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Abstract 

 

The paper discusses problems associated with communicating uncertainty by 

means of ‘fan charts’, used in many central banks for presenting density forecasts of 

inflation and other macroeconomic variables. Limitations of fan charts in the case of 

high macroeconomic uncertainty are shown. Issues related to definition of uncer-

tainty are addressed, stressing the need to distinguish between statistical model 

errors and uncertainty due to lack of knowledge. Modifications of the standard 

methods of constructing fan charts are suggested. The proposed approach is based 

on two distributions, one of which is subjective and describes possible macroeco-

nomic scenarios, while the other describes model errors.  Total uncertainty is repre-

sented as a mixture distribution or density convolution. The proposed approach, 

although it is a mix of judgment and statistics, allows preserving information about 

scenarios and separating in the analysis different types of uncertainties. 
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1. Different interpretations of fan charts 

The forecasting process involves uncertainty – we use models that are only a sim-

plified picture of reality, we do not have accurate data, we do not know what will 

happen. Fan charts have been widely used by central banks as a means of visualiza-

tion of uncertainty. Following the Bank of England and the Sveriges Riksbank, the 

National Bank of Poland has been publishing fan charts  in "Inflation Reports" since 

2004. 

Fan charts are constructed on the basis of probability density functions (Figure 1). 

 

Figure 1 

Fan chart and probability density functions 

 

 

The method of obtaining distributions, i.e. the knowledge of adopted assumptions 

and of a kind of uncertainty included in calculations, is essential for a proper inter-

pretation of fan charts. This has become particularly important in the context of the 

expanding spectrum of models used by central bank since the scope of uncertain-

ty analysis that could be performed is largely determined by the type of a model. 

Preferences of different forecast teams are also important.  

In general, if focus is placed on the chart itself, it is difficult to determine whether 

possible outcomes, estimated volatility or confidence intervals of point forecasts are 

presented.  
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1.1 The original meaning of ‘fan chart’ 

The fan charts ware invented at the Bank of England. The first chart of this type 

was presented in the Inflation Report in February 1996. Earlier, between 1993 and 

1995, the Bank of England published its forecasts in the form of charts showing the 

central path surrounded by the shaded (one color) area with the bounds set by the 

value of past forecast errors. However, this method of presentation was quickly 

considered to be unsatisfactory (cf. Britton, Fisher, Whitley 1998) for a number of 

reasons. The readers of forecasts ignored the information on a potential large error 

and continued to attach an excessive importance to the central path. The bounds of 

the shaded area were often misread as indicating upper and lower bounds of the 

forecast. In addition, there was no information about potential asymmetric devia-

tions. 

The fan charts were introduced in order to convey a more precise representation of 

the Bank’s subjective assessment and show the inflationary pressure evolving 

through time. The statistical errors have been replaced with the probability distri-

butions obtained by mapping a set of possible economic assumptions onto an infla-

tion forecasts. For obvious reasons, only a limited number of assumptions were 

evaluated and TPN probability distribution was fitted to the results. The limitations 

related to the assumed form of distribution will be discussed in Chapter 4. At this 

point, we only wish to stress that originally the term "fan chart” was understood 

not only as a graph type.  

1.2 Fan charts based on statistical errors 

Nowadays many types of models used in central banks do not refer to future values 

 of variables, and therefore they do not allow performing scenario analyses, which 

are the essence of fan charts in their original form. To this category belong not only 

many simple statistical models but also complex DSGE models. Perhaps this in-

creasing role of such models is the reason for the return to the ex post statistical er-

rors. This applies even to the Sveriges Riksbank, which previously attached great 
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importance to indicating the risk of different scenarios, but since 2007, it has started 

to publish fan charts based on normal distributions with variances determined by 

historical errors.  

 

Return to the ex post statistical error is difficult to explain especially during the 

period of the growing of methods opening up new possibilities for uncertainty 

analysis, in particular methods that use the Bayesian approach and the Kalman 

filter.  Recently, more and more attention is drawn to the need to perform scenario 

analyses, also in the context of DSGE models. 

 

Historical statistical errors, including the most popular RMSE, are obviously a good 

starting point for estimating the uncertainty because they account for different 

sources of errors made in the past. However, the fan chart based on the RMSE indi-

cates only that the forecasters are aware of the previous errors accompanying their 

point forecasts and that similar errors can affect the currently presented central pro-

jection. This information is needed to draw attention to the risk associated with the 

use of the forecasts. It is however not sufficient from the perspective of decision-

makers because it only informs of the average value of the past errors and not of the 

error at a particular point in time. There is no guarantee that future forecasts will be 

burdened with the same error. In addition, the RMSE does not provide any infor-

mation on the structure of errors. It will be different for different classes of models. 

On the other hand, the RMSE could be regarded as a quite objective and universal 

measure of forecast errors, which becomes quite important in view of the diversity 

of both the models and techniques of estimation, filtering and prediction used in 

macroeconomic forecasting. 

 

Fan charts based on the RMSE can be used for presenting the prognostic properties 

of models in different horizons. They can provide a basis for comparison (if the 

models do not differ too much in the complexity or the degree of exogeneity). 
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However, if the decisions do not concern the model selection but monetary policy, 

usefulness of the RMSE is limited.  

(Comparing the models must be remembered that the RMSE applies only to point 

forecasts, and that its structure may be different for different categories of models.) 

Another problem is that the RMSE does not reflect propagation of errors in time. 

We get a picture of unconditional errors. (Charemza et al. (2009) show how statisti-

cal errors can be described taking into account dependence and asymmetry of dis-

tributions.) 

  

For certain classes of models, the creation of a fan chart on the basis of analytical 

predictive distributions derived from the model could be considered natural. A 

review of methods of constructing prediction intervals for selected types of statisti-

cal models can be found for instance in Chatfield (1993). However, in the decision-

making context it may also not be the proper choice. Prediction intervals obtained 

in a traditional way describe the effects of inaccurate estimation of parameters 

and/or the residual uncertainty. They do not include the uncertainty of exogenous 

variables. This is to a large extent understandable, since even for simple models it is 

very difficult (e.g. Feldstein 1997). For example, in deriving predictive distributions 

for linear regression models – taking into account the uncertainty of parameter es-

timates and residual uncertainty is a standard. In the case of ARIMA models gener-

ally take into account only the residual uncertainty is taken into account–  the un-

certainty of parameters is ignored, despite known theoretical results (e.g. Fuller, 

Hasza 1981; de Luna 2000). 

 

Moreover, predictive distributions are accompanied by the assumption of the cor-

rectness of the model form. The importance of this assumption is different depend-

ing on the degree of the verification of the theory underlying the model. In the case 

of purely statistical models the uncertainty of the model may be a component of 

fundamental importance (cf. Chatfield 1995). The remedy may be the Bayesian 
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model averaging (BMA); e.g. Hoeting J., Madigan, Raftery, Volinsky, 1999). BMA 

has been successfully applied to statistical models of many types. However, it does 

not lead to the interpretable models, which limits the possibilities of use in deci-

sion-making.  

 

Models which support the decision-making process are required to explain both 

“what has already happened” and “what may happen”. A good fit to the data is not 

sufficient. Furthermore, such models should allow analysis of the implications of 

observed or anticipated events, and the effects of different decisions. Teams respon-

sible for preparing projections for the purposes of monetary policy face the problem 

of taking into account the significant sources of uncertainty associated with the as-

sumptions formulated by experts as to the starting point and the external environ-

ment. Thus, there is a need to consider uncertainty that results from the incomplete 

knowledge which can be described probabilistically only by subjective probability 

distributions, that do not reflect the rules governing random events (as opposed to 

objective statistical distributions).  
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2. Uncertainty as a multidimensional concept  

As we pointed out in the previous chapter, the nature and scope of the uncertainty 

portrayed by fan charts could be different. This depends on the type of a model, 

forecasting methods and the preferences of forecasting teams. The precise defini-

tion of uncertainty is needed, but it is difficult without a good typology.  

 

Walker et al. (2003) developed a typology of uncertainty for model–based decision 

support, which is worth transposing into macroeconomic forecasting. Their typolo-

gy is universal as it includes and harmonizes many other systematics created for 

various specific purposes. They suggest describing uncertainty in three dimensions: 

location, level and nature. 

 

Location of uncertainty  

The following locations can be distinguished: 

Context – determines what the subject of modeling is, what part of the real world 

is described by the model and how complete the description is. The context deter-

mines the possibilities of using the model for a particular purpose.  

The application of the model in the wrong context involves uncertainty of the re-

sults. 

Model – structure (definitions of variables, relationships between them, assump-

tions, mathematical algorithms) as well as parameters and computer implementa-

tion.  

Input area –data that describe the reference system and the external forces that pro-

duce changes within the system (scenario and policy variables). 

Output area – uncertainty associated with this area is the cumulative effect of uncer-

tainties from the previous areas. 

 Individual components are propagated according to the logic of the model result-

ing in the uncertainty of model results.  
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Level of uncertainty  

The following gradation of the level of uncertainty is proposed:  

determinism →  statistical uncertainty → scenario uncertainty → recognized uncertainty 

→ total ignorance 

Determinism corresponds to the ideal situation, i.e. certainty. At the other end there 

is a situation where we are not even able to determine what we do not know.  

Statistical uncertainty is the level at which it is possible to describe the deviation 

from the true value using statistical formulas. The adoption of this level of uncer-

tainty results from the assumption that the model fairly accurately describes the 

analyzed phenomenon and that the data used for estimating/calibrating the model  

are representative of  the circumstances in which the model will be applied. 

Scenario uncertainty is the level at which we are dealing with the possibility of dif-

ferent values, however, the mechanism leading to these values is not recognized 

sufficiently enough to be described statistically. Scenarios do not say what will 

happen but what may happen.  

Recognized uncertainty – the level of uncertainty as to the mechanisms and relation-

ships is so high that scenarios cannot be formulated.  

 

Nature of uncertainty  

Nature is a dimension for distinguishing the uncertainty arising from the lack of or 

incomplete knowledge of the analyzed phenomenon from the natural variability 

inherent in the phenomenon. This distinction is important because different types 

of uncertainty require different treatment. Walker et al. (2003) use the term variabil-

ity for uncertainty resulting from the variation or randomness and epistemic for un-

certainty associated with insufficient knowledge.  

 

Econometricians focus their attention on the first dimension, i.e. location, which is 

also the basis for the classification of forecasts errors (Clements and Hendry (1995) 

discused this aspect in a great detail). Yet the nature of uncertainty is neglected in 
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the world of their models, though the problem is known to economists thanks to 

Knight (1921).  Knight made an important distinction between measurable uncer-

tainty, which he called risk, and immeasurable uncertainty associated with predic-

tions. By measurability he understood the possibility of describing the phenomenon 

by means of objective probability. Writing about quantifying the immeasurable 

uncertainty Knight used the term “subjective probability”.  
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3. Nature of uncertainty (the second dimension) in popu-

lar methods of construction fan charts 

Using the terminology of Walker et al. (2003), we would say that fan charts were 

introduced in order to indicate the existence of epistemic uncertainty (the second 

dimension). Also Blix and Sellin (1999, 2000) from the Bank of Sweden saw the need 

to include this type of uncertainty. We will briefly recall the method developed by 

them, since it was very popular for many years and because later in this paper we 

will propose a new approach, which can be treated as an extension. 

Similarly to the Bank of England, for the description of future inflation (the method 

was also applied to gdp) two-piece normal distribution ),,( 21 σσµTPN  with den-

sity given by (1) is used. 
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Then the corresponding asymmetry parameter )(tjγ  defined as the difference be-

tween the mean and the mode is determined. In the case of two-piece normal dis-

tribution we get: 

( ))()()/2()( 1,2, ttt jjj σσπγ −=          (3) 

Inflation asymmetry is approximated by a linear combination of parameters

njj ,...1, =γ  :  

)()()(
1

ttt j
n

j j γβγ ∑ =
=         (4) 

Elasticities }{ jβ  resulting from the model are coefficients.  

Positive values of )(tγ  indicate a greater upside risk for inflation, while negative 

values – a downside risk.  

The knowledge of the asymmetry parameter )(tγ  allows to find parameters )(1 tσ  

and )(2 tσ  of the distribution describing the inflation. (First, based on responses of 

experts and historical errors, inflation variance is calculated.) The resulting distri-

bution is the basis for constructing a fan chart which can indicate the risk of asym-

metric deviations from the most likely path of inflation.  

 

Blix and Sellin call the obtained in this way distribution as "partially subjective," 

emphasizing the fact that the starting point is the objective distributions of histori-

cal uncertainty. 

  



The scale of uncertainty (the third dimension) – the unsolved problem

WORKING PAPER No. 157 13

4

 

 

 - 14 - 

4. The scale of uncertainty (the third dimension) – the 

unsolved problem  

Traditional methods of obtaining fan charts are based on the assumption that there 

is a particular scenario more likely than others. This is reflected in the form 

of applied distributions – they are unimodal. The uncertainty analysis relates only 

to deviations from the central path, so it is assumed that the level of uncertainty 

does not exceed the statistical one. Information about alternative, but less likely 

scenarios are submitted through the introduction of a large asymmetry. The effec-

tiveness of communication will vary depending on the type of fan chart. We will 

illustrate this by considering the following hypothetical situation. 

 

 Let us assume that when forecasting inflation, we obtained for two consecutive 

annual horizons probability densities:  )5.0,5.0,8.2(TPN  for y0+1 and  

)2.1,6.0,1.3(TPN  for y0+2. The first function is symmetric (mode=median=mean), 

while the second one) is characterized by a significant asymmetry.  

 Knowing the density function we can determine intervals with given probabilities. 

Figure 2 shows two popular ways of creating bands in fan charts.  

 

Figure 2 

Different ways of building prediction intervals 

a, b - bands built around the dominant 



The scale of uncertainty (the third dimension) – the unsolved problem

N a t i o n a l  B a n k  o f  P o l a n d14

4

 

 

 - 15 - 

c, d - bands built around the median 

 

Figures 2a and 2b show the intervals of probability 0.3, 0.6, 0.9 which are built 

around the mode, figures 2c and 2d – around the median. 

 

For asymmetric density function describing inflation in horizon y0 +1 in both cases 

we get the same intervals. For horizon y0+2, because of the asymmetry, the bound-

aries of the intervals are different what is clearly seen when we compare the “dark-

est” intervals in Figure 2b and 2d. The interval, which is shown in Figure 2b has the 

property of being the shortest among all intervals of the probability 0.3. The values 

of density function at its ends are equal. The intervals created in this way are the 

basis of fan charts which we will call “modal”. Modal fan charts are used by the 

Bank of England.  

 The middle band in chart 2d is an interval set by the 0.35-quantile and 0.65-

quantile, therefore the median divides it into two intervals of equal probability. 

Such fan charts will be named as “quantile”. Their advantage is that they allow 

comparing the probability of values higher and lower than the central path. In the 

case of modal fan charts, only the sum of the probability of ranges of the same color 

is known. Quantile fan chart are used, for example, in the Sveriges Riksbank and 

National Bank of Poland. 

 

Modal and quantile fan charts, created on the basis of the discussed density func-

tions are presented in Figures 3a-3b (standard deviations for quarters 1-3 in subse-
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quent years were obtained by interpolation, assuming a steady increase in uncer-

tainty over the year). 

Both types of fan charts clearly indicate a risk of higher values. The quantile 

chart allows conclude that the probability of higher values for the two-year horizon 

is about twice as high. In the modal fan chart the central path is always located in 

the darkest area. It may be omitted (so that readers of forecasts do not attach much 

attention to the point forecasts) without a fear of loss of information concerning 

asymmetric risk. The situation is different in the case of the quantile fan charts, as 

shown in figure 3c.  

Figure 3 

Visualizing asymmetry by different types of fan charts  

(a) modal fan chart with, cp= mode 

(b) quantile fan chart, cp=mode (c) quantile fan chart, cp=mean

 

Although fan chart 3c differs from 3b only in the type of central path, a strong 

asymmetry is not visible. There is another problem – if the probability distribution 

describes the degree of belief, the presentation of the mean without the information 
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on the mode, i.e. the hypothesis considered to be the most probable, seems to be a 

significant drawback. 

On the other hand, displaying the most likely path when the distribution is strongly 

asymmetric may lead to inconsistent communication. A central forecast could be 

found outside the central band of the quantile fan chart. 

Summing up:  

In periods of relative stability, when uncertainty is low and can be classified as sta-

tistical in the third dimension, local analysis of the uncertainty (around the central 

path) may be sufficient regardless of which measure of central tendency – mode, 

median or mean - will be adopted. It fails when we are dealing with a large asym-

metry or if one dominant scenario cannot be assumed at all.  
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5. Mixing of uncertainties of a different nature  

When fan charts are based on distributions of past forecast errors (either directly or 

obtained by modifications) there is a problem with the assessment of contribution 

of particular components of uncertainty. Recipients do not receive information how 

much of variance which determines the span of the fan is due to imperfect models, 

and how much is the result of input data uncertainty. Moreover, high proportion of 

symmetrical statistical errors may distort the message on asymmetric deviation 

from the central path.  

We face a similar problem when simulations are used. Simulations allow taking 

into account many sources of uncertainty simultaneously, but they can also lead to 

mixing of different effects. The lack of identifiability of the uncertainty components 

makes the received distributions difficult to interpret. Paradoxically, the desire to 

obtain a full picture of uncertainty may lead to a reduction of the informational 

value of forecasts and their usefulness in the decision-making process.  

 

In many publications attention is drawn more and more frequently to the need for a 

separate propagation of variability and uncertainty of knowledge (e.g. Hoffman 

and Hammonds 1994; Frey, Burmaster, 1999; Wu, Tsang 2004).  

 

In the case of macroeconomic forecasts, it seems very important to separate the ef-

fects of uncertainty of the model itself from the uncertainty associated with the 

model input area, due to their different nature and different kind of probability 

distributions used for describing the uncertainty of both areas. In the first case we 

can rely on objective distributions of historical errors and residuals. We may also 

use bootstrap techniques. 

 In the second case, in order to describe the uncertainty of knowledge concerning 

the input area, it is necessary to use subjective distribution. 
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6. Modifications allowing to reflect scenario uncertainty 

Nowadays fan charts illustrate, in most cases, the error of the central path (point 

prediction). The change of the assumptions for the main scenario, for instance, 

adoption of other initial values or exogenous variables changes the course of the 

central path and causes a shift of a fan somewhat like "tied" to it.  

Suggestive examples of this effect can be fan charts presented in two consecutive 

"Monetary Policy Reports" published by Sveriges Riksbank in 2008:3 Figure  and in 

2009:1 (Figure . The consequences of changes in the central path when the fan chart 

is based on historical errors 

Figure 4  

The consequences of changes in the central path when the fan chart is based on historical 
errors 
 

 (a) 

 

(b) 

 

Źródła  : a - „Monetary Policy Report 2008:3”; b - “Monetary Policy Report February 2009”; S veriges Riksbank 

The comparison of these graphs leads to the conclusion that in the period between 

reports the level of uncertainty was much higher than statistical and could not be 

properly reflected. 

 

To avoid such situations we are going to propose a new approach. It could be con-

sidered as a generalization of the methods currently used. The proposed modifica-

tions enable to provide information about scenarios which are important from the 

perspective of the decision-making process. 
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Unlike to the standard methods, we will not assume the existence of a scenario 

which is much more probable than the others, nor the form of a resulting distribu-

tion. Construction of a fan chart will require two probability distributions for each 

forecast horizon.  The first distribution is subjective and reflects experts’ opinions 

on various economic scenarios. Weights assigned to scenarios will imply a distribu-

tion of output variables obtained from the model. This can be a discrete distribution 

(if the number of scenarios is specified) or a continuous one if a density function is 

matched to the results.  

 

The concept of a scenario does not need to be limited to different values of exoge-

nous variables or the starting point. It may also relate to deviations from relation-

ships that were previously observed. The second distribution is used for describing 

the uncertainty of prediction tools (uncertainty of the model – the structure, param-

eters and adequacy in a given context). It could be created on the basis of a histori-

cal statistical error (cleared from assumption errors) or on the basis of residuals of 

estimated equations. 

         

The case of a discrete subjective distribution   

Let Nii tx ...1)}({ =  be the set of paths (point forecasts) corresponding to possible eco-

nomic scenarios Niis ...1}{ =  (horizon description t   will be omitted for simplicity).  

We will denote chances of the realization of scenario is   and so the outcome  ix  by  

ip  . 

Let us treat the model as a kind of a measure with the help of which indirect meas-

urements of ix  are made, i.e. direct measurements of inputs (scenario is ) are pro-

cessed according to the model equations (algorithm by which the measure oper-

ates) into the output ix  .  
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To take into account the measurement error, the deterministic forecast ix  should be 

replaced by random variable iii XxX ∆+= , where iX∆  is the error. 

The accuracy of the model is its feature and can be assessed with the use of statisti-

cal methods. The effects of the model error propagation for subsequent horizons 

could be, for instance, determined by stochastic simulations.   

We will focus on a fixed forecast horizon. The error refers equally to each scenario, 

so we will assume that iX∆  ( Ni ,...2,1= ) are random variables with identical dis-

tribution, which we denote by )(xg . Then the distribution )(xgi of iX  will be de-

scribed by:  

)()( ii xxgxg −=                        (5) 

Knowing distributions p  and g  we can obtain the distribution which will be 

a probabilistic description of the following situation: we choose a scenario with 

probability ip ; then, taking into account a random error, we obtain the value of 

forecasted variable. Such a hierarchical method leads to a mixture distribution. We 

denote its density function by f : 

)()( i

S

i
i xxgpxf −= ∑           (6) 

The case of a continuous subjective distribution 

A continuous counterpart of the density (6) is 

 ∫
+∞

∞−

−= dssxgspxf )()()(            (7)  

It can be seen that density )(xf  is a convolution gp *  and thus the density of the 

distribution of the sum of two independent random variables with distributions p  

and g . It is consistent with our previous interpretation of the density f  as a distri-

bution describing the result of the measurement of unknown variable X  character-

ized by the subjective distribution p  when the measurement error err  is described 
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by distribution g . The measurement result is then the sum errX +  with the distri-

bution described by the convolution of the densities.  

 

For the error described by the normal distribution we will obtain: 

 ∫
+∞

∞−

−−= dssxspxf gg )2/)(exp()()2/1()( 222 σπσ                                                                    (8) 

Using continuous density distribution )(sp  seems reasonable, for instance, in the 

following cases: 

1.  The triangular distribution can be adopted when it is possible to determine the 

most probable value, the minimum and the maximum.  

2.   The two-piece normal distribution is useful when we can specify the most prob-

able value and probability of higher or lower values.  

3.   The partially uniform distribution can be applied when it is possible to specify 

quantiles and  thus obtain intervals of a given probability.  

 

The case of the TPN subjective distribution 

Let us consider a situation when p = ),,( 21 pppTPN σσµ  and g = ),0( gN σ . 

The normal distribution is a special case of two-piece normal distribution, thus: 

),,0(*),,(* 21 ggppp TPNTPNgp σσσσµ=       (9)  

We will use the results described in Garvin and McClean (1997) concerning the 

form and parameters of distribution of the sum of independent random variables 

with two-piece normal distributions.  

Firstly: it can be assumed that the convolution of two-piece normal distributions 

belongs to a class of two-piece normal distributions. 

Secondly: the parameters of this distribution can be determined on the basis of the 

moments generating function which is the product of component moments generat-

ing functions. 
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Thirdly:  it can be shown that the third central moment of the sum of two variables 

with the two-piece normal distribution is equal to the sum of the component third 

central moments: 

 )()()()*( 3333 pmrmpmgpm =+=                                                                   (10) 

The form of the moment generating function and its successive derivatives could be 

found in Garvin and McClean (1997). 

In our case:  

the first moment round 0:  

)()/2()()()*( 121 pppXEerrXEgpm σσπµ −+==+=
  '

   (11)  

the third central moment:  








 +−





 −−== pppppppmgpm 12

2
121233 )(14)()/2()()*( σσσσ

π
σσπ              

(12) 
and:  

22)( rperrXVar σσ +=+
                                                                             

(13)  

Knowing the third central moment of the convolution we can calculate the skew-

ness: 

3
*

3 )*(

gp

gpm
σ

.            (14) 

Next we will use the fact that Pearson's coefficient for the two-piece normal distri-

bution ),,( 21 σσµTPN  with variance 2σ   is equal to: 

σσσπ /)()/2( 12 −         
(15)

 

Both measures of skewness differ significantly, only for 12 2σσ >>  or 21 2σσ >>  

(e.g. Garvin and McClean 1997).  As a result of equating them we obtain the follow-

ing equation:  

2
3

12 )()/2(
σ

σσπ m
=−         (16) 
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Knowing the variance of the convolution and its third central moment, unknown 

parameters 1,*gpσ and 2,*gpσ   could be obtained by solving the following system of 

equations: 


 22

3
1,*2,*

)*(
),()/2(

gp
gpgp

gpm
σσ

σσπ
+

=−

2,*1,*
2

1,*2,*
22 ))(/21( gpgpgpgpgp σσσσπσσ +−−=+

                                               (17)

 
 

The mode of the convolution gp *  will then be equal to: 

[ ] [ ])()()/2()()()/2( 1,*2*1,*2,*** tttt gpgppgpgpgpgp σσπµσσπµµ −−=−−=        (18)
  

So the mean gp*µ  is equal to pµ , but  the modes are different. 

 

It is worth noting that the relationship between the error of prediction tools and the 

variance of the distribution describing the uncertainty of scenarios is very im-

portant. Figure 5 shows how the skewness of the convolution gp * changes de-

pending on the relationship between 2
gσ  and 2

pσ .  

Figures 5 

Influence of the model error on skewness 

 

The following distributions were 

assumed: 

)2.1,6.0,1.3(TPNp =   (cf. Fig.2)  

)var_*,0( pkNg =  

where: pgk var_/var_=  

 

var – variance; 

skew – skewness defined on the    

basis of moments 

Figure 6 shows the effect of model error on the mode of convolution of p*g for the 

same distributions.  
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Figures 6 

Influence of the model error on the mode

  

Figure 7 is an illustration of the problems associated with defining the asymmetry 

as the difference between the mean and mode. It explains why we rejected this 

measure in the proposed method. 

  

With a relatively large model error the distribution becomes symmetric. Without 

the information about the distribution describing scenarios, its usefulness in deci-

sion-making may be low. It is, therefore, necessary to present the information com-

ing from all distributions: p , g and gp *  . 

Figure 7 

Comparison of various measures of asymmetry 

 

 

skew – skewness defined 

    on the basis of moments; 

Pears – Pearson coefficient; 

 BlSe – asymmetry measured as 

the difference between the mean 

and the mode;  
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Illustration of the proposed method – the case of two scenarios 

Let us assume that two significantly different scenarios are considered.  

Using the standard approach, two different fan charts should be shown. They are 

presented in figures 8 a-b. Each of the fan charts was built around a different cen-

tral path corresponding to a different scenario. The alternative paths are beyond the 

90- percent bounds and theirs uncertainties are not included. 

 

The fan charts shown in figures 8c and 8d are the results of the application of the 

new method. In the first case both scenarios are equally probable; in the second case 

the probability of scenario sc1 is twice as high. 

 
Figure 8 
Comparison of the standard method (a,b) and the modified method  
a b

c d

 

The traceability of scenarios has been preserved. The paths corresponding to the 

both scenarios are within the 90-percent bounds. It would be also possible to quan-

tify the likelihood with a greater accuracy without fear of inconsistency of the 

communication. 
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Concluding Remarks 

 

Information about uncertainty associated with application of a particular model or 

forecasting method is undoubtedly very important from the point of view of both 

readers and creators of forecasts. It allows recipients to assess to what extent they 

can trust the presented forecasts and it helps forecasting teams to improve their 

models. However, fan charts based only on statistical errors can be of little use in 

policy-making and explaining decisions.  

 

The proper response to the uncertainty requires the probability distributions to de-

scribe not only past statistical errors, but also, or even above all, the possible states 

of the economy and to allow illustrating the consequences of the realization of dif-

ferent macroeconomic scenarios. This is particularly important when the uncertain-

ty about the future is high.  

 

The growing popularity of fan charts - treating them as a universal tool for present-

ing macroeconomic forecasts - requires accurate determining what is meant by "un-

certainty". It is necessary to take into account not only the sources of uncertainty 

but also its nature and scale and to adjust methods of presenting uncertainty to the 

needs of different groups of recipients.  
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