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Abstract

Occasionally binding credit constraints (OBC) have recently been explored

as a promising way of modeling financial frictions. However, given their

highly non-linear nature, most of the literature has concentrated on small

models that can be solved using global methods. In this paper, we in-

vestigate the workings of OBC introduced via a smooth penalty function.

This allows us to move towards richer models that can be used for policy

analysis. Our simulations show that in a deterministic setting the OBC

approach delivers welcome features, like asymmetry and non-linearity in

reaction to shocks. However, feasible local approximations, necessary to

generate stochastic simulations, suffer from fatal shortcomings that make

their practical application questionable.

JEL: E30, E44
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Chapter 1

1 Introduction

Dynamic, stochastic general equilibrium (DSGE) models featuring financial

frictions have recently become highly popular both at central banks and in the

academic world. Their applications range from explaining the role of financial

shocks during the crisis (Gerali et al., 2010; Iacoviello and Neri, 2010; Brzoza-

Brzezina and Makarski, 2011), through analyzing optimal monetary policy in the

presence of financial frictions (Cúrdia andWoodford, 2008; De Fiore and Tristani,

2009; Carlstrom et al. (2010); Kolasa and Lombardo, 2011) to the impact of

macroprudential regulations on the economy (Angeloni and Faia, 2009; Meh and

Moran, 2010; Aliaga-Dı́az and Olivero, 2012).

A substantial part of the literature features financial frictions in the form

of credit constraints. In this concept, that can be traced back to the seminal

paper of Kiyotaki and Moore (1997), some agents (entrepreneurs or households)

are limited in their borrowing capacity by the amount of collateral that they

can provide to the lender. The constraint is assumed to be eternally binding,

which facilitates the model solution as standard perturbation techniques can be

applied. A number of papers followed Iacoviello (2005) and used this approach to

model frictions in the housing market. However, while conceptually and compu-

tationally attractive, the eternally binding constraint (EBC) setup suffers from a

major shortcoming. As documented by Brzoza-Brzezina et al. (2013), the perma-

nent nature of collateral constraints generates strong, short-lived and symmetric

reactions of macroeconomic variables to shocks. This means in particular that

the EBC modeling strategy does not allow to distinguish between “normal” and

“stress” periods.

This model feature seems inconsistent with empirical evidence. Table 1

presents the skewness (i.e. the third standardized moment) for main variables

related to the housing market. The reason for looking at this part of the economy

is its important role in driving the business cycle as identified in the financial

frictions literature (see e.g. Iacoviello and Neri, 2010). It is clear that residential

4

investment, housing stock, change in mortgage loans and house price inflation

are all skewed downwards, i.e. left tail events are relatively more frequent. This

suggests either that shocks affecting the housing market are asymmetric, or that

it responds to symmetric shocks in a skewed fashion.

In this paper we follow the second option by considering a model in which

asymmetries emerge endogenously from constraints facing the agents.1 Such an

approach has not only a more structural flavor, but also seems to be supported by

some recent empirical literature. In particular, Hubrich and Tetlow (2012) show

that negative output effects of financial shocks are much more pronounced and

long-lasting in times of high financial stress than in normal times. Kaufmann

and Valderrama (2010) show that amplifying effects of loan shocks work in a

highly nonlinear fashion. They identify periods during which loan shocks have

only moderate effect on GDP and periods when they strongly amplify the cycle.

Collateral constraints are certainly important in real life and potentially use-

ful for modeling purposes. However, the discussion presented above suggests

that they should not be applied in a permanently and symmetrically binding

fashion. A preferred specification would feature constraints that do not matter

under normal circumstances (from the modeling perspective: in the vicinity of

the steady state), but become binding occasionally, i.e. during episodes of un-

favorable economic conditions (e.g. after a series of negative macroeconomic or

financial shocks).

The idea of occasionally binding constraints (OBC) is not new (e.g. Chris-

tiano and Fisher, 2000; Mendoza, 2010; Brunnermeier and Sannikov, 2011). How-

ever, given their highly non-linear nature, they should ideally be solved with

global methods. Due to the curse of dimensionality, however, these can be ap-

plied only to relatively small models with a limited number of state variables. In

spite of the progress achieved in the area of global solution techniques in recent

1In terms of methodological approach, this paper is hence related to the literature investi-
gating asymmetries arising from downward nominal rigidities (see e.g. Kim and Ruge-Murcia,
2009; Fahr and Smets, 2010) or the zero lower bound on nominal interest rates (Eggertsson and
Woodford, 2004; Adam and Billi, 2006). The alternative approach, i.e. generating skewness
by feeding skewed shocks into a linearized model, is followed e.g. by Grabek et al. (2011).

5
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years,such methods are still out of range for models of the size used for prac-

tical policymaking, i.e. featuring a number of real and nominal rigidities. For

instance, Fernández-Villaverde et al. (2012) use collocation methods to solve a

New Keynesian model at the zero lower bound. However, their model features

only five state variables. Adding standard features of models currently used at

central banks like endogeneous capital, habit formation, wage rigidity, interest

rate inertia or indexation (Christiano et al., 2005; Smets and Wouters, 2003)

would more than tripple the number of state variables, making a global solution

infeasible. At the same time, adding these frictions seems indispensable when the

models are to be applied for instance for analyzing business cycle consequences

of macroprudential policies. For such models, local solution methods are still the

only feasible option.

For these reasons, we thoroughly investigate a potentially attractive short-

cut to approximate occasionally binding constraints that has been introduced by

Luenberger (1973) and Judd (1998), and more recently advocated by De Wind

(2008), i.e. the so-called barrier or penalty function method. This approach

essentially consists in converting inequality constraints into equality constraints,

making the use of standard perturbation techniques possible. It has been ap-

plied to a range of medium-sized macroeconomic models e.g. by Rotemberg and

Woodford (1999), Preston and Roca (2007) and Kim et al. (2010). To this end,

we construct a DSGE model with a standard set of rigidities and collateral con-

straints in the spirit of Iacoviello (2005), except that the latter are introduced

in the form of a smooth penalty function. We parametrize the model in such

a way that the constraint does not play an important role close to the steady

state, but becomes binding when the economy is hit by sufficiently large negative

shocks. Next, we investigate the main features of the model by simulating it both

under perfect foresight and in a stochastic setting using its local approximations

of various orders.

Our main findings are as follows. First, the introduction of occasionally bind-

ing constraints via the penalty function approach allows to generate asymmetric

6

and non-linear reactions of the economy to shocks. Second, this feature can

be also reproduced for local approximations, though only for orders higher than

two. Third, and less optimistic, stochastic simulations for 2nd, 3rd and 4th order

approximations suffer from serious stability problems that make them inapplica-

ble in practice. This finding stands in contrast to De Wind (2008), who shows

that for a simple model with a penalty function higher order perturbation can

be a feasible solution method. We show that this result does not translate into

more sophisticated models. Approximations of order higher than four are, on

the other hand, prohibitively expensive in terms of storing and computing power

for medium-sized business cycle models. All in all, while being practical for non-

stochastic models, the penalty function approach unfortunately fails to fulfill our

expectations in a stochastic environment. This makes it an attractive way of

introducing financial frictions into deterministic models like GEM (Tchakarov et

al., 2004) or EAGLE (Gomes et al., 2012). However, a fully fledged application

in a realistic stochastic framework seems currently out of range.

The rest of the paper is structured as follows. In Sections 2 and 3 we present

the model and its calibration. Section 4 uses deterministic simulations to present

the model’s features. In section 5 we investigate the performance of local ap-

proximations and their usefulness in generating stochastic simulations. Section

6 concludes.

7
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Chapter 2

2 Model

We consider a closed economy DSGE model in the spirit of Iacoviello (2005),

where some agents face collateral constraints on their borrowing. In this section

we first sketch out the structure of the model and then present two alternative

specifications of the credit constraint, i.e. the EBC and OBC variants.

2.1 Households

There are two types of households indexed by ι on a unit interval: patient of

measure ωP and impatient of measure ωI = 1− ωP .
2

2.1.1 Patient households

In each period, patient households decide on their consumption of goods cP,t and

housing services χP,t, labor supply nP,t, capital stock kt and savings deposits in

the banking sectorDt.
3 There are no financial frictions on the depositors’ side

and hence patient households can save at the policy (interbank) rate Rt. They

are also assumed to own all firms and banks in the economy, which pay them

dividends ΠP,t.

Households maximize the following lifetime utility function (with external

habit formation in consumption and housing)

E0

{
∞∑
t=0

βt
P

[
(cP,t(ι)− ξccP,t−1)

1−σc

1− σc

+Aχ
(χP,t(ι)− ξχχP,t−1)

1−σχ

1− σχ

−An
nP,t(ι)

1+σn

1 + σn

]}
(1)

2We employ the following notational convention: all variables denoted with superscript P
or I are expressed per patient or impatient household, respectively, while all other variables
are expressed per all households. For example, kt denotes per capita capital and since only
patient households own capital, capital per patient households is equal to kP,t = kt/ωP .

3We calibrate the model so that patient households save and never borrow. Therefore, to
simplify notation, we eliminate credits (which they would not take anyway) from their budget
constraint. Similarly, we eliminate deposits from impatient households’ budget constraint (6).

8

subject to the budget constraint

PtcP,t (ι) + Pχ,t(χP,t (ι)− (1− δχ)χP,t−1 (ι)) + Pk,t(kP,t(ι)− (1− δk)kP,t−1(ι))+

+Dt (ι) ≤ WP,tnP,t (ι) +Rk,tkP,t−1(ι) +Rt−1Dt−1 (ι) + ΠP,t (2)

where Pt denotes the price of consumption goods, Pχ,t is the price of housing, Pk,t

is the price of capital, WP,t stands for patient households’ nominal wage, while

Rk,t is the rental rate on capital.

2.1.2 Impatient households

Impatient households choose in each period the level of consumption cI,t and

housing services χI,t, as well as labor supply nI,t. Furthermore, we assume that

impatient households can take differentiated loans from banks of measure one,

which they aggregate according to the following formula

LI,t(ι) =
[ˆ 1

0

LI,t(ι, j)
1

µL dj
]µL

(3)

where LI,t (ι, j) denotes a loan taken by household ι from bank j. This specifi-

cation gives rise to the following definition of the interest rate on loans RL,t

RL,t =

[ˆ 1

0

RL,t(j)
1

1−µL

]1−µL

(4)

where RL,t(j) denotes the interest rate charged by bank j.

Impatient households maximize the following lifetime utility function

E0

{
∞∑
t=0

βt
I

[
(cI,t(ι)− ξccI,t−1)

1−σc

1− σc

+ Aχ
(χI,t(ι)− ξχχI,t−1)

1−σχ

1− σχ

− An
nI,t(ι)

1+σn

1 + σn

]}
(5)

9
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measure ωP and impatient of measure ωI = 1− ωP .
2

2.1.1 Patient households

In each period, patient households decide on their consumption of goods cP,t and

housing services χP,t, labor supply nP,t, capital stock kt and savings deposits in

the banking sectorDt.
3 There are no financial frictions on the depositors’ side

and hence patient households can save at the policy (interbank) rate Rt. They

are also assumed to own all firms and banks in the economy, which pay them

dividends ΠP,t.

Households maximize the following lifetime utility function (with external

habit formation in consumption and housing)

E0

{
∞∑
t=0

βt
P

[
(cP,t(ι)− ξccP,t−1)

1−σc

1− σc

+Aχ
(χP,t(ι)− ξχχP,t−1)

1−σχ

1− σχ

−An
nP,t(ι)

1+σn

1 + σn

]}
(1)

2We employ the following notational convention: all variables denoted with superscript P
or I are expressed per patient or impatient household, respectively, while all other variables
are expressed per all households. For example, kt denotes per capita capital and since only
patient households own capital, capital per patient households is equal to kP,t = kt/ωP .

3We calibrate the model so that patient households save and never borrow. Therefore, to
simplify notation, we eliminate credits (which they would not take anyway) from their budget
constraint. Similarly, we eliminate deposits from impatient households’ budget constraint (6).

8

subject to the budget constraint

PtcP,t (ι) + Pχ,t(χP,t (ι)− (1− δχ)χP,t−1 (ι)) + Pk,t(kP,t(ι)− (1− δk)kP,t−1(ι))+

+Dt (ι) ≤ WP,tnP,t (ι) +Rk,tkP,t−1(ι) +Rt−1Dt−1 (ι) + ΠP,t (2)

where Pt denotes the price of consumption goods, Pχ,t is the price of housing, Pk,t

is the price of capital, WP,t stands for patient households’ nominal wage, while

Rk,t is the rental rate on capital.

2.1.2 Impatient households

Impatient households choose in each period the level of consumption cI,t and

housing services χI,t, as well as labor supply nI,t. Furthermore, we assume that

impatient households can take differentiated loans from banks of measure one,

which they aggregate according to the following formula

LI,t(ι) =
[ˆ 1

0

LI,t(ι, j)
1

µL dj
]µL

(3)

where LI,t (ι, j) denotes a loan taken by household ι from bank j. This specifi-

cation gives rise to the following definition of the interest rate on loans RL,t

RL,t =

[ˆ 1

0

RL,t(j)
1

1−µL

]1−µL

(4)

where RL,t(j) denotes the interest rate charged by bank j.

Impatient households maximize the following lifetime utility function

E0

{
∞∑
t=0

βt
I

[
(cI,t(ι)− ξccI,t−1)

1−σc

1− σc

+ Aχ
(χI,t(ι)− ξχχI,t−1)

1−σχ

1− σχ

− An
nI,t(ι)

1+σn

1 + σn

]}
(5)
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subject to the budget constraint

PtcI,t (ι) + Pχ,t(χI,t (ι)− (1− δχ)χI,t−1 (ι)) +

ˆ 1

0

RL,t−1(j)LI,t−1(ι, j)dj ≤

≤ WI,tnI,t (ι) + LI,t (ι) (6)

the formula for loans (3) and the collateral constraint

RL,tLI,t (ι) ≤ mχ,tEt {Pχ,t+1} (1− δχ)χI,t (ι) (7)

where WI,t denotes the impatient households’ nominal wage and mχ,t is a loan-

to-value (LTV) shock that follows an AR(1) process with a mean mχ, persistence

ρm and a standard deviation of innovations σm.

2.1.3 Labor market

Both patient and impatient households offer differentiated labor services. Each

household supplies monopolistically distinct labor services to competitive ag-

gregators, who transform them into homogenous labor input according to the

following formula

nt =

[
ω

µn−1
µn

P

(
nP
t

) 1
µn + (1− ωP )

µn−1
µn

(
nI
t

) 1
µn

]µn

(8)

where

nP,t =

[
1

ωP

ˆ ωP

0

nP,t(ι)
1

µw dι

]µw

(9)

nI,t =

[
1

ωI

ˆ ωI

0

nI,t(ι)
1

µw dι

]µw

(10)

We assume that households set their nominal wages WP,t and WI,t according

to the Calvo scheme. In each period, each household with probability (1 − θw)

receives a signal to reoptimize its nominal wage. Otherwise, wages are indexed

according to πζw,t = ζwπt−1 + (1 − ζw)π where πt ≡ Pt/Pt−1 and π denote,

respectively, inflation and its steady state value.

10

We assume perfect risk sharing across households of the same type. As a

result, wage stickiness does not create additional heterogeneity in consumption

and housing choices between the agents.

2.2 Producers

In our model economy there are several types of firms, all owned by patient

households and hence using their marginal utility as a discount factor. Producers

of differentiated intermediate goods operate in a monopolistically competitive

environment and sell their goods to final goods producers who aggregate them

into final goods. The final goods are next either consumed or purchased by

capital and housing producers, who combine them with the existing capital and

housing stocks, and resell to households.

2.2.1 Capital and housing producers

In each period, perfectly competitive capital and housing goods producers pur-

chase undepreciated capital and housing stocks from the previous period and

produce new capital and housing according to the following formulas

kt = (1− δ) kt−1 +
(
1− Sk

( ik,t
ik,t−1

))
ik,t (11)

and

χt = (1− δ)χt−1 +
(
1− Sχ

( iχ,t
iχ,t−1

))
iχ,t (12)

where ik,t and iχ,t denote, respectively, capital and housing investment. We

assume that Sk

(
ik,t

ik,t−1

)
= κk

2

(
ik,t

ik,t−1
− 1

)2

and Sχ

(
iχ,t

iχ,t−1

)
= κk

2

(
iχ,t

iχ,t−1
− 1

)2

.

2.2.2 Final goods producers

Final goods producers operate in a competitive setting. They purchase differ-

entiated intermediate goods yt(i) of measure one and aggregate them into final

11
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good yt according to the following technology

yt =
( ˆ

yt(i)
1
µdi

)µ

(13)

2.2.3 Intermediate goods producers

Intermediate goods producers, indexed by i, combine labor and capital with the

following technology

yt(i) = ztkt(i)
αnt(i)

1−α (14)

where zt denotes productivity shock that follows an AR(1) process with per-

sistence ρz and a standard deviation of innovations σz. They operate in a

monopolistically competitive environment and set their prices according to the

Calvo scheme. In each period, each producer i with probability (1 − θ) re-

ceives a signal to reoptimize its price. Otherwise, prices are indexed according

to πζ,t = ζπt−1 + (1− ζ)π .

2.3 Closing the model

2.3.1 Financial intermediation

In our economy there are no frictions between deposits and the interbank market,

so patient households earn the policy (interbank) rate on their deposits. However,

the lending rate and the interbank rate are different. This is due to the presence

of a continuum of monopolistically competitive lending banks which borrow in

the interbank market at the policy rate to finance differentiated loans extended to

households at the lending rate RL,t(j). By solving the banks’ problem subject to

the demand for loans from impatient households, we get the following equilibrium

relation between the lending rate and the policy rate

RL,t = µLRt (15)

12

2.3.2 Monetary policy

The monetary authority sets the policy rate according to the standard Taylor

rule
Rt

R
=

(
Rt−1

R

)γR
[(πt

π

)γπ
(
yt
y

)γy]1−γR

eεR,t (16)

where variables without time subscripts denote their steady state values and εR,t

is a monetary policy shock with a standard deviation σR.

2.3.3 Market clearing

We impose a standard set of market clearing conditions. In particular, housing

market clearing implies

ωPχP,t + ωIχI,t = χt (17)

and the aggregate resource constraint is

yt = ct + ik,t + iχ,t + gt (18)

2.4 Occasionally and eternally binding credit constraints

A standard way of dealing with the inequality constraint (7) is to assume that it

is eternally binding. This is legitimate if impatient households’ discount factor

is low and shocks hitting the economy are sufficiently small. Hence, if we define

the Lagrange multiplier on the collateral constraint as Θt/RL,t, the EBC variant

results in the following Euler equation

uI,c,t = Et

{
βIuI,c,t+1π

−1
t+1

}
RL,t +Θt (19)

where uI,c,t denotes impatient agents’ marginal utility of consumption.

While solving the problem with occasionally binding credit constraints (OCB),

we follow De Wind (2008) and approximate the inequality constraint (7) by a

smooth penalty function

13
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Ψt =
1

η
exp [−ηΓt] (20)

where Γt ≡ Et {RL,tlI,t −mχ,tpχ,t+1πt+1(1− δχ)χI,t}, lI,t ≡ LI,t/Pt and pχ,t ≡

Pχ,t/Pt. The derivative of this penalty function with respect to lI,t ,which we will

refer to as the penalty function slope, is equal to

Ψl,t = RL,t exp [−ηΓt] (21)

and the Euler equation becomes

uI,c,t = Et

{
βIuI,c,t+1π

−1
t+1

}
RL,t +Ψl,t (22)

Therefore, depending on the setting, financial frictions manifest themselves

in either Θt or Ψl,t. One of the problems with the EBC variant is that Θt

can go negative (i.e. the assumption on the eternally binding nature of the

constraint is violated) in simulations with sufficiently strong credit easing. This

setup also produces very little asymmetry between responses to positive and

negative shocks. In contrast, since Ψl,t is increasing and convex in Γt, the OBC

variant will generate asymmetric responses to changes in credit conditions. In

particular, if η → ∞, the penalty function collapses to the inequality constraint,

i.e. exogenous credit easing (tightening) will have no (very strong) effect on the

economy.

14

3 Calibration

We calibrate the model to the US economy. The time frequency is quarterly.

The exact values of the calibrated parameters are presented in Table 3.

We take most of the parameters from the literature. The discount factor for

patient households is set to 0.99, which is a standard value for quarterly data.

We choose the annual depreciation rate for capital and housing of 8% and 3.5%,

respectively. The inverse of the intertemporal elasticity of substitution in con-

sumption and housing, as well as the inverse of the Frisch elasticity of labor

supply are all set to 2, as it is common in the macro literature. We calibrate

the degree of external habit formation both in consumption and housing at 0.7.

The Calvo parameters for wages and prices are set to 0.75, while the respective

indexation parameters are assumed to be 0.5. We choose the same markups in

the labor and product markets of 1.2, which is in line with the literature. The

elasticity of substitution between labor of patient and impatient households is

calibrated at 6. Following Christiano et al. (2005), we choose the capital ad-

justment cost curvature parameter equal to 5 and, since the process of housing

accumulation seems to be of a similar nature, we parametrize housing adjust-

ment costs in the same way. For the Taylor rule, we assume a standard set of

parameters, i.e. interest rate smoothing γR equal to 0.9, the inflation coefficient

γπ of 1.5 and the output coefficient γy equal to 0.5. The steady state annual

inflation rate is set to 2%.

There are several parameters that are calibrated to match some key steady

state ratios, summarized in Table 2. In particular, we set the housing weight in

utility to match the residential investment share in GDP, the capital elasticity of

output to match the physical capital investment share in GDP, the labor weight

in utility to match the steady state hours, the share of impatient households to

match the share of loans in GDP, and the markup in financial intermediation

to match the spread between the lending rate and the policy rate. Finally, the

steady state LTV ratio is set to 75%.

15
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A crucial part of our calibration concerns parametrization of the penalty

function. Ideally, we would like to make it as steep as possible (i.e. set η to a

large number) since that brings us closer to the original non-equality constraint

given by equation (7). However, as discussed by De Wind (2008), there is a

trade-off between the amount of penalty function curvature and feasibility of

solving the model using perturbation techniques. Since one of our goals is to

investigate the ability of the OBC framework to generate reasonable stochastic

simulations (which, given the model size, requires low order approximations), we

opt for a moderate value of η = 50.

The workings of the OBC framework depend not only on the overall curvature

of the penalty function, but also on how the penalty function responds to changes

in leverage in normal times. It can be shown that, given the calibration choices

discussed above, the steady state slope of the penalty function Ψl is controlled

by the impatient households’ discount factor. To see it, it is instructive to look

at equation (22) evaluated in the steady state:

Ψl = uc(1− βI
Rχ

π
) = uc(1− βI

µL

βP

) (23)

where the second equality follows from patient households’ Euler equation and

the solution to financial intermediaries’ problem given by equation (15).

Hence, if we want the credit constraint to be literally not binding in normal

times, the penalty function should be perfectly flat in the vicinity of the steady

state, which can be achieved by setting the impatient households’ discount fac-

tor close to its upper bound of βPµ
−1
L . However, since the penalty function is

strictly positive and increasing in leverage, low Ψl also implies that the steady

state leverage will be far from the one at which the constraint starts binding.

We solve this trade-off by allowing the collateral constraint to be moderately

binding in the steady state. More precisely, we set βI to 0.985, which translates

into a difference between impatient households’ subjective rate of time preference

β−1
I and the steady state real lending rate Rχπ

−1 of 50 bp (annualized). This

16

parametrization also implies the steady state leverage ratio (repayment value of

loans over the expected value of accepted collateral) equal to 74%, i.e. 1 pp.

below the LTV ratio.

In the simulation exercises discussed in the next section we use three shocks,

all of which are calibrated outside of the model. The productivity shock is cali-

brated as in Cooley and Prescott (1995), while the monetary shock parametriza-

tion comes from Smets and Wouters (2007). The LTV shock process is estimated

using the data on the loan to price ratio reported by the Federal Housing Finance

Agency in its Monthly Interest Rate Survey.

17
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Chapter 4

4 Non-approximated solution

In this section we discuss the workings of the OBC framework using a selection

of deterministic (i.e. perfect foresight) simulations generated from the model laid

out above. In such a non-stochastic environment one does not need to rely on

any approximation of the decision rules implied by the model. This allows us to

fully assess the degree of non-linearities and asymmetries embedded in the model

due to the presence of the penalty function.4

4.1 The mechanics of occasionally binding constraints

We start by demonstrating how parametrization of the model, and the penalty

function in particular, affects the workings of the OBC setup. As mentioned in

the previous section, there are two key parameters in this respect: the impatient

households’ discount factor βI and the penalty function curvature η.

We first examine how the model dynamics is affected by βI , holding the

the penalty function curvature η as in our baseline calibration. As discussed

in the previous section, the higher βI , the flatter the penalty function in the

steady state, i.e. the further the steady state equilibrium from the steep part of

the penalty function. Consequently, for a given degree of curvature η, large βI

implies little effect of small changes in LTV around the steady state on credit

conditions. This effect is illustrated in Figure 1. If the inverse of βI almost

equals the long-run real interest rate paid on loans, a fall in LTV (starting from

the steady state) has virtually no effect on other variables. Decreasing this

parameter implies moving up along the penalty function. Since Ψl,t is increasing

and convex, it responds much more if the simulation starts at higher leverage.

We use an analogous set of simulations to highlight the role of the penalty

function curvature, holding βI as in our baseline calibration. In Figure 2 we

compare three alternative calibrations of OBC to the eternally binding bench-

4All model simulations are performed using Dynare and Dynare++. See Adjemian et al.
(2011).
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mark. The OBC setups generate declines in loans that are far more moderate

and hence more consistent with the volatility of mortgage loans observed in the

data.5 Also, the reactions are much smoother, often displaying hump-shaped

patterns.6 If the collateral constraint binds at all times, the inertia in responses

is substantially subdued and for some variables (output, consumption, loans) the

strongest reaction occurs on impact.

Again, these differences can be traced back to the response of the penalty

function slope (Ψl,t for OBC) or the normalized Lagrange multiplier on the con-

straint (Θt for EBC) as both measure the tightness of credit conditions. Natu-

rally, the steeper the penalty function (i.e. the higher η), the more similar the

responses under the two model versions. However, even for η = 100, i.e. a rela-

tively big curvature, the increase in the constraint’s tightness is more than four

times smaller under OCB than under EBC, which translates into a more muted

and inertial contraction in loans in the former variant.

4.2 Can the OBC setup generate sizable asymmetries?

As discussed in the introduction, skewness in housing market indicators is a

stylized fact of the US business cycle. Therefore, we next examine to what extent

the asymmetry embedded in the OBC penalty function can generate skewness

in the responses of the main macrocategories, and housing market variables in

particular.

Naturally, as the exponential function is smooth, we can expect to obtain

non-negligible asymmetries only for sufficiently large shocks. This point is illus-

trated in Figure 3, where we plot positive and negative responses to standard

(0.45%) and large (3%) LTV shocks. For an LTV shock of a typical magnitude,

5The standard deviation of HP-filtered real mortgage loans in the US over the period of
1950-2010 is below 1%.

6The empirical literature gives support to inertia in reaction to financial shocks. For in-
stance, Assenmacher-Wesche and Gerlach (2008) present hump-shaped impulse responses to
credit shocks (without identifying whether they originate from demand or supply) from a VAR.
Kose et al. (2011) identify credit supply shocks in a FAVAR framework and obtain hump-shaped
impulse responses. Gilchrist and Zakrajsek (2012) use a VAR to extract shocks to the excess
bond premium, also finding hump-shaped reactions of standard macrovariables.
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the effects of a credit tightening are mirror images of the effects of a credit easing.

However, if we consider relatively large shifts in the collateral requirements, clear

asymmetries emerge, both in terms of size and shape of the impulse responses.

The most notable example are mortgage loans, that fall strongly after an LTV

tightening and increase only moderately in response to an LTV easing. This

asymmetry in impatient agents’ borrowing conditions is strong enough to trans-

late into asymmetries in consumption and output. The contraction in residential

investment exhibits more persistence than it is the case during expansion. Fi-

nally, a large negative LTV shock generates a decline in real house prices that is

larger than an increase resulting from an LTV easing of the same magnitude.

Virtually all of these asymmetries can be traced back to the workings of the

penalty function. As a result, they will be non-negligible only for shocks that

sufficiently affect the credit conditions. As an LTV shock has a direct impact on

impatient agents’ ability to borrow, its potential to generate sizable asymmetries

is relatively large. Productivity shocks affect the credit conditions via their

impact on the price of collateral and real value of debt, and hence can generate

substantial asymmetry in loans as well. As can be seen in Figure 4, depicting the

responses to relatively large (1.4%, i.e. two standard deviations) productivity

shocks, loans fall both in response to positive and negative shocks. In the former

case, the reason is the fall in house prices and the Fisher debt deflation effect,

which tighten the collateral constraint. In the latter, the credit conditions barely

change and the fall in loans is driven by patient agents’ consumption smoothing

motive, which decreases their demand for deposits and hence the supply of loans

available to impatient households. This skewness in loans translates into some

asymmetry in residential investment and consumption, and hence output.

A similar pattern can be observed for big monetary shocks (Figure 5). Also

in this case, loans contract both in response to a monetary easing and tighten-

ing. This time, however, the resulting asymmetries in output are relatively small,

even though the size of the shock is substantial.

20

Overall, our experiments demonstrate that the OBC framework offers sub-

stantial flexibility in its parametrization. It has the potential to generate re-

sponses whose persistence resembles more that found in the empirical literature

and to explain the asymmetries observed in the macroeconomic time series, es-

pecially those related to the housing market. This will be particularly true if

a significant part of business cycle fluctuations is driven by shocks that have

significant effects on credit conditions.
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Chapter 5

5 Local approximations

The natural next step is to run stochastic simulations. To achieve this we ap-

ply standard perturbation methods relying on local approximations of the model

around the steady state. In the DSGE literature the most frequent approach

is log-linearization. However, given the highly nonlinear shape of the penalty

function, a simple 1st order approximation would be clearly counterproductive.

It has been recognized in the literature that in such cases one has to rely on

higher order expansions. One thing that remains ex ante unclear is which order

is most appropriate for our purposes.

The answer to such a question is non-trivial. Naturally, higher order expan-

sions allow to approximate the policy functions in the vicinity of the steady state

better than low order ones. However, this may be no longer true if we move away

from the steady state, i.e. if we want to analyze the effects of large shocks. Also,

it is a well-known fact that non-linear expansions can imply spurious explosive

dynamics (Kim et al., 2008).

The literature suggests that the choice of the optimal perturbation order

can be model-specific. Lombardo (2011) demonstrates for a simple stochastic

neoclassical growth model that increasing the order of approximation usually

helps to stabilize the model, i.e. spurious explosiveness becomes less of an issue.

Den Haan and De Wind (2012) analyze a simple model with a non-negativity

constraint approximated by a penalty function and document that the instability

problem gets worse when moving from 2nd to 3rd order perturbation, while higher

order approximations are stable but generate large and odd oscillations.

Needless to say, while dealing with larger models, one also needs to take into

account the computing time necessary to derive higher order expansions. In

our case, already the 5th order approximation is prohibitively time and memory

consuming. Therefore, in what follows we present our findings on the workings

of the 2nd, 3rd and 4th order perturbations to our model.
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5.1 2nd order approximation

We begin our investigation with the second order perturbation. It should be

mentioned that approximation of this order has been previously applied in the

literature to solve and simulate models with occasionally binding credit con-

straints in the form of penalty functions. Mendicino (2012) considers a real

model á la Kiyotaki and Moore (1997) and uses the 2nd order approximation

to analyze the response to a moderate positive productivity shock, finding very

little difference between the OBC and EBC variants. We have demonstrated that

this result crucially depends on the shock size and sign, as well as on penalty

function parametrization. Abo-Zaid (2012) uses a New Keynesian model with

collateral constraint on hiring labor to investigate the optimal level of inflation,

documenting skewness in the impulse responses. We will show below that some

of this finding can actually be spurious.

We first concentrate on relatively large LTV shocks (i.e. 3%), since, as dis-

cussed in the previous section, they are capable of generating relatively high

asymmetry. The impulse responses in the deterministic environment are pre-

sented in Figure 6. For comparative reasons, we also show the “true” IRFs from

the non-approximated model. The figure also plots the analogous reactions for

higher order approximations, which will be discussed later. Focusing on the

2nd order perturbation, its comparison to the non-approximated solution clearly

shows a shortcoming of the former. In particular, the penalty function derivative

Ψl,t increases in reaction to both positive and negative shocks, while ideally it

should show no response for an increase in the LTV ratio. As a result, for several

variables the impulse responses differ substantially from the non-approximated

solution, and even generate spurious asymmetry. For instance, according to the

2nd order perturbation and unlike the ”truth”, loans decline in response to both

expansionary and contractionary LTV shocks.

To understand why this happens it is useful to investigate the shape of Ψl,t

under the 2nd order perturbation. To this end, we run a stochastic simulation by
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drawing 1000 shocks to LTV. Leaving for a moment stability problems aside, we

present in Figure 7 the scatterplot of the penalty function slope Ψl,t against the

gap between the repayment value of loans and the expected value of accepted

collateral, i.e. the argument of the penalty function Γt. The reason for the

deviations from the deterministic solution becomes evident - the approximated

function is almost symmetric.

Let us now return to the problem of stability of stochastic simulations. As

described by Den Haan and De Wind (2012), approximations of exponential

penalty functions can lead to instabilities as they generate an additional fixed

point, which, if close enough to the model’s steady state, can destabilize stochas-

tic simulations even for relatively small shocks. Our simulations based on the 2nd

order perturbation suffer exactly from this problem. The reason is the left arm

of Ψl,t, where the positive slope of Ψt generates artificial incentives for impatient

households to decrease their debt if it is sufficiently far from the constraint.

The literature has suggested two ways of dealing with such spurious unstable

dynamics. One option is to apply the “pruning” procedure advocated by Kim

et al. (2008). However, this algorithm turned out to be doing a poor job in

approximating the shape of the penalty function in our model. This can be seen

in Figure 8, which shows that the plot of Ψl,t against Γt obtained using “pruning”

is very fuzzy.7 An alternative option is to follow Aruoba et al. (2006) and just

eliminate explosive draws. In our case, this approach was delivering a much

clearer picture of the shape of the penalty function, and so was applied both to

the simulation presented above and to higher order approximations.8

Unfortunately, for larger shocks to LTV or for realistic compositions of various

shocks, simulations tend to explode too frequently. In particular, for a mixture

of LTV, productivity and monetary policy shocks with standard deviations as

given in Table 3, our procedure discards more than 10% of draws. Moreover, for

7See Den Haan and De Wind (2012) for a detailed explanation of why pruned perturbations
can deliver a poor fit even to standard polynomials.

8To be precise, for each new draw of shocks, we check whether the path of ΨL converges to
the stochastic steady state over the next 50 periods, assuming no further shocks occur. If this
condition is not fulfilled, we draw new shocks and repeat the procedure.
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both discarding and pruning, the plot of Ψl,t is so fuzzy that it cannot be treated

as an acceptable approximation of the penalty function.

5.2 3rd order approximation

Given the failures documented above, we move on to the 3rd order approxi-

mation. This option looks promising given the deterministic impulse responses

presented in Figure 6. For most variables, the responses are quite close to those

obtained from the deterministic solution, even though the initial drop in the

penalty function slope in reaction to LTV easing is clearly exaggerated.

We next turn to stochastic simulations. Again, we draw 1000 shocks to LTV

and present the scatterplot of Ψl,t (Figure 9). As becomes evident, this time

the approximated shape of the penalty function derivative suffers from another

weakness: it becomes negative for sufficiently low values of Γt. In other words,

at low levels of leverage, the approximated slope of the penalty function again

generates artificial incentives: it punishes impatient households for reducing their

debt. Moreover, it is clear from Figure 9 that such episodes occur relatively

frequently and hence cannot be ignored.

This problem becomes even more pronounced if we add the remaining two

shocks to the model. As can be seen in Figure 10, now the left negative arm

of the penalty function dominates the right one. Also, the image of the penalty

function is no longer sharp, especially for low leverage. On the positive side, and

in contrast to the 2nd order approximation, the negative slope of the penalty

function makes the simulations more stable for low levels of debt as now impatient

households are encouraged to increase it once it becomes sufficiently small. As a

result, stochastic simulations with the 3rd order perturbation explode very rarely.

It has to be borne in mind, however, that this stability is just a nice byproduct

of twisted incentives.
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5.3 4th order approximation

Finally, we turn to the 4th order approximation. In this case, the deterministic

impulse responses to large LTV shocks (Figure 6) virtually coincide with those

obtained with the non-approximated model. Again, we next run stochastic sim-

ulations, obtained as before, i.e. using 1000 draws for innovations in LTV. At

first glance, the 4th order perturbation seems to be a clear improvement. The

shape of Ψl,t presented in Figure 11 looks very promising as it displays a clear

asymmetry and is nearly flat for low values of Γt. Unfortunately, a deeper in-

vestigation reveals substantial shortcomings of this approximation. First, larger

standard deviation of LTV shocks (1%) move the left tail of the penalty function

slope into regions where it becomes increasing in lower values of Γt. Second, and

more worrying, if we add other shocks to the model (productivity or monetary),

the model becomes highly unstable for reasons discussed while presenting the

2nd order approximation and related to an additional fixed point created by the

left arm of Ψl,t . As a result, running stochastic simulations requires discarding a

significant (over 15%) proportion of draws. Also, the image of the penalty func-

tion (not shown) is even more fuzzy than that for the 3rd order approximation.

All in all, we have to report discontent with the feasible local approximations.

The three perturbation orders we analyzed above suffer from several critical prob-

lems, related to the shape of the approximated penalty function derivative as

well as from instabilities that prevent running simulations for realistic volatility

of shocks. It has to be stressed that a further increase in the order of approx-

imation not only does not guarantee success, but for models of reasonable size

also becomes prohibitively expensive in terms of computing time.
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6 Conclusions

In this paper we investigate whether the introduction of collateral constraints

in the form of a penalty function can be used as a practical shortcut for gener-

ating plausible dynamics related to financial shocks. Our question arises from

two observations. First, financial shocks affect the economy in an asymmetric

and non-linear way. In particular, expansionary shocks tend to have less impact

than contractionary shocks. Moreover, negative effects of financial shocks are

much more pronounced and long-lasting during episodes of high financial stress

than in normal times. Second, the emerging literature on occasionally binding

constraints, while addressing these issues, tends to rely on inequality constraints

that call for global solutions. These are time consuming for small models and

impossible to apply for larger models used currently for policy analysis at cen-

tral banks and academia. The penalty function approach could thus potentially

constitute a useful shortcut, allowing for the application of local approximation

methods, and hence incorporating nonlinearities and asymmetries in medium-

and large scale models.

Having constructed a dynamic stochastic general equilibrium model with

standard real and nominal rigidities and credit constraints in form of a penalty

function, we analyze the model’s deterministic properties. We find that the

model is able to produce reactions in line with the stylized facts described above.

In particular, it generates moderate and symmetric reactions to small shocks.

However, once the shock magnitude increases, the impulse responses of several

variables tend to become asymmetric, with more pronounced reactions to shocks

that tighten the constraint.

We then move to analyzing local approximations and find that these allow

to generate similar reactions as in the deterministic solution. However, this

finding is valid for orders of approximations higher than two. The second order

approximation to the penalty function tends to generate spurious asymmetry and

should, in our view, be avoided.
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Finally, we attempt to investigate the stochastic properties of the locally ap-

proximated models. Here, our findings are less optimistic. First, even for small

shocks, the second and third order approximations to the penalty function as-

sume highly undesirable shapes for low levels of indebtness. The former implies

ever increasing rewards from reducing debt, the latter artificially punishes the

agents for deleveraging. In this respect, the fourth order approximation cuts off

relatively well. However, in a richer stochastic environment even this approxi-

mation suffers from high instabilities that, to our knowledge, cannot be removed

in a satisfactory way.

We conclude that, the penalty function approach is an attractive way of in-

troducing financial frictions into non-stochastic models. Unfortunately, it fails to

fulfill our expectations in a realistic stochastic setting, making its fully fledged

application in business cycle and macroprudential policy analysis highly prob-

lematic.
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Cúrdia, Vasco, and Michael Woodford (2008) ‘Credit frictions and optimal mon-

etary policy.’ National Bank of Belgium Working Paper 146, National Bank of

Belgium

De Fiore, Fiorella, and Oreste Tristani (2009) ‘Optimal monetary policy in a

model of the credit channel.’ Working Paper Series 1043, European Central

Bank

De Wind, Joris (2008) ‘Punishment functions.’ mimeo, University of Amsterdam

Den Haan, Wouter J., and Joris De Wind (2012) ‘Non-linear and stable

perturbation-based approximations.’ Journal of Economic Dynamics and Con-

trol

Eggertsson, Gauti B., and Michael Woodford (2004) ‘Policy options in a liquidity

trap.’ American Economic Review 94(2), 76–79

Fahr, Stephan, and Frank Smets (2010) ‘Downward wage rigidities and optimal

monetary policy in a monetary union.’ Scandinavian Journal of Economics

112(4), 812–840
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Tables and figures

Table 1: Skewness of main housing market variables

Variable Skewness
Real house price inflation -1.17**

Housing investment -0.48**
Housing stock -0.50**

Real mortgage loans -0.05
Real mortgage loans (growth rate) -0.30*

Note: *,** denote significance at the 5% and 1% level, respectively. Real house prices reflect the CPI deflated

Case-Schiller index (Source: Standard&Poors; 1q1987 - 3q2011). Housing investment is defined as real private

residential investment (Source: BEA; 1q1950-4q2011). Housing stock stands for real private residential fixed

assets (Source: BEA; 1950-2010). Real mortgage loans are CPI deflated home mortgages of households and

non-profit organizations (Source: Board of Governors; 1q1952-3q2011). All variables are detrended with the

Hodrick-Prescott filter.

Table 2: The steady state ratios

Steady state ratio Value
Housing investment share in GDP 5.5%
Capital investment share in GDP 16.9%
Mortgage loans to annual GDP 57%

Hours 0.34
Spread (annualized) 1.52pp

LTV 0.75

Note: housing investment is defined as private residential investment (Source: BEA; 1q1950-4q2011). Capital

investment reflects private and government nonresidential investment (Source: BEA; 1q1950-4q2011). Mortgage

loans are for households and non-profit organizations (Source: Board of Governors; 1q1952-3q2011). Spread

is calculated as the annualized difference between 30-year mortgage rates and yields on 30-year government

bonds (Source: FRED; 1q1977-4q2011). LTV is the loan to price ratio for mortgage loans (Source: Federal

Housing Finance Agency; 1963-2010). GDP is defined as a sum of private consumption, residential investment

and nonresidential investment.

34

Table 3: Calibrated parameters

Parameter Value Description
βP 0.99 Discount factor, patient HHs
βI 0.985 Discount factor, impatient HHs
δk 0.02 Physical capital depreciation rate
δχ 0.00875 Housing stock depreciation rate
ωI 0.8 Share of impatient HHs
Aχ 1.35 Weight on housing in utility function
An 1100 Weight on labor in utility function
σc 2 Inverse of intertemp. elast. of subst. in consumption
σχ 2 Inverse of intertemp. elast. of subst. in housing
σn 2 Inverse of Frisch elasticity of labor supply
ξc 0.7 Degree of external habit formation in consumption
ξχ 0.7 Degree of external habit formation in housing
θw 0.75 Calvo probability for wages
ζw 0.5 Indexation parameter for wages
µw 1.2 Labor markup

µn/(µn − 1) 6 Elast. of subst. b/t labor of patient and impatient HHs

µ 1.2 Product markup
θ 0.75 Calvo probability for prices
ζ 0.5 Indexation parameter for prices
α 0.316 Product elasticity with respect to capital
κk 5 Capital investment adjustment cost
κχ 5 Housing investment adjustment cost

µL 1.0038 Loan markup
mχ 0.75 Steady state LTV
η 50 Curvature of penalty function
π 1.005 Steady state inflation
γR 0.9 Interest rate smoothing
γπ 1.5 Response to inflation
γy 0.5 Response to GDP

ρz 0.95 Productivity shock - persistence
σz 0.007 Productivity shock - standard deviation
ρm 0.975 LTV shock -persistence
σm 0.0045 LTV shock - standard deviation
σR 0.001 Monetary policy shock - standard deviation

35
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ωI 0.8 Share of impatient HHs
Aχ 1.35 Weight on housing in utility function
An 1100 Weight on labor in utility function
σc 2 Inverse of intertemp. elast. of subst. in consumption
σχ 2 Inverse of intertemp. elast. of subst. in housing
σn 2 Inverse of Frisch elasticity of labor supply
ξc 0.7 Degree of external habit formation in consumption
ξχ 0.7 Degree of external habit formation in housing
θw 0.75 Calvo probability for wages
ζw 0.5 Indexation parameter for wages
µw 1.2 Labor markup

µn/(µn − 1) 6 Elast. of subst. b/t labor of patient and impatient HHs

µ 1.2 Product markup
θ 0.75 Calvo probability for prices
ζ 0.5 Indexation parameter for prices
α 0.316 Product elasticity with respect to capital
κk 5 Capital investment adjustment cost
κχ 5 Housing investment adjustment cost

µL 1.0038 Loan markup
mχ 0.75 Steady state LTV
η 50 Curvature of penalty function
π 1.005 Steady state inflation
γR 0.9 Interest rate smoothing
γπ 1.5 Response to inflation
γy 0.5 Response to GDP

ρz 0.95 Productivity shock - persistence
σz 0.007 Productivity shock - standard deviation
ρm 0.975 LTV shock -persistence
σm 0.0045 LTV shock - standard deviation
σR 0.001 Monetary policy shock - standard deviation
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Figure 1: Responses to a standard LTV tightening: the role of impatient house-
holds’ discount factor
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Note: Solid lines - βI = 0.98622, which implies the difference between its inverse and the steady state real

interest on loans of 1 bp (annualized); dashed lines - βI = 0.985 (baseline calibration, 50 bp); dotted lines -

βI = 0.98382 (100 bp).
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Figure 2: Responses to a standard negative LTV shock: the role of penalty
function curvature
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Note: Solid lines - η = 50 (baseline calibration); dashed lines - η = 100; dotted lines - η = 200; circles - EBC

(η → ∞ ).
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Figure 1: Responses to a standard LTV tightening: the role of impatient house-
holds’ discount factor
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Note: Solid lines - βI = 0.98622, which implies the difference between its inverse and the steady state real

interest on loans of 1 bp (annualized); dashed lines - βI = 0.985 (baseline calibration, 50 bp); dotted lines -

βI = 0.98382 (100 bp).
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Figure 2: Responses to a standard negative LTV shock: the role of penalty
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Note: Solid lines - η = 50 (baseline calibration); dashed lines - η = 100; dotted lines - η = 200; circles - EBC

(η → ∞ ).

37



Narodowy Bank Polski40

Figure 3: Responses to positive and negative LTV shocks: small vs. large shocks
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Note: Black solid lines - standard positive LTV shock (0.45%); black dashed lines - big positive LTV shock

(3%); gray solid lines - standard negative LTV shock (-0.45%); gray dashed lines - big negative LTV shock

(-3%).
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Figure 4: Responses to big positive and negative productivity shocks
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Note: Black lines - big positive productivity shock (1.4%, i.e two standard deviations); gray lines - big negative

productivity shock (-1.4%).
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Figure 3: Responses to positive and negative LTV shocks: small vs. large shocks
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Note: Black solid lines - standard positive LTV shock (0.45%); black dashed lines - big positive LTV shock

(3%); gray solid lines - standard negative LTV shock (-0.45%); gray dashed lines - big negative LTV shock

(-3%).
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Figure 4: Responses to big positive and negative productivity shocks
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Note: Black lines - big positive productivity shock (1.4%, i.e two standard deviations); gray lines - big negative

productivity shock (-1.4%).
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Figure 5: Responses to big positive and negative monetary shocks
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Note: Black lines - big positive monetary shock (2% annualized, i.e. five standard deviations); gray lines - big

negative monetary shock (-2% annualized).
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Figure 6: Impulse responses for the non-approximated and approximated models
- big LTV shocks
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Note: Black lines - big positive LTV shock (3%); gray lines - big negative LTV shock (-3%); solid lines - non-

approximated solution; dashed lines - 2nd order perturbation; dotted lines - 3rd order perturbation; circles -

4th order perturbation.
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Figure 5: Responses to big positive and negative monetary shocks

0 5 10 15 20
−1

−0.5

0

0.5

1
Output

0 5 10 15 20
−1

−0.5

0

0.5

1
Consumption

0 5 10 15 20
−1.5

−1

−0.5

0

0.5

1

1.5
Business investment

0 5 10 15 20
−1.5

−1

−0.5

0

0.5

1

1.5

2
Residential investment

0 5 10 15 20
−2.5

−2

−1.5

−1

−0.5

0

0.5
Loans

0 5 10 15 20
−3

−2

−1

0

1

2

3
Real house prices

0 5 10 15 20
−0.3

−0.2

−0.1

0

0.1

0.2

0.3

0.4
Inflation

0 5 10 15 20
−0.5

0

0.5
Interest rate

0 5 10 15 20
−0.2

0

0.2

0.4

0.6

0.8

1

1.2
Penalty slope

Note: Black lines - big positive monetary shock (2% annualized, i.e. five standard deviations); gray lines - big

negative monetary shock (-2% annualized).
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Note: Black lines - big positive LTV shock (3%); gray lines - big negative LTV shock (-3%); solid lines - non-

approximated solution; dashed lines - 2nd order perturbation; dotted lines - 3rd order perturbation; circles -

4th order perturbation.
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Figure 7: Penalty function derivative - 2nd order approximation
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Note: The chart is based on stochastic simulations with LTV shocks.

Figure 8: Penalty function derivative under pruning - 2nd order approximation
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Note: The chart is based on stochastic simulations with LTV shocks.
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Figure 9: Penalty function derivative - 3rd order approximation
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Note: The chart is based on stochastic simulations with LTV shocks.

Figure 10: Penalty function derivative - 3rd order approximation (all shocks)
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Note: The chart is based on stochastic simulations with LTV, productivity and monetary shocks.
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Figure 7: Penalty function derivative - 2nd order approximation
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Note: The chart is based on stochastic simulations with LTV shocks.

Figure 8: Penalty function derivative under pruning - 2nd order approximation
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Note: The chart is based on stochastic simulations with LTV shocks.
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Figure 9: Penalty function derivative - 3rd order approximation
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Note: The chart is based on stochastic simulations with LTV shocks.

Figure 10: Penalty function derivative - 3rd order approximation (all shocks)
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Note: The chart is based on stochastic simulations with LTV, productivity and monetary shocks.
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Figure 11: Penalty function derivative - 4th order approximation
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Note: The chart is based on stochastic simulations with LTV shocks.
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