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Abstract: 
 

We check the empirical importance of some generalisations of the 
conditional distribution in M-GARCH case. A copula M-GARCH model with 
coordinate free conditional distribution is considered, as a continuation of 
research concerning specification of the conditional distribution in multivariate 
volatility models, see Pipień (2007) and (2010). The main advantage of the 
proposed family of probability distributions is that the coordinate axes, along 
which heavy tails and symmetry can be modelled, are subject to statistical 
inference. Along a set of specified coordinates both, linear and nonlinear 
dependence can be expressed in a decomposed form. 

In the empirical part of the paper we considered a problem of modelling the 
dynamics of the returns on the spot and future quotations of the WIG20 index 
from the Warsaw Stock Exchange. On the basis of the posterior odds ratio we 
checked the data support of considered generalisation, comparing it with BEKK 
model with the conditional distribution simply constructed as a product of the 
univariate skewed components. Our example clearly showed the empirical 
importance of the proposed class of the coordinate free conditional 
distributions. 
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1. Introduction 

Most of contributions involved with multivariate GARCH (M-GARCH) models – for a 

survey see Bauwens, Laurent and Rombouts (2006) – rely on the assumption of the 

conditional Gaussian distribution. In spite of the fact, that the M-GARCH models are 

applied in modelling and predicting temporal dependence in the second-order moments, 

some other properties of the conditional distribution, like for example fat tails and skewness, 

are also very important. This result was confirmed by Bayesian comparison of GARCH-

type models with normal and Student-t conditional distributions presented by Osiewalski 

and Pipień (2004). In terms of the model data support, measured by posterior odds ratio and 

posterior probabilities, they clearly showed that conditional normality is completely 

unrealistic in modelling financial time series. Hence, long journey beyond normality is 

necessary – see Genton (2004) – for better understanding the dependence structure between 

related time series in general, and between financial returns particularly. 

In the presence of empirical analyses decisively rejecting conditional normal distribution, 

a few studies concentrated on the application of the conditional distributions that allow both 

for heavy tails and asymmetry within M-GARCH models. Some developments on this 

subject present Bauwens and Laurent (2005). Modern propositions of modelling volatility 

and conditional dependence between financial returns try to resolve the problem by 

complicating stochastic structure of the model rather, than generalising explicitly 

conditional distribution. Recently Osiewalski and Pajor (2009) and (2010) propose MSF-

BEKK model, as an example of the process attributed with both, the flexibility of the 

Stochastic Volatility family of models, and parsimony of parameterisation of simple M-

GARCH covariance structures. Some other, more complicated multifactor processes has 

been recently proposed by Osiewalski and Osiewalski (2011) and (2012). Those hybrid 

processes can outperform pure M-GARCH specification, even in the case of conditional 

normality. As an alternative to approach investigated by Osiewalski and Pajor (2009) and 

(2010) one may consider an explicit generalisation of the conditional distribution, also 

leading to more empirically important specifications. 

In modelling volatility and dynamic dependence of returns of different financial assets, a 

linear dependence is economically interpretable and popular. Standard empirical exercises 

in financial econometrics, like controlling and pricing risks, optimal portfolio allocation, 

analysing volatility transmission mechanism or contagion and building hedging strategies, 

rely on solutions that are strictly connected with measures of stochastic dependence of the 
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linear nature. However last decade have seen particularly strong attention in modelling 

dependence in a nonlinear setting. One of the important topic of financial econometrics, that 

made substantial progress during last decade, relates to making inference about measures of 

stochastic dependence, that are alternatives to the conditional correlation.  

It seems that both, definition of a nonstandard distribution of observables, and a more 

detailed analysis of dependence are crucial in proper modelling of financial returns. One of 

the approaches that may resolve to some extent both issues involves copula functions. The 

approach was intensively developed by Patton (2001) and (2009), Jondeau and Rockinger 

(2006) and, in the case of Polish financial market, by Doman (2008), Doman and Doman 

(2009), Jaworski and Pitera (2012) and others. Vast empirical literature clearly indicate, that 

volatility models built within framework of copula functions contribute substantially to 

standard empirical issues in financial econometrics stated above; see Embrechts, McNeil 

and Straumann (2002), Bradley and Taqqu (2004), Rodriguez (2007), Chavez-Demoulin 

and Embrechts (2010), Balkema, Nolde, Embrechts (2012). 

The main goal of this paper is to check the empirical importance of some generalisations 

of the conditional distribution in M-GARCH case. We generalise the M-GARCH model 

proposed and empirically analysed by Pipień (2007), and (2006) who applied a novel class 

of probability distributions, which is coordinate free in the sense formulated by Fang, Kotz 

and Ng (1990). Pipień (2010) considered a multivariate distribution with independent 

components, with skewness imposed according to the inverse probability integral 

transformations, discussed in details by Ferreira and Steel (2006) and Pipień (2006). In the 

next step, orthogonal transformation was incorporated in order to assure that fat tails and 

also possible skewness can be imposed along a set of coordinate axes. Consequently, the 

construct postulated the existence of a set of coordinate axes, along which the univariate 

components are independent and the densities of the marginal distributions are known 

analytically. Now we additionally consider a generalisation, by imposing copula function, 

that captures possible dependence of nonlinear nature between elements of the random 

vector. The main advantage of the proposed family of probability distributions is that the 

coordinate axes are subject to statistical inference and can be very different from the ones 

defined by canonical basis. Along a set of coordinates, supported by the data, both, linear 

and nonlinear dependence can be modelled. 

In the empirical part of the paper we consider the bivariate series of the returns on the 

spot and futures quotations of the WIG20 index (WIG20 and FWIG20 instruments) 

covering the period from 21.12.1999 till 27.02.2008; t=2053 observations. In modelling the 
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conditional dependence of the components of the bivariate time series we consider Copula-

BEKK(1,1) model with coordinate free conditional distribution according to the postulates 

of the construct. For a comparison we also consider some restricted cases, leading to the 

much simpler conditional distribution. We apply formal approach to test explanatory power 

of a set of competing specifications, based on the posterior odds ratio, and discuss 

superiority and possible practical usefulness of the considered coordinate free conditional 

distribution. Additionally the posterior inference about coordinate axes is also presented. 
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2. A class of coordinate free conditional distributions 

The main goal of this chapter is to present a family of multivariate skewed distributions 

and apply it in the multivariate GARCH setting. The basic notion considered here is the 

unified representation of the univariate skewness that applies inverse probability integral 

transformation, proposed initially by Ferreira and Steel (2006). We follow the setting 

presented in the univariate case by Pipień (2006) and (2007) and by Pipień (2010) in 

multivariate case. The skewed version of originally symmetric and unimodal density f(.|) 

(with cumulative distribution function F(.|)) can be defined as follows: 

(1)     s(x |,)=f(x|)p(F(x|) |), for xR,    (1) 

where p(.|) denotes the density of the distribution defined on the unit interval. The 

asymmetric distribution s(.|,) is obtained by application of the density p(.|) as a 

weighting function of the density f(.|). The case, when p(.|)=1, restores symmetry. Any 

family of densities p(.|), for H, defined over unit interval, is called skewness 

mechanism. For a review of skewing mechanisms that incorporate hidden truncation 

mechanism, some approaches based on the inverse scale factors, order statistics concept, 

Beta or Bernstein distribution transformation or a constructive method see Pipień (2006). 

The empirical importance of the conditional skewness in modelling the relationship between 

risk and return was also studied in the univariate case by Pipień (2007). Some recent 

developments confirm results presented by Pipień (2007) that it is possible to restore the 

relationship, mentioned above, once a highly nonstandard stochastic process is considered in 

volatility modelling; see for example Markov switching-in-mean Stochastic Volatility 

model, proposed by Kwiatkowski (2010). 

Now let consider m-dimensional random vector =(1,...,m)` and let denote by f1(.|1),..., 

fm(.|m) a set of unimodal (with mode at zero) univariate densities, parameterised by vectors 

1,...,m respectively. In the first step, for i=1,...,m, we impose skewness mechanisms pi(.|i) 

on densities fi(.|i). Note, that in general the construct does not require imposing the same 

type of skewness mechanism for each i=1,…,m. For simplicity, in the empirical part of the 

paper, we consider the case, where the same skewness mechanism is considered for each of 

the coordinates. Possible different asymmetry effects will result from different values of 

parameters i. The resulting density si(.|i,i) takes the form presented in equation (1): 

si(x |i,i)=fi(x|i)pi(Fi(x|i) |i), for xR and i=1,...,m,  
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where Fi(.|i) denotes cumulative distribution function. Initially, for the random vector 

=(1,...,m)` we define the distribution with independent asymmetric components: 

(2)      p(|,)=∏
1=

),|(
m

i
iiii ηθεs ,     (2) 

where =(1`,...,m`)`, =(1`,...,m`)`.  

Pipień (2010) shows examples of defined distributions in bivariate cases indicating, that 

possible outliers and asymmetry can be captured by distribution (2) only if those features of 

the data will occur along original coordinate axes, defined by canonical basis in Rm. Also, 

any family of distributions (2) is not closed with respect to the orthogonal transformations of 

the components. Hence, in order to improve flexibility of our class of distributions, a special 

mechanism, that would make the coordinate axes varying, is incorporated according to the 

idea proposed by Ferreira and Steel (2006). We provide it on the basis of the following 

linear (affine) transformation of the random vector : 

(3)       y=A`+,     (3) 

for a nonsingular matrix A[mxm] and location vector [mx1]Rm. The density of the distribution 

of the random vector y is defined by the following formula: 

(4)     p(y|,,A,)=|det(A)-1|∏
1=

1- ),|)'-((
m

i
iiii ηθAμys ,   (4) 

where Ai
-1 denotes the i-th column of A-1. If the densities fi(.|i) are unimodal, with mode at 

zero, then the distribution the vector of y in (4) is unimodal, with mode defined by  and 

skewing mechanisms pi(.|i). Transformation matrix A introduces the dependence between 

components of y, while  determines the skewness of the independent components of . 

Assuring the variability of the parameters, equation (4) generates a flexible class of 

multivariate distributions that is closed under orthogonal transformations. Hence, the 

construct (4) is coordinate free, in the sense defined in Fang, Kotz and Ng (1990). In our 

approach we do not restrict the distribution to the case, that A is a square root of the 

symmetric and positive definite covariance matrix. Consequently, practical application of 

specific families of multivariate distributions (4) requires interpreting the effect of the 

transformation matrix A. With no loss of generality let assume in (3), that =0[mx1]: 

y=A`. 

According to the theorem presented in Golub and Van Loan (1993) any nonsingular 

matrix A[mxm] can be written as the product of mxm orthogonal matrix Om and upper 

triangular matrix U[mxm] with positive diagonal elements: 
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A=OmU, 

and such a decomposition (called the QR decomposition) is unique. Now the results of the 

transformation matrix A can be considered in two steps: 

(5)      y=A`= (OmU)`=U`Om`.    (5) 

Initially, the random vector  in (5) is subject to the rotation (if detOm=1) or rotoinversion (if  

detOm=-1). Then the vector =Om` is transformed according to the covariance-type linear 

transformation. The distribution of the vector  postulates that there exist a set of coordinate 

axes, along which the components of  are independent and the densities of the marginal 

distributions are known analytically. The main difference between distribution of  and  is 

that those coordinate axes can vary from the axes defined by canonical basis in Rm. The 

distribution of y is then obtained by imposing scale transformation on the distribution of , 

because matrix U can be interpreted as the Cholesky square root of the symmetric and 

positive definite matrix defining covariance structure.  

A parametric sampling model that incorporates distributions described by equation (5) 

requires unique (one-to-one) parameterisation of the family of orthogonal matrices Om in Rm. 

Also some restrictions have to be imposed, in order to assure identification. The one-to-one 

parameterisation was provided by Steward (1980) and Ferreira and Steel (2007), by an 

application of the Householder matrices decomposition. Let denote υ=(υ1,...,υm)`Rm, the m-

dimensional column vector. The Householder matrix H(υ) (Householder reflection or 

Householder transformation) is defined as follows: 

'
'
2

=)( υυ
υυ

IυH m . 

Golub and Van Loan (1983) show some useful properties of H(υ). Firstly, for each υRm 

H(υ) is orthogonal, and secondly H(υ)= H(-υ)=H(aυ), for any scalar a0. From the second 

property if we restrict the vector  to the unit half sphere in Rm (denoted by HSm-1) we will 

keep the coverage of the whole family of Householder matrices. Parameterisation of the unit 

half sphere is easily obtained if we write down the vector υ=(υ1,...,υm)`HSm-1 in polar 

coordinates: 

(6)     υ1=sin(1), υj= sin(j)∏
1=

)cos(
j

s
sω ,  for j<m,    υm=∏

1-

1=
)cos(

m

s
sω ,   (6) 

where  

=(1,...,m-1) m=







.2),()2/,2/()2/,0(
2)2/,2/(

3- mif
mif

m 

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Now, for any [mxm] orthogonal matrix Om with detOm=-1m+1, there exist unique 

decomposition: 

 

(7)      Om=H(m)... H(2),     (7) 

to m–1 Householder reflections H(j) defined by vectors j
[mx1] of the form: 

j=(om-j, υj)`, j=2,...,m, 

for m-j dimensional vector of zeros, om-j=(0,...,0)` if j<m and for an empty vector for j=m. 

The vectors υjHS j-1 are parameterised in terms of the polar coordinates applied in (6). The 

interesting case is m=2, where the class of Householder reflections provide parametric 

family of orthogonal matrices of dimension [2x2] with identification restrictions imposed; 

see Steward (1980), Golub and Van Loan (1983). 
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3. Another step – introducing copula functions  

Distribution of y, defined by the density (4), where A=OmU, with orthogonal matrix Om, 

parameterised according to decomposition (7), is obtained on the basis of the linear 

transformation of a random vector ε with the density (2). Consequently, only linear 

dependence between random variables, representing coordinates, can be modelled. Possible 

changes in coordinates that may be subject to statistical inference, enriched flexibility of the 

family, however the nature of dependence of elements of the vector y may still be linear. In 

order to model a more complicated dependence structure in vector y we follow the 

approach, that involves copula functions. 

Let consider a bivariate random variable z=(z1,z2)`, with cumulative density function 

(cdf) F and density function f, and with fi and Fi the density and cdf of the marginal 

distribution of zi respectively (i=1,2). According to Sklar (1959), there exists a function 

C:[0,1]2 → [0,1], with the following properties: 

1. C(u1,u2) is increasing in u1 and u2 

2. C(0,u2)= C(u1,0)=0, C(1,u2)=u2, C(u1,1)=u1 

3. For each (u1,u1`,u2,u2`) ∈ [0,1]4, such u1<u1` and u2<u2`: 

C(u1`,u2`)-C(u1`,u2)-C(u1,u2`)+C(u1,u2)≥0, 

such: 

F(z1,z2)=C(F1(z1), F2(z2)). 

The density of the joint distribution of z (if exist) is defined as follows: 

f(z1,z2)=f1(z1) f2(z2) cd (F1(z1), F2(z2)), 

where: 

).,(),( 21
21

2

21 uu
uu

Cuucd 


  

Function C is called copula, and restores dependence reflected in the joint distribution F, 

when marginal distributions F1 and F2 are considered. Function cd(∙,∙) is called the density of 

the copula C. In the case with C(u1,u2)=u1u2, we have F(z1,z2)=F1(z1)F2(z2), cd(u1,u2)=1 and 

f(z1,z2)=f1(z1) f2(z2), hence C(u1,u2)=u1u2 defines stochastic independence between z1 and z2. 

For detailed theory of copula functions and of the concept of measuring stochastic 

dependence within copula framework see Joe (1997) and Nelsen (2006). 

Now, in the bivariate case (m=2), we generalise our distribution of y, defined by the 

density (4), by incorporating copula function in the distribution of the random vector ε. We 

consider a random vector y of the form: 
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(8)       y=U`Om`z,     (8) 

with upper triangular matrix U and the orthogonal matrix Om defined by (7) and the 

bivariate random variable z with the following density: 

(9)    p(z|,,cop)=s1(z1|1,1) s2(z2|2,2)cd(S1(z1),S2(z2)|cop),   (9) 

for the density cd of a particular copula function parameterised by the vector cop, and 

skewed univariate densities si, considered initially in (2). In (9) by S1 and S2 we denote cdf 

functions of those skewed univariate distributions. Introducing copula function in the 

distribution of y, according to (9), provides another source of possible stochastic dependence 

in the random vector y, not involved with linear transformation with matrix A, considered 

initially. The case with C(u1,u2)=u1u2 (or equivalently cd(u1,u2)=1) restores independence in 

the vector z, and hence the distribution is defined just like for ε in (2). In this case only a 

linear dependence between coordinates of y can be modelled. 
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4. The set of competing specifications 

By yj we denote the two-dimensional vector of logarithmic returns at time j, i.e. 

yj=(yj1,yj2)`, where yji=100ln(xji/xj-1,i) and xji denotes the value of i-th financial instrument at 

time j. In order to model conditional dependence between components of yj we assume the 

following structure: 

(10)     yj=Hj
0.5(,j-1)`H(υ)`zj, j=1,...,t,             (10) 

where j-1=(....,yj-2,yj-1) denotes the information set at time j. Random variables zj=(zj1,zj2)` 

follow the distribution defined in (9), where components si(.|i,i) are the skewed versions 

of the standardised Student-t densities with i>0 degrees of freedom parameter (hence 

i=i), and skewness parameters i. Matrix H(υ) in (10) is a Householder reflection defined 

by: 




 


'

'2)( mIH  , 

where υ=(sin1,cos1), and 1(-/2; /2). Symmetric and positive definite matrix 

Hj(,j-1) follows BEKK(1,1) specification: 

Hj(,j-1)=A+Byj-1yj-1`B`+CHj-1(,j-2) C`, 

and  groups all required parameters, namely =(a11,a12,a22,b11,b12,b21,b22,c11,c12,c21,c22,). 

Rewriting (10) in the following form: 

yj=Wj` zj, j=1,...,t, 

where Wj= H(υ) Hj
0.5(,j-1), just like in (8), we can formulate the conditional distribution 

of yj (with respect to j-1) as a result of linear transformation of distribution of zj, with 

transformation matrix Wj: 

p(yj|j-1,1,2,1,2,1,, M1)= 

=|detWj|-1s1(yj`W-1
j(1)|1,1) s2(yj`W-1

j(2)|2,2) cd(S1(yj`W-1
j(1)),S2(yj`W-1

j(2))|cop), 

where W-1
j(i) denotes i-th column of Wj

-1, and si(.|i,i) are skewed Student-t densities: 

si(z|i,i)=fst(z|0,1,i)p(Fst(z|0,1,i)|i), zR, 

with the density and cdf of the standardised Student-t distribution with zero mode, unit 

precision and degrees of freedom parameter i>0 denoted by fst(.|0,1,i) and Fst(.|0,1,i) 

respectively.  

We considered five different single parameter copula functions, namely Gaussian, Clayton, 

Frank, Plackett and Gumbel, together with the case of no copula function. This gives us six 
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competing sampling models collected in the set denoted by H1. The analytic form of copulas 

and its densities can be found in Joe (1997) and Nelsen (2006). The set of copula function 

applied in the empirical part of the paper is restricted to only to the cases where only a 

single parameter in θcop describes dependence in the random vector. Some other copula 

functions attributed with richer parameterisation can be found in Joe (1997). 

The sampling model is represented by the following product of the conditional densities: 

(11) p(y,yf|1,2,1,2,1,, M1) = ∏
1

kt

j





p(yj|j-1,1,2,1,2,1,, M1),           (11) 

where y=(y1,...,yt) denotes the matrix of observed daily returns, while yf=(yt+1,...,yt+k) groups 

forecasted observables. In order to complete Bayesian models, the prior distributions of all 

parameters must be stated. For the vector  we adopted prior used in Osiewalski and Pipień 

(2004), for skewness parameters i and degrees of freedom parameters i we applied prior 

distribution studied by Pipień (2007). Since the orthogonal component H(υ) in (10) is 

parameterised by a single parameter 1(-/2; /2), we assumed for simplicity uniform 

prior over the whole interval. Less trivial probability distributions, with some interesting 

topological properties, adopted for a subset of the orthogonal matrices, were proposed by 

Steward (1980). 

All prior densities, except the one imposed on the parameter 1(-/2; /2), were 

investigated previously in our papers. As it was clearly shown by Osiewalski and Pipień 

(2004) and Pipień (2007) the prior information included in the Bayesian models is very 

weak, as the prior distributions of parameters are very diffuse. For parameters in copula 

functions we imposed normal distributions truncated to the appropriate domain, with the 

prior mode at the point assuring independence. Consequently, we do not specify any type of 

dependence between coordinates and imposed appropriately diffused distributions. 

Consequently, the conclusions drawn from the empirical analysis does not seem to be biased 

by the prior knowledge, which is vague and not precisely stated in our case. 

The main goal of the empirical part of the paper is to discuss the importance of 

orthogonal component H(υ) and its form with respect to the type of the copula function 

included in the sampling model. As an alternative to models in class H1 we also considered 

Copula-BEKK(1,1) specifications written in the following way: 

(12)       yj=Hj
0.5(,j-1)`zj, j=1,...,t,             (12) 

with no orthogonal mechanism, changing coordinates, included. The assumptions 

concerning zj and Hj(,j-1) are remained unchanged. In particular the distribution of zj may 
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involve five different form of copula function and also may not involve copula. This gives 

us additional set of six competing specifications, denoted by H0. The model (12) can be 

interpreted as a special case of (10), obtained by imposing zero restriction on Householder 

vector υ=(0,0)`, leading to the case, where H(υ)=I2. 
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5. Empirical analysis 

In the empirical part of the paper we analyse bivariate time series of the logarithmic 

returns of the spot and futures quotations of the WIG20 index, covering the period from 

21.12.1999 till 27.02.2008; t=2053 observations. The dataset, depicted on Figure 1, together 

with some descriptive statistics, exemplifies rather complicated nature of the dependence 

between both univariate time series. The possible dependence is clearly determined by the 

coincidence of outliers, making the empirical distribution considerably more dispersed 

along first and second quarter of the Cartesian product, as compared with relative stronger 

concentration of daily returns of spot and futures quotations with different sing at the same 

day. The modelled time series covers rather long history of spot and futures trading on the 

Warsaw Stock Exchange. But, we cut the dataset at the end of the February 2008 in order to 

compare our results of model comparison with those presented in a much simpler model 

setting by Pipień (2010). Another reason to focus on the considered time series is, that 

possible empirical importance of copula function in sampling model received so far 

attention only during the financial crisis. There is vast literature suggesting, that during last 

global financial crisis, the dependence between financial time series become very 

complicated and nonstandard. Hence, many authors clearly indicated that copula functions 

are a promising tool in modelling time series during crises and market crashes; see Bradley 

and Taqqu (2004), Rodriguez (2007), Patton (2009). However, there is a little evidence in 

favour of the existence of nonlinear dependence prior to the latest financial crisis. 

Consequently, we did not updated our dataset and focus on the pre-crisis period. The 

empirical importance of copula construct in the sampling model presented in this paper will 

be much greater, if the data support will be obtained on the basis of the time series that ends 

before global financial crisis. 

Table 1 presents the results of model comparison. We considered 12 competing 

specifications, imposing 5 different copula functions (Normal, Clayton, Frank, Plackett and 

Gumbel) and no copula function. In all cases respectively, we considered existence of 

orthogonal transformation against conditional distribution with marginal densities for both 

series defined as simply skewed Student-t distribution. We denote by H1 the subset of 

models with orthogonal transformation included, while by H0 a class of Copula-BEKK 

models with no free coordinates in the conditional distribution. In Table 1 we put decimal 

logarithms of the marginal data density values in case of all models, and also decimal 

logarithms of Bayes factors in favour of the existence of orthogonal component. The results 



Empirical analysis

N a t i o n a l  B a n k  o f  P o l a n d16

5

17 

 

vectors from canonical basis in R2, namely e1=(10,0) and e2=(0,10). In case of model from 

H1 (Table 4) a set of coordinates are subject to posterior inference and hence we present 

posterior means, together with the bands of the 95% HPD (Highest Posterior Density) 

intervals for H(υ)`e1 and H(υ)`e2 respectively. 

Analysing isodensities plotted in Table 3 and 4 it is clear, that the data support different 

directions, than canonical, along which heavy tails and possible asymmetry can be 

modelled. Copula functions change the shape of isodensities strongly. However the most 

important feature of the sampling model seems to be the existence of the orthogonal 

mechanism changing coordinates. Only in case of models from subset H1, a more 

complicated dependence between observed time series can be discovered, as the shapes of 

isodensities in Table 4 exhibit considerable excess from regular “elliptical” shape. For 

models from subset H0, without orthogonal mechanism, differences between shapes of 

isodensities of the distribution of zj are rather minor among models. New, estimated, 

directions in the sampling models from subset H1 (Table 4) are different from initial, 

canonical, ones. Taking into account dispersion of the posterior distribution, the bands of the 

HPD intervals for H(υ)`e1 and H(υ)`e2 are located far away from the case, where H(υ)=I2. 

This clearly makes models without orthogonal component improbable in the view of the 

data. Additionally, changing directions in models from subset H1 is nontrivial and does not 

only involve rotation. Comparing vectors e1 and e2 with its corresponding images, we see, 

that canonical basis is subject to inversion and then to appropriate clock-wise rotation. This 

is due to the properties of the Householder reflections applied in the construct. It enables to 

search for optimal orientation in a more composed way. 

A very important question concerning discussed empirical analysis involves possible 

conclusions about changes of the linear dependence between modelled univariate series, 

when orthogonal component and copula function is incorporated. In Table 5 we present 

plots of posterior expectations of conditional correlations between returns of spot and 

futures quotations of WIG20. Since the results are practically the same in case of all pairs of 

models, we focus our attention on the best models in H1 and H0 respectively, both based on 

Plackett copula function. In case of the best model from the set H1 the variability of the 

conditional correlation coefficient seems to be only slightly less variable during the whole 

time interval covering modelled time series. Existence of orthogonal mechanism in 

sampling model does not seem to influence the dynamics of conditional linear dependence 

strongly. Both series of posterior expectations exhibit the same dynamic pattern, with strong 
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clearly indicate the empirical importance of copula functions in sampling model. The model 

without the construct receives a little data support in both subsets H1 and H0 invariantly 

within H1 and H0 subset. The greatest data support both, in case of H1 and H0, receives 

model with Plackett copula incorporated in sampling model. Also, the second best 

specification is defined on the basis of Frank copula function. Another interesting issue 

concerning model comparison is, that orthogonal component always improves the 

explanatory power of models. In case of no copula sampling models, and also for all copula 

functions, decimal logarithm of the Bayes factor against pure Copula-BEKK specification is 

greater than one, indicating in most cases the decisive support of this component in the 

sampling model. This result seems to be invariant with respect to all remained parts of the 

sampling model, and was suggested previously by Pipień (2010). 

Table 2 presents the results of posterior inference about tail parameters in all models. We 

focus on posterior mean and standard deviations of the degrees of freedom parameters of the 

conditional distributions of univariate series. Within subsets of models H1 and H0, the 

inference about the tails of the conditional distribution is relatively the same. In case of 

models, where orthogonal component excluded in the sampling model, posterior means of 

parameters ν1 and ν2 indicate, that the conditional distribution is not of Gaussian type, 

however the posterior uncertainty, as measured by the posterior standard deviation, does not 

preclude strongly the same type of tail behaviour for both coordinates. If we include 

orthogonal transformation in sampling model, the posterior inference changes substantially, 

but in the same way in case of all copula functions and also in no-copula case. If we 

consider the mechanism, that enables search for a set of coordinates, along which possible 

heavy tails and asymmetry can be modelled, the results of estimation of the properties of the 

conditional distribution in tails are changing. In all cases in subset H1, invariantly with 

respect to the type of copula function, tails of the conditional distribution of univariate 

coordinates are different. The data clearly support heavy tails for the first coordinate, while 

the second one exhibit the Gaussian type tails.  

In order to illustrate changes in conditional distribution, when orthogonal mechanism is 

included in the sampling model, we plotted the isodensities of zj in case of models from 

subset H0 (Table 3) and isodensities of a random variable H(υ)`zj in case of models from 

subset H1 (Tables 4). All parameters required to draw the plots we chosen as posterior 

means. On the plots in Table 3 and 4, we draw vectors representing coordinates appropriate 

in sampling models. In case of models from subset H0 we draw vectors proportional to the 



Empirical analysis

WORKING PAPER No. 151 17

5

17 

 

vectors from canonical basis in R2, namely e1=(10,0) and e2=(0,10). In case of model from 

H1 (Table 4) a set of coordinates are subject to posterior inference and hence we present 

posterior means, together with the bands of the 95% HPD (Highest Posterior Density) 

intervals for H(υ)`e1 and H(υ)`e2 respectively. 

Analysing isodensities plotted in Table 3 and 4 it is clear, that the data support different 

directions, than canonical, along which heavy tails and possible asymmetry can be 

modelled. Copula functions change the shape of isodensities strongly. However the most 

important feature of the sampling model seems to be the existence of the orthogonal 

mechanism changing coordinates. Only in case of models from subset H1, a more 

complicated dependence between observed time series can be discovered, as the shapes of 

isodensities in Table 4 exhibit considerable excess from regular “elliptical” shape. For 

models from subset H0, without orthogonal mechanism, differences between shapes of 

isodensities of the distribution of zj are rather minor among models. New, estimated, 

directions in the sampling models from subset H1 (Table 4) are different from initial, 

canonical, ones. Taking into account dispersion of the posterior distribution, the bands of the 

HPD intervals for H(υ)`e1 and H(υ)`e2 are located far away from the case, where H(υ)=I2. 

This clearly makes models without orthogonal component improbable in the view of the 

data. Additionally, changing directions in models from subset H1 is nontrivial and does not 

only involve rotation. Comparing vectors e1 and e2 with its corresponding images, we see, 

that canonical basis is subject to inversion and then to appropriate clock-wise rotation. This 

is due to the properties of the Householder reflections applied in the construct. It enables to 

search for optimal orientation in a more composed way. 

A very important question concerning discussed empirical analysis involves possible 

conclusions about changes of the linear dependence between modelled univariate series, 

when orthogonal component and copula function is incorporated. In Table 5 we present 

plots of posterior expectations of conditional correlations between returns of spot and 

futures quotations of WIG20. Since the results are practically the same in case of all pairs of 

models, we focus our attention on the best models in H1 and H0 respectively, both based on 

Plackett copula function. In case of the best model from the set H1 the variability of the 

conditional correlation coefficient seems to be only slightly less variable during the whole 

time interval covering modelled time series. Existence of orthogonal mechanism in 

sampling model does not seem to influence the dynamics of conditional linear dependence 

strongly. Both series of posterior expectations exhibit the same dynamic pattern, with strong 
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variability around value 0.4, starting from August the 1st 2001, when Warsaw Stock 

Exchange quoted WIG20 index officially for the first time.  
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6. Concluding remarks 

The main goal of this paper was to check the empirical importance of some 

generalisations of the conditional distribution in M-GARCH case. We considered copula M-

GARCH model with coordinate free conditional distribution. We continue research 

concerning specification of the conditional distribution in multivariate volatility models 

started by Pipień (2007) and (2010). The main advantage of the proposed family of 

probability distributions is that the coordinate axes, along which heavy tails and symmetry 

can be modelled, are subject to statistical inference. Along a set of specified coordinates 

both, linear and nonlinear dependence can be expressed in formal and composed form. 

In the empirical part of the paper we considered a problem of modelling the dynamics of 

the returns on the spot and future quotations of the WIG20 index from the Warsaw Stock 

Exchange. On the basis of the posterior odds ratio we checked the data support of 

considered generalisation, comparing it with BEKK model with the conditional distribution 

simply constructed as a product of the univariate skewed components.  

Our example clearly showed the empirical importance of the proposed class of the 

coordinate free conditional distributions. Both, orthogonal component, and copula function, 

are necessary in proper modelling of the conditional distribution of the vector financial 

returns. The existence of the orthogonal transformation of coordinates in observation space 

receives decisive data support invariantly with respect to the existence copula function in 

the sampling model and to the type of specified copula. The dataset support much different 

orientation in the sample space along which heavy tails, asymmetry and dependence 

between coordinates, can be discovered. Among the class of copula function Plackett one 

received the greatest data support. Generally, presented in the empirical part of the paper 

noticeable flexibility of the class in directional modelling of the tails and asymmetry 

suggests that possible applications, concerning futures hedging or Value-at-Risk calculation, 

are very promising. 
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Figure 1. The plot of the daily returns on WIG20 (vertical coordinate) and on FWIG20 
(horizontal coordinate) from 21.12.1999 till 27.02.2008; t=2053 observations. 
 

 

Descriptive statistics 

 WIG20 FWIG20 

Mean 0.0215 0.0284 

Std. 
Dev. 1.557 1.579 

Skew 0.1612 0.1149 

Kurt 4.5503 4.8788 

Max 7.3724 9.8815 

Min -6.3286 -7.7057 

Correlation 0.3738 
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Table 2. Posterior inference about tails of the conditional distribution in all competing 
specifications 
 

Copula function 
applied in sampling 

model 

Orthogonal component included 
(subclass of models H1) 

No orthogonal component 
(subclass of models H0) 

No Copula ν1  5.64 (1.03) 
ν2 18.93 (3.45) 

ν1  7.49 (1.98) 
ν2 10.85 (1.98) 

Normal ν1  6.94 (1.26) 
ν2 18.37 (3.40) 

ν1  7.49 (1.35) 
ν2 10.84 (1.97) 

Clayton ν1  5.77 (1.05) 
ν2 19.13 (3.49) 

ν1  7.25 (1.32) 
ν2 11.00 (2.01) 

Frank ν1  6.93 (1.27) 
ν2 19.65 (3.59) 

ν1 8.57 (1.59) 
ν2 11.42 (2.08) 

Plackett ν1  6.61 (1.21) 
ν2 18.95 (3.43) 

ν1 8.82 (1.61) 
ν2 12.00 (2.20) 

Gumbel ν1  5.51 (1.01) 
ν2 19.34 (3.55) 

ν1 7.46 (1.33) 
ν2 10.36 (1.83) 
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Table 1. Decimal logarithms of the marginal data density values in all competing 
specifications, and of the Bayes factor in favour of the existence of orthogonal component in 
model 
 

Copula function 
applied in sampling 

model 

Orthogonal 
component included 

(H1) 

No orthogonal 
component 

(H0) 

Bayes factor in 
favour of model 
from H1 against 
model from H0 

No Copula -2974.9263 -2977.5126 2.5863 
Normal -2971.2150 -2976.2267 5.0117 
Clayton -2972.2007 -2977.7896 5.5889 
Frank -2970.3253 -2973.0979 1.7726 

Plackett -2966.0346 -2968.1112 2.0766 
Gumbel -2973.3153 -2975.0409 4.1973 
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Table 3. The plots of the isodensities of zj in models from class H0, i.e. in sampling models 
with no orthogonal component included. Isodensities are plotted on the basis of values of 
parameters equal to posterior means. 
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Table 4. The plots of the isodensities of H()`zj in models from class H0, i.e. in sampling 
models with no orthogonal component included. Isodensities are plotted on the basis of 
values of parameters equal to posterior means. 
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Table 5. Posterior inference about linear conditional dependence obtained on the basis of the 
elements of matrix Hj(,j-1) in case of the best copula function (Placket). All parameters 
assumed to be equal to posterior means 
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