9), yields

U(2) = {ξΦj(k) : Φ−1
j (2) ≤ k ≤ d, j = 1, 2} =

{
τΦ1(2), τΦ1(3), ϑΦ2(1), ϑΦ2(2), ϑΦ2(3)

}
. Since

τΦ1(2) ≤ τΦ1(3) and ϑΦ2(1) ≤ ϑΦ2(2) ≤ ϑΦ2(3), default time of “2” is given by X2 = minξ∈U(2) ξ =

min{τΦ1(2), ϑΦ2(1)}. The procedure of finding default times is also represented schematically

in Figure 1.

We have seen that default of obligor i is ultimately triggered by the lowest of the i-th

order statistics τΦj(i), j = 1, ..., N . Note that, as shown in Figure 1, both the ordering of

default times and time lags between them can vary across factors (hence the N different

permutations). Such a representation reflects an important economic observation that while

for a systematic factor j a default of obligor A may trigger the default of obligor B, for the

factor k the order may be reversed, with problems ofB preceding a default ofA, quite possibly

with a different time lag than before. More generally, as stressed above, the redefinition of

a systematic factor as an ordered family of random variables (rather than a single random

variable as in (1) and (7)) allows us to incorporate obligors’ different dependence on the

systematic factors while preserving the martingale property (10).

We can now prove the following key fact.

Proposition 1. For all t < T and τ, λτ (t), U(i), {τ>t}, {Xi>t} defined above, conditional

survival probabilities under the natural filtration Ft are given by:

P(τ > T | Ft) = E
(
e−
´ T
t λτ (s)ds | Ft

)
{τ>t}

P(Xi > T | Ft) = E
(
e−
´ T
t

∑
τ∈U(i) λτ (s)ds | Ft

)
{Xi>t}.
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Figure 1: A schematic representation of an economy with three obligors and two systematic
factors.

Proof. Denote M(t) = E
(
exp

(
−
´ T
t
λτ (s)ds

)
| Ft

)
. Then, using Itô’s product rule,

d
(
M(t) {τ>t}

)
= M(t)d {τ>t} + {τ>t}dM(t) + dM(t)d {τ>t}. (12)

By assumption, dM(t)d {τ>t} = 0 and since dM(t) = M(t)λτ (t)dt we get

d
(
M(t) {τ>t}

)
= M(t)

(
d {τ>t} + λτ (t) {τ>t}

)
(13)

Hence, M(t) {τ>t} is a martingale. Since M(T ) = 1, we can write

P (τ > T | Ft) = E
(

{τ>T} | Ft

)
= E

(
M(T ) {τ>T} | Ft

)
, (14)

Finally, using the martingale property:

P (τ > T | Ft) = E
(
M(T ) {τ>T} | Ft

)
= M(t) {τ>t}. (15)

An analogous reasoning proves the second equality.

The general framework developed above paves the way for valuing contingent liabilities

in a setting where the credit quality of the reference asset and that of the counterparty are

driven by the same systematic factors. That is indeed what we address in the following

section.
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= M(t)

(
d {τ>t} + λτ (t) {τ>t}

)
(13)

Hence, M(t) {τ>t} is a martingale. Since M(T ) = 1, we can write

P (τ > T | Ft) = E
(

{τ>T} | Ft

)
= E

(
M(T ) {τ>T} | Ft

)
, (14)

Finally, using the martingale property:

P (τ > T | Ft) = E
(
M(T ) {τ>T} | Ft

)
= M(t) {τ>t}. (15)

An analogous reasoning proves the second equality.

The general framework developed above paves the way for valuing contingent liabilities

in a setting where the credit quality of the reference asset and that of the counterparty are

driven by the same systematic factors. That is indeed what we address in the following

section.
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3 Valuing contingent claims with counterparty risk

The basic setup in this section draws on that from subsection 2.3 but, apart from the d

obligors with default times X1, ..., Xd, we introduce also two types of assets: the risk-free

money market account B and a financial asset A. Assume the money market account

accumulates an instantaneous interest rate given by the continuous process r(t) so that

B(t) = exp
(´ t

0
r(s)ds

)
and the associated discount factor is D(t) = exp

(
−
´ t
0
r(s)ds

)
.

Assume also that A(t) admits the following representation:

dA(t) = A(t)(dW (t)− α(t)dt), (16)

where α is a continuous stochastic process and W is a martingale with zero quadratic

covariation with {Xi>t}. A contingent claim will be here understood in the most general

sense as any random variable defined on Ω (clearly, this includes random variable whose

payoffs depend on A(t)). To facilitate exposition, and in line with e.g. Brigo and Masetti

(2005), we will be interested in the “unilateral risk of default” where only the risk of the

counterparty is analyzed while the investor is considered risk free, as an approximation of

cases where the investor has a much higher credit quality than the swap seller. It should be

stressed however, that our framework can quite simply be extended to cover also the case

where both parties can default. With this in mind, the pricing of contingent claims consists

in calculating the risk neutral (martingale) expectation of the discounted cash flows of the

derivatives from t to T . Thus, the net present value PV (t, T ) of a generic derivative is given

by:

PV (t, T ) = E
(
D(T )A(T ) {Xi>t} | Ft

)
. (17)

Note that the expectation E(· | Ft) is taken with respect to market information up to

time t. It turns out that (17) can be re-expressed in the following convenient way.

Proposition 2. Let PV (t, T ) be the net present value of cash flows of a contingent claim

subject to the credit risk of counterparty i. The following relation holds:

PV (t, T ) = E

(
exp

(
−
ˆ T

t

α(s) + r(s) +
∑
τ∈U

λτ (s)ds

)
| Ft

)
A(t)D(t) {Xi>t}.

Proof. The proof is analogous to the proof of Proposition 1. Denote

M(t) = E

(
exp

(
−
ˆ T

t

α(s) + r(s) +
∑
τ∈U

λτ (s)ds

)
| Ft

)
A(t)D(t). (18)
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Using Itô’s product rule and the fact that

〈
W (t), {Xi>t}

〉
= 0, we find that

dM(t) = dE
(
e−
´ T
t α(s)+r(s)+

∑
τ∈U λτ (s)ds | Ft

)
A(t)D(t)+

+ d(A(t)D(t))E
(
e−
´ T
t α(s)+r(s)+

∑
τ∈U λτ (s)ds | Ft

)
+

+ dE
(
e−
´ T
t α(s)+r(s)+

∑
τ∈U λτ (s)ds | Ft

)
d(A(t)D(t)), (19)

which in view of dD(t)dA(t) = 0 reduces to:

dM(t) = dE
(
e−
´ T
t α(s)+r(s)+

∑
τ∈U λτ (s)ds | Ft

)
A(t)D(t)+

+ (dA(t)D(t) + A(t)dD(t))E
(
e−
´ T
t α(s)+r(s)+

∑
τ∈U λτ (s)ds | Ft

)
(20)

and ultimately to

dM(t) = M(t)

(
dW (t) +

∑
τ∈U

λτ (t)dt

)
. (21)

Thus, using once again the product rule,

d
(
M(t) {Xi>t}

)
= M(t)

(
dW (t) {Xi>t} + {Xi>t}

∑
τ∈U

λτ (t)dt+ d {Xi>t}

)
. (22)

Hence, M(t) {Xi>t} is a martingale and since M(T ) = A(T )D(T ), (17) finally becomes:

PV (t, T ) = E
(
M(T ) {Xi>t} | Ft

)
= M(t) {Xi>t}, (23)

which concludes the proof.

3.1 Plain vanilla CDS

Proposition 2 provides a general framework for the valuation of a broad class of contingent

claims in the presence of counterparty risk. The valuation of credit derivatives – e.g. credit

default swaps – can be derived as a corollary. As briefly explained in the introduction, a

credit default swap (CDS) is a contract that facilitates the transfer of credit risk on some

reference asset (e.g. corporate or sovereign bond) from one party to another (see e.g. O’Kane

and Turnbull, 2003 for a primer on credit default swaps). Under the terms of the transaction,

protection buyer makes regular, usually quarterly, payments p to the protection seller, the size

of which is quoted as CDS spread and is paid on the face value of the asset under protection

– the so called fixed or premium leg. The premium payments are made until the transaction

matures or the reference credit defaults. Typically, and this is what we are going to assume

13
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below, payments also cease once the protection seller defaults, however it is also possible that

payments are made and added to the swap seller’s bankruptcy estate. Hence, the premium

payment on each of the payment dates t1, t2, ..., tN = T equals pδn {Xi>tn} {Xj>tn}, where

δn is the day count fraction for the period [tn−1, tn]. The contingent (or protection) leg

of the swap consists of a single payment made by the protection seller in case of default

of the reference issuer before maturity time T . The protection leg can be settled either

in cash or, more typically, by physical delivery, whereby the protection buyer delivers face

value of the defaulted asset and receives a payment equal to its face value. In either case,

protection buyer’s payoff at default is equal to the notional multiplied by (1− R), R being

the recovery rate on the defaulted asset. Putting this together, the value of a CDS contract

to the protection buyer is equal to the difference between the present value of the contingent

leg and the fixed leg, taking into account the dependence of both the issuer’s (name i) and

the protection seller’s (name j) credit on risk factors:

CDS(t, T ) = (1−R)E
(ˆ T

t

D(s) {Xj>s}d {Xi>s} | Ft

)
−

− E

(
N∑

n=1

pδnD(tn) {Xi>tn} {Xj>tn} | Ft

)
, (24)

The generic formula can be restated in the following way.

Proposition 3. Let name i (with default time Xi) be the issuer of a risky bond, j (with

default time Xj) the seller of protection on i’s debt, p denote the premium (CDS spread)

paid for protection on coupon periods set by dates t1, t2, ..., tN = T and R be the recovery rate

on i’s debt. Then the net present value of the CDS to the protection buyer is given by:

CDS(t, T ) = (1−R)E

(ˆ T

t

G(s)
∑
τ∈V

λτ (s)ds | Ft

)
D(t) {Xi>t} {Xj>t}−

− E




N∑
n=1

pδn exp


−
ˆ tn

0

r(s) +
∑

τ∈U(i)∪U(j)

λτ (s)ds


 | Ft


D(t) {Xi>t} {Xj>t},

where V = U(i) \ U(j) and G(s) = exp
(
−
´ s

t
r(u) +

∑
τ∈V λτ (u)du

)
.

Proof. The proof is analogous to that of Proposition 2.

The fair value of the CDS spread (premium) is found by setting the value of the contract

at inception to zero, i.e. CDS(0, T ) = 0. Note that although the CDS valuation formula

given above features a constant recovery rate, it can be easily generalized for stochastic
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default time Xj) the seller of protection on i’s debt, p denote the premium (CDS spread)

paid for protection on coupon periods set by dates t1, t2, ..., tN = T and R be the recovery rate

on i’s debt. Then the net present value of the CDS to the protection buyer is given by:

CDS(t, T ) = (1−R)E

(ˆ T

t

G(s)
∑
τ∈V

λτ (s)ds | Ft

)
D(t) {Xi>t} {Xj>t}−

− E




N∑
n=1

pδn exp


−
ˆ tn

0

r(s) +
∑

τ∈U(i)∪U(j)

λτ (s)ds


 | Ft


D(t) {Xi>t} {Xj>t},

where V = U(i) \ U(j) and G(s) = exp
(
−
´ s

t
r(u) +

∑
τ∈V λτ (u)du

)
.

Proof. The proof is analogous to that of Proposition 2.

The fair value of the CDS spread (premium) is found by setting the value of the contract

at inception to zero, i.e. CDS(0, T ) = 0. Note that although the CDS valuation formula

given above features a constant recovery rate, it can be easily generalized for stochastic
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Proof. The proof is analogous to that of Proposition 2.

The fair value of the CDS spread (premium) is found by setting the value of the contract

at inception to zero, i.e. CDS(0, T ) = 0. Note that although the CDS valuation formula

given above features a constant recovery rate, it can be easily generalized for stochastic
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recovery rates. Indeed, this follows from Proposition 2 by letting A(t) be the stochastic

recovery rate process.

Proposition 4. Let the assumptions of Proposition 3 hold. Assume also the loss given

default L(t) on the bond issued by obligor i is a stochastic process satisfying the following dif-

ferential equation: dL(t) = L(t)(dW (t)− l(t)dt) where l(t) is a continuous stochastic process

and W is a martingale with zero quadratic covariation with {Xi>t}. Then the protection leg

of the CDS on i sold by j is given by:

PL(t, T ) = E
(ˆ T

t

D(s)L(t) {Xj>s}d {Xi>s} | Ft

)
=

= E

(ˆ T

t

G(s)
∑
τ∈V

λτ (s)ds | Ft

)
D(t)L(t) {Xi>t} {Xj>t},

where V = U(i) \ U(j) and G(s) = exp
(
−
´ s

t
r(u) + l(u) +

∑
τ∈V λτ (u)du

)
.

Proof. The proof is analogous to that of Proposition 2.

To illustrate how default correlation – i.e. dependence on systematic factors – affects

counterparty risk and alters the valuation of a CDS consider the following example.

Example 2. Let A be the counterparty selling protection against the default of a more risky

issuer B. Assume the CDS has maturity of T = 10 years and premium payments are made on

a quarterly basis. Assume also a deterministic 40% recovery rate on B’s debt, R = 0.4, and a

one-factor version of the dependence model introduced in Definition 2, whereby idiosyncratic

shocks are represented by exponential random variables Y1 and Y2 with parameters λ1, λ2 > 0.

The systematic factor is constructed with the use of two exponential random variables τ1, τ2,

with parameters ξ1, ξ2, such that ξ2 < ξ1. Thus, for Φ : (1, 2) → (2, 1), τΦ(1) ≤ τΦ(2). Then

the sequence ZΦ(1) = Z2 = min{τ1, τ2} and ZΦ(2) = Z1 = τ1 is obviously increasing. In line

with Definition 2, correlated default times are given by XA = minU(A) = min{Y1, τ1} and

XB = minU(B) = min{Y2,min{τ1, τ2}}. Finally, the hazard rates of A and B are:

λA =λ1 + ξ1

λB =λ2 + ξ1 + ξ2
(25)

With these assumptions, Proposition 3 yields (FL being the fixed leg and PL the pro-
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Figure 2: CDS spread as a function of default correlation (T = 10, λi = 0.001, r = 2%,
R = 40%).
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tection leg):

FL =− p

40∑
t=1

e−r0.25te−(λA+λB)0.25t = e−(λA+λB+r)0.25
(
1− e−(λA+λB+r)10

)

PL =0.6

ˆ 10

0

e−rte−(λ1+ξ1)t(λ2 + ξ2)e
(λ2+ξ2)tdt =

(λ2 + ξ2)
(
1− e−(r+λ1+λ2+ξ1+ξ2)10

)
r + λ1 + λ2 + ξ1 + ξ2

(26)

Note that when ξ1 = 0 the defaults of A and B are totally independent. In contrast, when

λ1 = 0, so that λA = ξ1 the defaults are co-monotonic. Thus, a plausible measure of default

correlation, which provides an interpolation between perfect dependence and independence,

is: ρ = ξ1/(λ1 + ξ1) (analogous measure of default correlation is used by Giesecke, 2003).

Assume that probabilities of default of both A and B are given by the market and hence λA

and λB are fixed. In such circumstances, FL(0, 10) is fixed as well, which squares with the

intuition that the traded credit risk is contained in the protection leg of the swap. We can

now investigate the impact of default correlation on the CDS spread:

p =
1

FL(0, 10)
PL(0, 10) =

0.6

FL(0, 10)

λB − λAρ

r + λB + λA(1− ρ)

(
1− e−(r+λB+λA(1−ρ))10

)
, (27)

and using the fact that exp(x) ≈ 1 + x, p ≈ 10
FL(0,10)

(λB − λAρ) . Thus, the CDS spread

is a decreasing function of default correlation (Figure 2) and an increasing function of the

tenor.
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Figure 2: CDS spread as a function of default correlation (T = 10, λi = 0.001, r = 2%,
R = 40%).
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Figure 2: CDS spread as a function of default correlation (T = 10, λi = 0.001, r = 2%,
R = 40%).
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correlation, which provides an interpolation between perfect dependence and independence,

is: ρ = ξ1/(λ1 + ξ1) (analogous measure of default correlation is used by Giesecke, 2003).

Assume that probabilities of default of both A and B are given by the market and hence λA

and λB are fixed. In such circumstances, FL(0, 10) is fixed as well, which squares with the

intuition that the traded credit risk is contained in the protection leg of the swap. We can

now investigate the impact of default correlation on the CDS spread:
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and using the fact that exp(x) ≈ 1 + x, p ≈ 10
FL(0,10)

(λB − λAρ) . Thus, the CDS spread

is a decreasing function of default correlation (Figure 2) and an increasing function of the

tenor.
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Figure 2: CDS spread as a function of default correlation (T = 10, λi = 0.001, r = 2%,
R = 40%).
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Assume that probabilities of default of both A and B are given by the market and hence λA

and λB are fixed. In such circumstances, FL(0, 10) is fixed as well, which squares with the

intuition that the traded credit risk is contained in the protection leg of the swap. We can
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and using the fact that exp(x) ≈ 1 + x, p ≈ 10
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(λB − λAρ) . Thus, the CDS spread

is a decreasing function of default correlation (Figure 2) and an increasing function of the
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3.2 First-to-default swaps

Our approach to modeling dependent defaults comes in very handy also in the context of

pricing correlation products such as default baskets. Basket default swaps are similar in

nature to ordinary credit default swaps, except they reference a whole basket, or group,

of obligors, rather than one specific entity. The payment of the protection leg in a basket

CDS (and termination of the fixed leg) is the nth – typically first, fifth or tenth – default in

a basket (see e.g. O’Kane, 2008 for an extensive overview of single- and multi-name credit

derivatives). Basket CDSs are an obvious hedging instrument for diversified credit portfolios,

where buying protection on, say, the first default can be more efficient than buying CDSs on

each name in the portfolio individually. In turn, from the perspective of protection seller,

a first-to-default swap (FtD) is attractive as it leverages the spread premium relative to a

single-credit asset paying a comparable spread, thus allowing to pocket a high spread while

minimizing the actuarial risk (cf. O’Kane, 2008, pp. 227-229).

As with a standard CDS, the value of a first-to-default swap in the presence of counter-

party risk (from the perspective of the protection buyer) is equal to the difference between

the present value of the contingent leg and the fixed leg:

FDS(t, T ) = (1−R)E

(ˆ T

t

D(s) {Xj>s}d
∏

i∈FtD

{Xi>s} | Ft

)
−

− E




N∑
n=1

pD(tn)
∏

i∈FtD∪{j}
{Xi>tn} | Ft


 ,

(28)

where {1, 2, ..., d} is the basket of obligors, FtD ⊂ {1, 2, ..., d}, p is the spread, R the

recovery rate and t1, t2, ..., tN = T denote the coupon periods. Formula (28) can be restated

in the following way allowing for a stochastic loss given default.

Proposition 5. Using the notation and assumptions introduced above, the net present value

of a first-to-default swap to the protection buyer is given by:

FDS(t, T ) = E

(ˆ T

t

G(s)
∑
τ∈V −

λτ (s)ds | Ft

)
D(t)L(t)

∏
i∈FtD∪{j}

{Xi>t}−

− E




N∑
n=1

p exp


−
ˆ tn

0

r(s) +
∑

τ∈U(i)∪U(j)

λτ (s)ds


 | Ft


D(t)

∏
i∈FtD∪{j}

{Xi>t},

where V =
⋃

i∈FtD U(i)∪U(j), V − =
⋃

i∈FtD U(i)\U(j) and G(s) = e−
´ s
t r(u)+l(u)+

∑
τ∈V λτ (u)du.

Proof. The proof is analogous to that of Proposition 2.
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pD(tn)
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where {1, 2, ..., d} is the basket of obligors, FtD ⊂ {1, 2, ..., d}, p is the spread, R the

recovery rate and t1, t2, ..., tN = T denote the coupon periods. Formula (28) can be restated

in the following way allowing for a stochastic loss given default.

Proposition 5. Using the notation and assumptions introduced above, the net present value

of a first-to-default swap to the protection buyer is given by:
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G(s)
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⋃

i∈FtD U(i)∪U(j), V − =
⋃

i∈FtD U(i)\U(j) and G(s) = e−
´ s
t r(u)+l(u)+

∑
τ∈V λτ (u)du.

Proof. The proof is analogous to that of Proposition 2.
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of a risky bond and j the seller of protection on i with an embedded option. Suppose the
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ˆ T
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r(s) +
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τ∈U(j)∪U(i)

λτ (s)ds


 | Ft
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 (29)

and

G(t, T )γi(t, T ) = E
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 ∑

τ∈U(i)\U(j)

λτ (T ) exp


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ˆ T
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τ∈U(j)∪U(i)

λτ (s)ds
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 | Ft


 (30)

Then, by the same logic as in Propositions 2 and 3:

E
(
D(T ) {Xi>T} {Xj>T} | Ft

)
= G(t, T )D(t) {Xi>t} {Xj>t} (31)
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3.2 First-to-default swaps

Our approach to modeling dependent defaults comes in very handy also in the context of

pricing correlation products such as default baskets. Basket default swaps are similar in

nature to ordinary credit default swaps, except they reference a whole basket, or group,

of obligors, rather than one specific entity. The payment of the protection leg in a basket

CDS (and termination of the fixed leg) is the nth – typically first, fifth or tenth – default in

a basket (see e.g. O’Kane, 2008 for an extensive overview of single- and multi-name credit

derivatives). Basket CDSs are an obvious hedging instrument for diversified credit portfolios,

where buying protection on, say, the first default can be more efficient than buying CDSs on

each name in the portfolio individually. In turn, from the perspective of protection seller,

a first-to-default swap (FtD) is attractive as it leverages the spread premium relative to a

single-credit asset paying a comparable spread, thus allowing to pocket a high spread while

minimizing the actuarial risk (cf. O’Kane, 2008, pp. 227-229).

As with a standard CDS, the value of a first-to-default swap in the presence of counter-

party risk (from the perspective of the protection buyer) is equal to the difference between

the present value of the contingent leg and the fixed leg:

FDS(t, T ) = (1−R)E

(ˆ T

t

D(s) {Xj>s}d
∏

i∈FtD

{Xi>s} | Ft

)
−

− E




N∑
n=1

pD(tn)
∏

i∈FtD∪{j}
{Xi>tn} | Ft


 ,

(28)

where {1, 2, ..., d} is the basket of obligors, FtD ⊂ {1, 2, ..., d}, p is the spread, R the

recovery rate and t1, t2, ..., tN = T denote the coupon periods. Formula (28) can be restated

in the following way allowing for a stochastic loss given default.

Proposition 5. Using the notation and assumptions introduced above, the net present value

of a first-to-default swap to the protection buyer is given by:

FDS(t, T ) = E

(ˆ T

t

G(s)
∑
τ∈V −

λτ (s)ds | Ft

)
D(t)L(t)

∏
i∈FtD∪{j}

{Xi>t}−

− E




N∑
n=1

p exp


−
ˆ tn

0

r(s) +
∑

τ∈U(i)∪U(j)

λτ (s)ds


 | Ft


D(t)

∏
i∈FtD∪{j}

{Xi>t},

where V =
⋃

i∈FtD U(i)∪U(j), V − =
⋃

i∈FtD U(i)\U(j) and G(s) = e−
´ s
t r(u)+l(u)+

∑
τ∈V λτ (u)du.

Proof. The proof is analogous to that of Proposition 2.

17

3.3 Default swaptions

As a final application, we show how to value options on CDSs in the presence of counterparty
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E
(ˆ T

t

D(s) {Xj>s}d {Xi>s} | Ft

)
= D(t) {Xi>t} {Xj>t}

ˆ T

t

G(t, s)γi(t, s)ds. (32)

Let T1, ..., TN = T be the swap premium payment dates and δn be the day count fraction

for the interval [Tn−1, Tn]. Then, using the above equations, the fair premium of a forward-

starting CDS over [T0, TN ], evaluated at t < T0 is given by:

p(t) =
LGD

´ TN

t
G(t, s)γi(t, s)ds∑N

n=1 G(t, Tn)δn
. (33)

The call option price C with strike price K under the spot martingale measure (i.e. with

the rolled savings account B(t) as the numeraire) is given by:

C(0) = E

(
N∑

n=1

e−
´ Tn
0 r(s)ds

{Xi>Tn} {Xj>Tn}δn max(p(T0)−K, 0)

)

= E

(
e−
´ T0
0 r(s)ds max(p(T0)−K, 0) {Xi>T0} {Xj>T0}

N∑
n=1

G(0, Tn)δn

)
.

(34)

To handle (34) we shall introduce a new price system. Schönbucher (2004) suggests to

use the fee stream for pricing CDS options. This may not be immediately clear, since the

net present value of the premium payments can be zero, as both the reference credit and

the counterparty can default before expiry. Luckily, we know that in such cases the option

would be knocked out and the payoff would be zero as well, which indeed allows us to use

{Xi>T0} {Xj>T0}
∑N

n=1 G(0, Tn)δn as the numeraire. We can then change the spot martingale

measure to the forward survival measure Q and (34) becomes:

C(t) = EQ (max(p(T0)−K, 0) | Ft) {Xi>t} {Xj>t}

N∑
n=1

G(t, Tn)δn. (35)

Hence, the change of numeraire allows to remove the premium stream from the expec-

tation, leaving all the uncertainty in the distribution of the premium in the Q measure. As

described in Schönbucher (2004), there is a whole range of models for the martingale dy-

namics of the swap premium. In what follows, we shall apply a version of the Libor market

model. Consider a discrete time approximation of the protection leg:

ˆ TN

t

G(t, s)γi(t, s)ds ≈
N∑

n=1

G(t, Tn)δnLn(t), (36)

where Ln(t) is the forward credit spread over [Tn−1, Tn]. Assume furthermore lognormal
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use the fee stream for pricing CDS options. This may not be immediately clear, since the

net present value of the premium payments can be zero, as both the reference credit and

the counterparty can default before expiry. Luckily, we know that in such cases the option

would be knocked out and the payoff would be zero as well, which indeed allows us to use

{Xi>T0} {Xj>T0}
∑N

n=1 G(0, Tn)δn as the numeraire. We can then change the spot martingale

measure to the forward survival measure Q and (34) becomes:

C(t) = EQ (max(p(T0)−K, 0) | Ft) {Xi>t} {Xj>t}

N∑
n=1

G(t, Tn)δn. (35)

Hence, the change of numeraire allows to remove the premium stream from the expec-

tation, leaving all the uncertainty in the distribution of the premium in the Q measure. As
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the rolled savings account B(t) as the numeraire) is given by:

C(0) = E

(
N∑

n=1

e−
´ Tn
0 r(s)ds

{Xi>Tn} {Xj>Tn}δn max(p(T0)−K, 0)

)

= E

(
e−
´ T0
0 r(s)ds max(p(T0)−K, 0) {Xi>T0} {Xj>T0}

N∑
n=1

G(0, Tn)δn

)
.

(34)

To handle (34) we shall introduce a new price system. Schönbucher (2004) suggests to

use the fee stream for pricing CDS options. This may not be immediately clear, since the

net present value of the premium payments can be zero, as both the reference credit and

the counterparty can default before expiry. Luckily, we know that in such cases the option

would be knocked out and the payoff would be zero as well, which indeed allows us to use

{Xi>T0} {Xj>T0}
∑N

n=1 G(0, Tn)δn as the numeraire. We can then change the spot martingale

measure to the forward survival measure Q and (34) becomes:

C(t) = EQ (max(p(T0)−K, 0) | Ft) {Xi>t} {Xj>t}

N∑
n=1

G(t, Tn)δn. (35)

Hence, the change of numeraire allows to remove the premium stream from the expec-

tation, leaving all the uncertainty in the distribution of the premium in the Q measure. As

described in Schönbucher (2004), there is a whole range of models for the martingale dy-

namics of the swap premium. In what follows, we shall apply a version of the Libor market

model. Consider a discrete time approximation of the protection leg:

ˆ TN

t

G(t, s)γi(t, s)ds ≈
N∑

n=1

G(t, Tn)δnLn(t), (36)

where Ln(t) is the forward credit spread over [Tn−1, Tn]. Assume furthermore lognormal
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3.3 Default swaptions

As a final application, we show how to value options on CDSs in the presence of counterparty

risk. We rely heavily on Schönbucher (2004) who first proved that such options can be

priced using the famous Black (1976) formula by expressing the option payoff in terms of

a defaultable numeraire asset (the change-of-numeraire technique has been applied in this

context also by Jamshidian, 2004). A credit default swaption may be thought of as an

explicit option on a CDS – i.e. an option to buy protection on a reference asset at a specified

spread – or an option to extend an existing CDS contract. We consider only the so called

European knockout swaptions which give the option holder the right to buy protection only

on one specific date (expiry) and cancel automatically with no payments if there is a credit

event before expiry (see e.g. O’Kane, 2008 for a general overview of credit swaptions). The

knockout property is crucial: the option owner is long protection forward, so ideally he would

like the credit of the reference name to deteriorate and the spread to widen relative to the

strike price, but he would not want default as such to occur before expiry, i.e. before he

had a chance to exercise the option. Much like plain vanilla CDSs, credit swaptions are also

highly sensitive to counterparty risk, and default time correlation between the protection

seller and the reference entity will have a significant impact on the option price.

Since the underlying instrument in credit swaptions is a forward starting CDS, we can

build on the framework developed above for plain vanilla CDSs. As before, let i be the issuer

of a risky bond and j the seller of protection on i with an embedded option. Suppose the

trade is settled at t ≥ 0, becomes effective at T0 > t and matures at TN > T0. Define forward

continuous survival probability as:

G(t, T ) = E


exp


−
ˆ T

t

r(s) +
∑

τ∈U(j)∪U(i)

λτ (s)ds


 | Ft


 (29)

and

G(t, T )γi(t, T ) = E


 ∑

τ∈U(i)\U(j)

λτ (T ) exp


−
ˆ T

t

r(s) +
∑

τ∈U(j)∪U(i)

λτ (s)ds


 | Ft


 (30)

Then, by the same logic as in Propositions 2 and 3:

E
(
D(T ) {Xi>T} {Xj>T} | Ft

)
= G(t, T )D(t) {Xi>t} {Xj>t} (31)

and
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dynamics, i.e.

dLn(t) = . . . dt+ Ln(t)σn(t)dW (t), (37)

where σn(t) is the instantaneous volatility and W (t) a Wiener process (we omit the drift

term for convenience). The swap premium now becomes a weighted average of Libor forward

rates:

p(t) ≈
N∑

n=1

wn(t)Ln(t), (38)

with wn(t) =
G(t,Tn)δn∑
n G(t,Tn)δn

. Hence, using Itô’s lemma, the dynamics of the swap premium

(33) can be approximated by:

dp(t) ≈ . . . dt+
N∑

n=1

∂p(t)

∂Ln(t)
Ln(t)σn(t)dW (t) = . . . dt+

N∑
n=1

wn(t)Ln(t)σn(t)dW (t) =

= . . . dt+ p(t)

∑N
n=1 G(t, Tn)δnLn(t)σn(t)dW (t)∑N

n=1 G(t, Tn)δnLn(t)

(39)

If forward curve movements are predominantly parallel (as assumed e.g. by Andersen and

Andreasen, 2000, Gatarek, 2000 or Schönbucher, 2000 in a similar context), then (39) can

be approximated further as:

dp(t) ≈ . . . dt+ p(t)

∑N
n=1 G(0, Tn)δnLn(0)σn(t)dW (t)∑N

n=1 G(0, Tn)δnLn(0)
= . . . dt+ p(t)σp(t)dW (t), (40)

where σp(t) =
∑

n G(0,Tn)δnLn(0)σn(t)∑N
n=1 G(0,Tn)δnLn(0)

=
∑

n vnσn(t) is the weighted average of forward rate

volatilities. On the other hand, given that the swap premium is a relative price in the forward

survival measure Q, it must be a martingale:

dp(t) ≈ p(t)σp(t)dW
Q(t), (41)

where WQ is a Wiener process under the measure Q. Hence, (35) can be solved to give

the familiar Black (1976) option price formula for a call:

C(0) = [p(0)N(d+)−KN(d−)]
N∑

n=1

G(0, Tn)δn, (42)

where

d± =
ln
(

p(0)
K

)
± 1

2
Σ(T0)√

Σ(T0)
(43)
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Let T1, ..., TN = T be the swap premium payment dates and δn be the day count fraction

for the interval [Tn−1, Tn]. Then, using the above equations, the fair premium of a forward-

starting CDS over [T0, TN ], evaluated at t < T0 is given by:

p(t) =
LGD

´ TN

t
G(t, s)γi(t, s)ds∑N

n=1 G(t, Tn)δn
. (33)

The call option price C with strike price K under the spot martingale measure (i.e. with

the rolled savings account B(t) as the numeraire) is given by:

C(0) = E

(
N∑

n=1

e−
´ Tn
0 r(s)ds

{Xi>Tn} {Xj>Tn}δn max(p(T0)−K, 0)

)

= E

(
e−
´ T0
0 r(s)ds max(p(T0)−K, 0) {Xi>T0} {Xj>T0}

N∑
n=1

G(0, Tn)δn

)
.

(34)

To handle (34) we shall introduce a new price system. Schönbucher (2004) suggests to

use the fee stream for pricing CDS options. This may not be immediately clear, since the

net present value of the premium payments can be zero, as both the reference credit and

the counterparty can default before expiry. Luckily, we know that in such cases the option

would be knocked out and the payoff would be zero as well, which indeed allows us to use

{Xi>T0} {Xj>T0}
∑N

n=1 G(0, Tn)δn as the numeraire. We can then change the spot martingale

measure to the forward survival measure Q and (34) becomes:

C(t) = EQ (max(p(T0)−K, 0) | Ft) {Xi>t} {Xj>t}

N∑
n=1

G(t, Tn)δn. (35)

Hence, the change of numeraire allows to remove the premium stream from the expec-

tation, leaving all the uncertainty in the distribution of the premium in the Q measure. As

described in Schönbucher (2004), there is a whole range of models for the martingale dy-

namics of the swap premium. In what follows, we shall apply a version of the Libor market

model. Consider a discrete time approximation of the protection leg:

ˆ TN

t

G(t, s)γi(t, s)ds ≈
N∑

n=1

G(t, Tn)δnLn(t), (36)

where Ln(t) is the forward credit spread over [Tn−1, Tn]. Assume furthermore lognormal
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dynamics, i.e.

dLn(t) = . . . dt+ Ln(t)σn(t)dW (t), (37)

where σn(t) is the instantaneous volatility and W (t) a Wiener process (we omit the drift

term for convenience). The swap premium now becomes a weighted average of Libor forward

rates:

p(t) ≈
N∑

n=1

wn(t)Ln(t), (38)

with wn(t) =
G(t,Tn)δn∑
n G(t,Tn)δn

. Hence, using Itô’s lemma, the dynamics of the swap premium

(33) can be approximated by:

dp(t) ≈ . . . dt+
N∑

n=1

∂p(t)

∂Ln(t)
Ln(t)σn(t)dW (t) = . . . dt+

N∑
n=1

wn(t)Ln(t)σn(t)dW (t) =

= . . . dt+ p(t)

∑N
n=1 G(t, Tn)δnLn(t)σn(t)dW (t)∑N

n=1 G(t, Tn)δnLn(t)

(39)

If forward curve movements are predominantly parallel (as assumed e.g. by Andersen and

Andreasen, 2000, Gatarek, 2000 or Schönbucher, 2000 in a similar context), then (39) can

be approximated further as:

dp(t) ≈ . . . dt+ p(t)

∑N
n=1 G(0, Tn)δnLn(0)σn(t)dW (t)∑N

n=1 G(0, Tn)δnLn(0)
= . . . dt+ p(t)σp(t)dW (t), (40)

where σp(t) =
∑

n G(0,Tn)δnLn(0)σn(t)∑N
n=1 G(0,Tn)δnLn(0)

=
∑

n vnσn(t) is the weighted average of forward rate

volatilities. On the other hand, given that the swap premium is a relative price in the forward

survival measure Q, it must be a martingale:

dp(t) ≈ p(t)σp(t)dW
Q(t), (41)

where WQ is a Wiener process under the measure Q. Hence, (35) can be solved to give

the familiar Black (1976) option price formula for a call:

C(0) = [p(0)N(d+)−KN(d−)]
N∑

n=1

G(0, Tn)δn, (42)

where

d± =
ln
(

p(0)
K

)
± 1

2
Σ(T0)√

Σ(T0)
(43)
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Table 1: Term structure of credit spread volatility
Term Credit spread volatility (σn(t))

1× 2 50%
2× 3 45%
3× 4 40%
4× 5 35%
5× 6 30%

and Σ(T ) =
´ T
0
σ2
p(t)dt. An analogous formula for a put (receiver swaption) can be

derived by put-call parity. Note that the dependence of the option price on counterparty

credit risk is determined by the forward CDS premium, which impacts the moneyness of the

option, as well as Σ(T ).

Example 3. Consider the economy from Example 2, but suppose now the protection sold

by A is in the form of a swaption that expires in one year and the CDS extends over the

next 5 years. Assume a flat risk free rate r = 2% and a flat term structure of credit spreads

Ln(0), as given by the hazard rates λA and λB, with volatilities given in Table 1. By (38),

the CDS premium is (assuming for simplicity annual premium payments):

p(0) ≈
5∑

n=1

wn(0)Ln(0) = 0.6(λB − ρλA) (44)

Spread volatility is given by:

σp =
5∑

n=1

exp(−(r + λA + λB)n)σn∑
n exp(−(r + λA + λB)n)

(45)

Using the data in Table 1, and assuming ρ = 0.5, we find p(0) = 0.006 and σp = 40%. Fig-

ure 3 shows the value of the swaption with strike price equal to 60 bp as a function of default

correlation between A and B. As expected, the value of the option is a decreasing function

of correlation and the contract becomes worthless in case the defaults are co-monotonic.

21

dynamics, i.e.

dLn(t) = . . . dt+ Ln(t)σn(t)dW (t), (37)

where σn(t) is the instantaneous volatility and W (t) a Wiener process (we omit the drift

term for convenience). The swap premium now becomes a weighted average of Libor forward

rates:

p(t) ≈
N∑

n=1

wn(t)Ln(t), (38)

with wn(t) =
G(t,Tn)δn∑
n G(t,Tn)δn
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n vnσn(t) is the weighted average of forward rate

volatilities. On the other hand, given that the swap premium is a relative price in the forward
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dp(t) ≈ p(t)σp(t)dW
Q(t), (41)

where WQ is a Wiener process under the measure Q. Hence, (35) can be solved to give
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C(0) = [p(0)N(d+)−KN(d−)]
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n=1

G(0, Tn)δn, (42)

where

d± =
ln
(

p(0)
K
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± 1
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Σ(T0)√

Σ(T0)
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E
(ˆ T

t

D(s) {Xj>s}d {Xi>s} | Ft

)
= D(t) {Xi>t} {Xj>t}

ˆ T

t

G(t, s)γi(t, s)ds. (32)

Let T1, ..., TN = T be the swap premium payment dates and δn be the day count fraction

for the interval [Tn−1, Tn]. Then, using the above equations, the fair premium of a forward-

starting CDS over [T0, TN ], evaluated at t < T0 is given by:

p(t) =
LGD

´ TN

t
G(t, s)γi(t, s)ds∑N

n=1 G(t, Tn)δn
. (33)

The call option price C with strike price K under the spot martingale measure (i.e. with

the rolled savings account B(t) as the numeraire) is given by:

C(0) = E

(
N∑

n=1

e−
´ Tn
0 r(s)ds

{Xi>Tn} {Xj>Tn}δn max(p(T0)−K, 0)

)

= E

(
e−
´ T0
0 r(s)ds max(p(T0)−K, 0) {Xi>T0} {Xj>T0}

N∑
n=1

G(0, Tn)δn

)
.

(34)

To handle (34) we shall introduce a new price system. Schönbucher (2004) suggests to

use the fee stream for pricing CDS options. This may not be immediately clear, since the

net present value of the premium payments can be zero, as both the reference credit and

the counterparty can default before expiry. Luckily, we know that in such cases the option

would be knocked out and the payoff would be zero as well, which indeed allows us to use

{Xi>T0} {Xj>T0}
∑N

n=1 G(0, Tn)δn as the numeraire. We can then change the spot martingale

measure to the forward survival measure Q and (34) becomes:

C(t) = EQ (max(p(T0)−K, 0) | Ft) {Xi>t} {Xj>t}

N∑
n=1

G(t, Tn)δn. (35)

Hence, the change of numeraire allows to remove the premium stream from the expec-

tation, leaving all the uncertainty in the distribution of the premium in the Q measure. As

described in Schönbucher (2004), there is a whole range of models for the martingale dy-

namics of the swap premium. In what follows, we shall apply a version of the Libor market

model. Consider a discrete time approximation of the protection leg:

ˆ TN

t

G(t, s)γi(t, s)ds ≈
N∑

n=1

G(t, Tn)δnLn(t), (36)

where Ln(t) is the forward credit spread over [Tn−1, Tn]. Assume furthermore lognormal
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Table 1: Term structure of credit spread volatility
Term Credit spread volatility (σn(t))

1× 2 50%
2× 3 45%
3× 4 40%
4× 5 35%
5× 6 30%

and Σ(T ) =
´ T
0
σ2
p(t)dt. An analogous formula for a put (receiver swaption) can be

derived by put-call parity. Note that the dependence of the option price on counterparty

credit risk is determined by the forward CDS premium, which impacts the moneyness of the

option, as well as Σ(T ).

Example 3. Consider the economy from Example 2, but suppose now the protection sold

by A is in the form of a swaption that expires in one year and the CDS extends over the

next 5 years. Assume a flat risk free rate r = 2% and a flat term structure of credit spreads

Ln(0), as given by the hazard rates λA and λB, with volatilities given in Table 1. By (38),

the CDS premium is (assuming for simplicity annual premium payments):

p(0) ≈
5∑

n=1

wn(0)Ln(0) = 0.6(λB − ρλA) (44)

Spread volatility is given by:

σp =
5∑

n=1

exp(−(r + λA + λB)n)σn∑
n exp(−(r + λA + λB)n)

(45)

Using the data in Table 1, and assuming ρ = 0.5, we find p(0) = 0.006 and σp = 40%. Fig-

ure 3 shows the value of the swaption with strike price equal to 60 bp as a function of default

correlation between A and B. As expected, the value of the option is a decreasing function

of correlation and the contract becomes worthless in case the defaults are co-monotonic.
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Figure 3: Default swaption price as a function of default correlation (1 × 5 contract with
K = 60 bps)
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4 Conclusions

This paper proposes a new simple and intuitive model of dependent defaults that offers

a continuous interpolation between independent and co monotonic defaults, thus allowing

much greater flexibility than standard reduced form models where default correlation is

induced by the correlation of default intensities and default times themselves are conditionally

independent. The natural application of the model is in valuing products whose values

depend on credit correlation between the counterparty and the reference entity. Thus, the

prices of plain vanilla credit default swaps, first-to-default swaps and default swaptions in

the presence of counterparty risk (and stochastic recovery rates) are derived as particular

examples.

Several other applications and extensions of our framework can be suggested. First, the

formulas presented above for the expected values of cash-flows under counterparty risk can

be modified to include a (possibly stochastic) recovery rate on the counterparty, as opposed

to merely the reference asset. Second, and perhaps more importantly, the dependence model

could be calibrated to market data. Third, the framework could be applied outside of

the scope of counterparty risk to model dependent defaults in basket credit derivatives or

concentration risk in the context of recent financial stability policies (e.g. the creation of

central clearing counterparties).
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n exp(−(r + λA + λB)n)

(45)

Using the data in Table 1, and assuming ρ = 0.5, we find p(0) = 0.006 and σp = 40%. Fig-

ure 3 shows the value of the swaption with strike price equal to 60 bp as a function of default

correlation between A and B. As expected, the value of the option is a decreasing function

of correlation and the contract becomes worthless in case the defaults are co-monotonic.
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dynamics, i.e.

dLn(t) = . . . dt+ Ln(t)σn(t)dW (t), (37)

where σn(t) is the instantaneous volatility and W (t) a Wiener process (we omit the drift

term for convenience). The swap premium now becomes a weighted average of Libor forward

rates:

p(t) ≈
N∑

n=1

wn(t)Ln(t), (38)

with wn(t) =
G(t,Tn)δn∑
n G(t,Tn)δn

. Hence, using Itô’s lemma, the dynamics of the swap premium

(33) can be approximated by:

dp(t) ≈ . . . dt+
N∑

n=1

∂p(t)

∂Ln(t)
Ln(t)σn(t)dW (t) = . . . dt+

N∑
n=1

wn(t)Ln(t)σn(t)dW (t) =

= . . . dt+ p(t)

∑N
n=1 G(t, Tn)δnLn(t)σn(t)dW (t)∑N

n=1 G(t, Tn)δnLn(t)

(39)

If forward curve movements are predominantly parallel (as assumed e.g. by Andersen and

Andreasen, 2000, Gatarek, 2000 or Schönbucher, 2000 in a similar context), then (39) can

be approximated further as:

dp(t) ≈ . . . dt+ p(t)

∑N
n=1 G(0, Tn)δnLn(0)σn(t)dW (t)∑N

n=1 G(0, Tn)δnLn(0)
= . . . dt+ p(t)σp(t)dW (t), (40)

where σp(t) =
∑

n G(0,Tn)δnLn(0)σn(t)∑N
n=1 G(0,Tn)δnLn(0)

=
∑

n vnσn(t) is the weighted average of forward rate

volatilities. On the other hand, given that the swap premium is a relative price in the forward

survival measure Q, it must be a martingale:

dp(t) ≈ p(t)σp(t)dW
Q(t), (41)

where WQ is a Wiener process under the measure Q. Hence, (35) can be solved to give

the familiar Black (1976) option price formula for a call:

C(0) = [p(0)N(d+)−KN(d−)]
N∑

n=1

G(0, Tn)δn, (42)

where

d± =
ln
(

p(0)
K

)
± 1

2
Σ(T0)√

Σ(T0)
(43)
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E
(ˆ T

t

D(s) {Xj>s}d {Xi>s} | Ft

)
= D(t) {Xi>t} {Xj>t}

ˆ T

t

G(t, s)γi(t, s)ds. (32)

Let T1, ..., TN = T be the swap premium payment dates and δn be the day count fraction

for the interval [Tn−1, Tn]. Then, using the above equations, the fair premium of a forward-

starting CDS over [T0, TN ], evaluated at t < T0 is given by:

p(t) =
LGD

´ TN

t
G(t, s)γi(t, s)ds∑N

n=1 G(t, Tn)δn
. (33)

The call option price C with strike price K under the spot martingale measure (i.e. with

the rolled savings account B(t) as the numeraire) is given by:

C(0) = E

(
N∑

n=1

e−
´ Tn
0 r(s)ds

{Xi>Tn} {Xj>Tn}δn max(p(T0)−K, 0)

)

= E

(
e−
´ T0
0 r(s)ds max(p(T0)−K, 0) {Xi>T0} {Xj>T0}

N∑
n=1

G(0, Tn)δn

)
.

(34)

To handle (34) we shall introduce a new price system. Schönbucher (2004) suggests to

use the fee stream for pricing CDS options. This may not be immediately clear, since the

net present value of the premium payments can be zero, as both the reference credit and

the counterparty can default before expiry. Luckily, we know that in such cases the option

would be knocked out and the payoff would be zero as well, which indeed allows us to use

{Xi>T0} {Xj>T0}
∑N

n=1 G(0, Tn)δn as the numeraire. We can then change the spot martingale

measure to the forward survival measure Q and (34) becomes:

C(t) = EQ (max(p(T0)−K, 0) | Ft) {Xi>t} {Xj>t}

N∑
n=1

G(t, Tn)δn. (35)

Hence, the change of numeraire allows to remove the premium stream from the expec-

tation, leaving all the uncertainty in the distribution of the premium in the Q measure. As

described in Schönbucher (2004), there is a whole range of models for the martingale dy-

namics of the swap premium. In what follows, we shall apply a version of the Libor market

model. Consider a discrete time approximation of the protection leg:

ˆ TN

t

G(t, s)γi(t, s)ds ≈
N∑

n=1

G(t, Tn)δnLn(t), (36)

where Ln(t) is the forward credit spread over [Tn−1, Tn]. Assume furthermore lognormal
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4

Figure 3: Default swaption price as a function of default correlation (1 × 5 contract with
K = 60 bps)

�

�����

�����

�����

�����

����

�����

�����

�����

�����

�

�
�
�
�

�
�
�

�
�
�
�

�
�
�

�
�
�
�

�
�
�

�
�
�
�

�
�
�

�
�
�
�

�
�
�

�
�
�
�

�
�
�

�
�
�
�

�
�
�

�
�
�
�

�
�
�

�
�
�
�

�
�
�

�
�
�
� �

�
�
�
�
�
�
��
�
�
�
�
�
�
�
�
�
�
�

������������������������



4 Conclusions

This paper proposes a new simple and intuitive model of dependent defaults that offers

a continuous interpolation between independent and co monotonic defaults, thus allowing

much greater flexibility than standard reduced form models where default correlation is

induced by the correlation of default intensities and default times themselves are conditionally

independent. The natural application of the model is in valuing products whose values

depend on credit correlation between the counterparty and the reference entity. Thus, the

prices of plain vanilla credit default swaps, first-to-default swaps and default swaptions in

the presence of counterparty risk (and stochastic recovery rates) are derived as particular

examples.

Several other applications and extensions of our framework can be suggested. First, the

formulas presented above for the expected values of cash-flows under counterparty risk can

be modified to include a (possibly stochastic) recovery rate on the counterparty, as opposed

to merely the reference asset. Second, and perhaps more importantly, the dependence model

could be calibrated to market data. Third, the framework could be applied outside of

the scope of counterparty risk to model dependent defaults in basket credit derivatives or

concentration risk in the context of recent financial stability policies (e.g. the creation of

central clearing counterparties).
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