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Abstract 

We investigate the dependence structure between Polish and foreign financial assets, including 

stocks, bonds and foreign exchange. Our interest is in the importance of global factors for asset 

valuation and on the strength of financial contagion. We work in the copula framework, which 

offers a full description of the dependence structure. Importantly, we assess many copula 

families and pay special attention to the testing procedure thereof. Polish equities, currency and 

to some extent long-term sovereign bonds exhibit economically significant tail dependence, 

while short-term bonds appear relatively unaffected. Symmetric tail behaviour characterises the 

majority of asset pairs, though we also find significant asymmetries in a number of cases, with 

assets more likely to post large losses when global conditions significantly deteriorate, rather 

than to gain when they improve. 

 

Keywords: Copulas, Dependence, Tail dependence coefficients, Contagion, Asset classes 

JEL: C58, G15 
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1. Introduction 

Two important issues in finance are the degree to which assets are priced locally or globally and 

differences in dependence between asset prices during crises relative to normal times (Karolyi 

and Stulz, 2003)). These have serious practical implications both from policy and risk 

management perspective. However, whereas there is a large body of work on stock market 

dependence and contagion among developed markets, there is relatively little research on 

dependence between developed and emerging markets, and fewer still on assets other than 

equities. In this paper we address these questions taking an emerging market perspective and 

investigate the dependence structure between financial assets in Poland and abroad, including 

stocks, bonds and foreign exchange, with particular interest in the dependence in crisis times. 

The simple measure of Pearson correlation is likely to be inadequate for this task, as it is 

appropriate to describe dependence in multivariate normal distribution and to some extent in 

other elliptical distributions (for details see Embrechts, McNeil and Straumann, 2002), whereas 

it is well documented that returns on asset prices exhibit fat tails and strongly deviate from 

normality (Gabraix et al., 2003). A better alternative might be to use concordance measures, 

such as Spearman’s  or Kendall’s , which can capture non-linear relations between any 

distributions. Still, rank correlations are limited to measuring monotone dependence and do not 

provide full information on dependence structure, including tails and differences therein. Full 

dependence structure can in turn be captured with copula functions, which is the method of 

choice for the present study. 

A copula is a function that links together univariate (marginal) distribution functions to form 

a multivariate distribution function (Sklar, 1959). As each marginal distribution contains all the 

univariate information on a given variable, and the multivariate distribution contains all the 

univariate and multivariate information, the functions that link the two contains all the 

information on the dependence between variables, including the behaviour at the centre of 

their distributions and in its tails. Copulas have become very popular in financial modelling (for 

a review see Patton, 2009), as they allow to model separately each marginal distribution and 

the dependence structure, and thus allow for a far greater flexibility of the multivariate 

distribution than known multivariate extensions of univariate distributions. This feature is 

particularly appealing for our study as it enables us to choose from a wide range of marginal 

distributions and dependence structures without necessarily making strong assumptions about 

the characteristics of the joint price process for any two assets.  
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Following a standard inference function for margins (IFM) approach proposed by Joe and Hu 

(1996), we first estimate the parameters of each of the univariate distributions and 

subsequently estimate the copula functions given the margins. We model univariate 

distributions using a wide range of ARMA-GARCH model specifications, apply a number of 

goodness-of-fit tests and choose the one that fits best in order to minimise the impact of 

misspecification of the margins on the estimated dependence structure. Having obtained the 

margins, we analyse the dependence structure by testing a number of parametric copula 

families, using the recent method of Genest and Remillard (2009), which was proven to 

outperform other goodness-of-fit tests for copula functions. We use daily data from 1 March 

2000 to 30 June 2012 obtained from Bloomberg and Reuters. 

Given that our interest is in the dependence between variables, particularly in the tails of their 

distributions and asymmetries therein, our work contributes to studies of financial contagion. 

Indeed, one of the most common definitions of contagion describes it as a probability of a crisis 

in one country (or asset) conditional on a crisis in another (for a review of various definitions of 

contagion see Pericoli and Sbracia, 2003). This is tantamount to tail dependence, which is 

a copula property. As a result, such an approach has sound mathematical foundations and does 

not require an ad hoc identification of the crisis periods. The advantage of using copulas in such 

settings is further underscored by Rodriguez (2007), who shows that findings of unchanged 

dependence during crises versus normal times (another definition of contagion) based on linear 

correlation documented in the influential study of Forbes and Rigobon (2002) do not hold once 

more robust dependence measure is employed. 

We contribute to the literature on contagion in the copula context in two ways. First, the vast 

majority of studies that use copula functions to gain insights into dependence among asset 

prices concentrate on relations between equity markets only (Jondeau and Rockinger, 2002, 

Aloui et al., 2011, Christoffersen et al., 2012). Less information is available on dependence 

between currencies (Patton, 2006, Benediktsdóttir and Scotti, 2009, Dias and Embrechts, 2010) 

and still less on bonds (Garcia and Tsafack, 2011). Moreover, in contrast with research on 

equities, these studies focus almost exclusively on developed markets. Second, to our 

knowledge the dependence between Polish and foreign markets has been studied usually with 

factor models, multivariate GARCH or VAR framework (Scheicher, 2001, Serwa and Bohl, 2005, 

Gębka and Serwa, 2007, Li and Majerowska, 2008, Caporale and Spagnolo, 2011, Adam, 2013 

and Gijka and Horváth, 2013). While Doman (2011) employs copulas to the study of 

dependence on the Polish market, he focuses only on the relations within Polish asset classes. 

5 
 

We complement these studies by providing analysis on the dependence and contagion between 

Polish and global markets for three asset classes – equities, foreign exchange and bonds – using 

a copula approach.  
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2. The inference function for margins method  

Sklar (1959) has shown that multivariate distribution can be decomposed into marginal 

distributions and a dependence function between them. This linking function is called a copula. 

Formally, let  be an n-dimensional distribution function with margins ,…, . Then, there 

exists a n-copula  such that for all  in : 

  (1)  

Under an additional assumption that ,…,  are continuous, the copula function is uniquely 

determined and for any  the following relation holds: 

  (2)  

where  is the generalised inverse function  for all . 

The assumption of continuity proves particularly convenient for the estimation of parametric 

distributions. Let  be a sample data matrix, where . If the 

joint distribution is  times differentiable, the density is equal to the product of marginal 

densities characterised by parameters  and the copula density with parameter 

 (Patton (2006)): 

  (3)  

This implies that the joint log-likelihood is the sum of univariate log-likelihoods and the copula 

log-likelihood: 

 

 

(4)  

This form suggests an IFM estimation procedure, consisting of separate estimation of the 

parameters of marginal distributions and then copula parameter conditionally on marginal 

distributions’ parameters fixed, rather than a computationally much more involved, though 

asymptotically efficient joint estimation of parameters for margins and copulas by maximum 

likelihood (ML). The IFM method was proposed by Joe and Hu (1997) and is commonly applied 

in similar settings (Patton,  2006, Dias and Embrechts, 2010, Christoffersen et al., 2012), 

primarily because it is computationally much more effective than the ML method, while the IFM 

7 
 

estimator remains asymptotically normal (see Joe, 1997). The IFM method amounts to first, 

maximising the likelihood for margins over -s to obtain 

transformed variable  which is distributed uniformly on a unit interval, and 

second, maximising the likelihood of the copula function  over . In 

our application we use the IFM method and limit ourselves to two-dimensional distributions, 

that is dependence between pairs of variables. We use Matlab R2011b, A. Patton’s Copula 

Toolbox and J.P. LeSage’s jplv7 toolbox. 

 

2.1. Modelling marginal distributions 

Following the IFM method, in the first step we specify parametrically the marginal distributions. 

To this end, we need an appropriate family of models. We decide to model the data in a broad 

tradition of GARCH framework which captures most of stylised facts observed in financial data 

(volatility clustering, asymmetry of gains and losses, thick tails, etc.). In many applications, 

a simple GARCH(1,1) model seems to be a reasonable approximation of the underlying process’ 

dynamics and complex specification search hardly improves forecasting abilities of the model 

(Hansen and Lunde, 2001). However, the IFM method requires the marginal distributions to be 

well-specified and may be non-robust against misspecifications (Kim et al., 2007). Therefore, the 

right implementation of the method involves allowing for a broad family of models from which 

the right model will be chosen, as well as using appropriate tests to choose the best alternative 

from the set of competing models. 

Consider the variable of interest . Its conditional mean is parameterised as ARMA(R,M): 

  (5)  

In the models we consider the orders of autoregressive and moving average terms are each 

limited to three in order to favour more parsimonious representations.  

We model the conditional variance of each of the variables either as a pure GARCH(P,Q) or as 

one of the asymmetric extensions, EGARCH(P,Q) and GJR(P,Q). 

The GARCH(P,Q) model is given as: 

  (6)  
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with constraints: 

 

 

 

The GARCH(P,Q) model is symmetric in that it ignores the sign of the error term. It is now, 

however, a well-known phenomenon that financial variables exhibit asymmetries in response to 

good and bad news, which traditionally is related to the leverage effect (Black, 1976), or 

volatility feedback effect (Campbell and Hentschel, 1992). Thus, an appropriate model should 

allow for asymmetric news impact on conditional volatility, i.e. good news ( ) having 

different effect than bad news ( ). The two important parameterisations are GJR(P,Q) 

and EGARCH(P,Q). In the GJR(P,Q), the conditional variance is specified as: 

  (7)  

where  if  and  otherwise, with constraints: 

 

 

 

The conditional variance in the EGARCH(P,Q) parameterisation is given by: 

 

 

(8)  

We restrain the maximum orders of P and Q to three, analogous to the conditional mean 

specification. Finally, we allow the error term  in each of the models to follow either normal or 

t-Student’s distribution. The models are fitted using standard quasi-maximum likelihood 

estimation (QMLE) method.  

9 
 

A significant advantage of using the IFM method is that the specifications of margins can be 

tested using standard diagnostics to ensure that they fit the data well. In the post-estimation 

analysis, we employ Ljung-Box test for autocorrelation of the standardised residuals and Engle’s 

ARCH test for the presence of the remaining ARCH effects in the residuals . We also employ 

the Berkowitz (2001) procedure to test if the hypothetical model’s probability integral 

transform produces observations which are independently and identically distributed . 

Finally, using the conditional cumulative distribution function of the selected model, we 

transform our variable of interest  into a  distributed variable which serves as an input 

for the second step of the IFM method. In doing this, we calculate  

  (9)  

which we call transformed variable, where  is the information set available at time  

comprising past realisations of the variable of interest and  is the estimated vector of 

parameters. 

 

2.2. Modelling the dependence structure 

The second stage of the IFM method consists of exploring the sole dependence between the 

two random variables using copula functions.  

We chose a set of standard, static, parametric functions, most popular in the literature. They 

allow a wide range of dependence relations, including asymmetric tail dependence particularly 

important for investigating contagion effect. Thus, relations ranging from complete 

independence to dependence of differing grade, also in stress times, can be modelled. - 

The definition of contagion which we employ in the present paper can be operationalised with 

the so-called asymptotic tail dependence coefficients introduced by Sibuya (1960) (hereinafter 

TDC), which, thus, become our measure of contagion. The coefficients describe the propensity 

of markets to crash or boom together, i.e. they measure the dependence between extreme 

outcomes of the variables. The upper (lower) TDC is a limiting probability of one variable 

exceeding (falling behind) a high-order (low-order) quantile, given that the other variable 

exceeds (falls behind) the same quantile. Formally, if  is a vector of continuous random 

variables with marginal distributions  and , respectively, then the upper and lower TDCs are 

defined as: 
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  (10)  

and: 

  (11)  

If the upper or lower TDC equals zero, the respective extreme values are independent, 

otherwise we say that there is dependence between extreme values of the variables 

considered. Importantly, for the copulas considered in this paper the TDCs are simple functions 

of copula parameters. The choice of a particular copula may in some cases restrict admissible 

asymptotic dependence (e.g. Gaussian copula implies asymptotic independence). Table 1 gives 

an overview of the copulas we employ along with their TDCs. Recall that copula functions are 

defined on a unitary box, , where  and  are distributed as 

.  

Having obtained a bi-variate pseudo-sample from any two transformed variables of interest as 

in eq. (9), parameters of the above copulas are obtained by maximising the respective likelihood 

functions. 

 

2.3. Testing copula functions 

The IFM procedure amounts to estimating  under the assumption that the copula  linking 

marginal distributions indeed belongs to a chosen family of copulas , i.e. under 

. The goodness-of-fit tests, reviewed and compared in Monte Carlo studies by 

Genest et al. (2009) and Berg (2009), aim at the complementary issue of testing whether 

 holds. To our knowledge, the cited papers are the latest available and most comprehensive 

studies of such methods in the literature. The experiments are designed to assess, in a number 

of different setups, the ability of various goodness-of-fit tests to maintain the nominal levels 

and their power against a variety of alternatives. The authors investigate the performance of 

several classes of methods of testing  (based on Rosenblatt’s transform, empirical copula, 

moment-based etc.), the general conclusion we draw from their work is that the only method 

that ranks among three best performing in both power studies, is the goodness-of-fit procedure 

introduced in Genest et al. (2008) (ranking first in Genest et al., 2009 and second in Berg, 2009). 

It is based on the “empirical copula (a-theoretic information on the dependence structure, to be 

defined below), it thus belongs to a class of “blanket tests applicable to all copula structures 

(rather than Gaussian or Clayton only) and free of any strategic choices for their use or 

11 
 

parameter fine-tuning. Its implementation involves, however, approximating p-values for 

testing  with a bootstrap procedure. 
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The idea is to compare the distance between the “empirical copula with the estimated 

parametric one. To assess whether the distance is significantly different from zero, a bootstrap 

procedure is implemented. As the input, the goodness-of-fit test takes the maximally invariant 

with respect to continuous, strictly increasing transformations of the components of bivariate 

distribution statistic, i.e. ranks obtained from the pseudo-sample . The information 

on dependence comprised in the pseudo-sample is summarised in the “empirical copula  

  (12)  

for , where  is obtained by dividing the rank of  (in a set ) by , 

and  - by dividing the respective rank of . The test statistics is based on the empirical 

process , and it is given by the Cramer-von Mises statistic 

  (13)  

whose large values imply the rejection of . Asymptotic p-values could in theory be deduced 

from the limiting distribution of the above statistic. However, as the asymptotic behaviour of 

the empirical process depends on the family of copulas under the composite  and on the 

unknown true parameter , whose estimate is used in  instead, the only viable way to 

execute statistical test is to resort to specially adapted parametric bootstrap procedure. It 

consists of the following steps: 

1) Compute  and estimate  

2) Compute  

3) For a large  repeat the following for : 

a. Generate a random sample from the distribution  

b. Using the random sample compute  and estimate  

c. Compute  analogously to 2) 

4) Approximate p-value with . 

The final question, if the above goodness-of-fit test admits more than one copula, concerns the 

choice of one particular function for further analysis. Following Heilpern (2007), we chose the 

parametric copula with the lowest distance to the “empirical copula, as measured by . Then, 

we compute the TDCs.  

13 
 

3. The data on Polish and global financial instruments 

Our data set is comprised of foreign and Polish variables. The foreign variables include stock 

index and sovereign bond yields in the United States (SP500, US 2Y, US 10Y), Germany (DAX, DE 

2Y, DE 10Y), the CBOE Market Volatility Index, which measures the implied volatility of the 

S&P500 index options and is commonly used as a market risk-aversion and uncertainty indicator 

(VIX), the euro-dollar exchange rate, quoted as a US dollar price of the euro (EUR/USD), 

Deutsche Bank G10 Currency Future Harvest Index reflecting the return from carry trades in G10 

currencies (FX CARRY), EURO STOXX Banks Index, a banking sub-index for the EMU banks with 

the largest capitalisation (EU BANKS) and three emerging market composites, including MSCI 

Emerging Markets Index, a free float-adjusted market capitalisation index measuring equity 

market performance in the global emerging markets (MSCI), sovereign bond spreads relative to 

the US (EMBI) and JPMorgan Emerging Markets Currency Index (FX EM). For Poland, the 

variables include main stock market index (WIG), banking sub-index (WIG BANKS), short and 

long-term sovereign bond yields (PL 2Y, PL 10Y) and the main foreign exchange rate with 

respect to the euro (EUR/PLN), quoted as Polish zloty price of the euro.  

We use daily data from 1 March 2000 to 30 June 2012 which are obtained from Bloomberg and 

Reuters in the following way. First, daily data for all series are imported from Bloomberg. 

Second, whenever Bloomberg data are unavailable, we substitute them with Reuters data. We 

transform the original data in levels into rates of return between two consecutive trading days 

or into changes in yields (all sovereign bonds, percentage points) and spreads (EMBI, basis 

points) as appropriate, obtaining 2893 observations. 

Table 2 presents descriptive statistics of the dataset. All variables exhibit high kurtosis 

accompanied by often high absolute skewness, which leads to strong rejection of normality by 

the Jarque-Bera test. ARCH effects are present in all of the variables and all but two show 

autocorrelation. These characteristics justify and motivate the use of ARMA-GARCH models for 

marginal distributions. 

Table 3 reports unconditional dependence for pairs of variables based on Spearman’s . 

Transformation into ranks makes it a valid measure of monotone dependence without stringent 

distributional assumption that have been shown to be violated in Table 2. The variables are 

paired according to their class, with an exception of VIX, which is used for all asset classes, being 

a frequently used proxy for global factors relevant for all markets in similar studies, including 
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Table 2. Descriptive statistics. 

 Mean Min Max St. dev. Skew Kurtosis ARCH(10) Q(20) J-B 

EUR/PLN 2,1E-05 -0.045 0.055 0.007 0.442 8.525 415.80* 53.94* 3774* 

PL 2Y -4,2E-04 -1.42 0.987 0.106 -0.685 29.021 310.04* 101.20* 81846* 

PL 10Y -2,1E-04 -0.844 0.865 0.087 -0.060 22.494 374.19* 112.15* 45809* 

WIG 2.1E-04 -0.102 0.061 0.014 -0.383 6.367 223.736* 39.49* 1438* 

WIG BANKS 3,5E-04 -0.225 0.089 0.018 -0.565 13.695 186.73* 54.34* 969* 

VIX -2,07E-05 -0.351 0.496 0.064 0.677 6.930 235.78* 89.97* 2083* 

EUR/USD 8,6E-05 -0.038 0.039 0.007 -0.034 5.284 177.23* 19.10 630* 

FX EM -5,2E-05 -0.059 0.063 0.005 -0.454 35.886 771.44* 20.65 130463* 

FX CARRY 2.0E-04 -0.078 0.054 0.007 -0.963 13.907 448.08* 38.80* 14786* 

DE 2Y -0.002 -0.390 0.331 0.051 0.083 8.120 130.17* 48.17* 3163* 

US 2Y -0.002 -0.565 0.473 0.066 -0.235 9.815 267.08* 65.18* 5626* 

DE 10Y -0.001 -0.226 0.251 0.047 0.162 4.731 180.79* 30.30*** 374* 

US 10Y -0.002 -0.473 0.428 0.069 0.158 5.309 154.39* 47.16* 654* 

EMBI -0.097 -86.30 97.83 9.514 0.570 16.929 784.45* 118.18* 2354* 

DAX -8.0E-05 -0.098 0.135 0.017 0.087 8.270 485.15* 53.05* 3351* 

SP500 -1.7E-05 -0.095 0.104 0.014 -0.120 10.082 844.06* 70.30* 6052* 

MSCI 2.0E-04 -0.114 0.129 0.014 -0.493 12.986 556.75* 122.185* 12136* 

EU BANKS -4.6E-04 -0.140 0.178 0.021 0.042 10.713 337.26* 53.06* 7172* 

Notes: The table displays sample statistics for daily returns, changes in yields (all bonds) or spreads (EMBI) between 1 

March 2000 and 30 June 2012, spanning 2893 observations for each series. ARCH(10), Q(20) and J-B are the Lagrange 

multiplier test of no ARCH effects up to 10 lags, the Ljung-Box statistics of no serial correlation up to 20 lags and the 

Jarque-Bera test for normality of distribution. *, ** and *** denote statistical significance at 1%, 5% and 10% level, 

respectively. 

emerging markets (Pan and Singleton, 2008). The general pattern is that Polish equities appear 

to be highly dependent on global factors that affect valuation on core markets and other 

emerging markets. This relation appears considerably weaker for foreign exchange and still 

weaker in the case of bonds. However, it should be kept in mind that concordance measure 

captures average dependence across the whole distribution and does not provide information 

about possibly different behaviour in the tails or asymmetries. 

One potential issue for copula analysis is the negative dependence between some pairs. There 

are copula functions that do not allow negative dependence (e.g. Clayton, Gumbel), yet they 

may still be very good at capturing the dependence between transformed variables. For 

example, the Gumbel copula does exhibit upper tail dependence and no lower tail dependence. 

This is a plausible relation between stocks in Poland and (inverted) VIX – there could be higher 
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Table 3. Spearman’s  coefficients 

EUR/PLN 
VIX EUR/USD FX CARRY FX EM 

0.227 0.032 -0.040 -0.141 

PL 2Y 
VIX DE 2Y US 2Y EMBI 

0.066 0.066 0.040 0.088 

PL 10Y 
VIX DE 10Y US 10Y EMBI 

0.075 0.084 0.052 0.107 

WIG 
VIX DAX SP500 MSCI 

-0.251 0.500 0.316 0.536 

WIG 

BANKS 

VIX DAX SP500 MSCI 

-0.228 0.462 0.295 0.456 

Notes: The table reports Spearman’s  calculated between daily returns (or changes) of 

Polish and foreign variables between 1 March 2000 and 30 June 2012. The Spearman’s 

 coefficient between WIG BANKS and EU BANKS is 0.456. 

propensity for WIG to fall when VIX increases significantly (bad news) than for WIG to increase 

when VIX falls (good news), consistent with the leverage effect for margins. Even though the 

asymmetric behaviour could perfectly reflect the Gumbel copula, we would not see it, as this 

copula family does not allow negative dependence. To allow this possibility, we transform the 

foreign variables by taking an inverse of it, i.e. ,  being the original variable in levels, and 

use this variable to estimate model for margins. This essentially changes the sign in rates of 

return of the series, reverses the rank of observations and simply changes the dependence 

between variables from negative to positive without any other changes in its characteristics, so 

the interpretation of the results is straightforward. We use this approach for the three pairs that 

exhibit relatively high negative dependence (WIG-VIX, WIG Banks – VIX and EUR/PLN-FX EM). As 

an alternative, one could estimate the model on the original data and then transform the 

 series into  before using it for copula estimation. 
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4. Univariate GARCH models – empirical results 

Prior to choosing the models for marginals, we estimate a broad set of ARMA-GARCH models. 

The selection process is as follows. First, we use the standard goodness-of-fit tests described in 

Section 2.1 to discard the models with misspecifications. It turns out that we are able to find 

more than one model for each variable of interest which passes all of the tests. Ljung-Box, 

Engle’s ARCH and standard Berkowitz tests are all passed at the 5% level of significance (for lags 

in appropriate tests see Table 2). Therefore, to choose the right specification from the set of 

candidates we use the Akaike Information Criterion (AIC). For each foreign and local variable, 

we select the model with the lowest AIC value. 

The final results of the GARCH fitting procedure are reported in Tables 7a-7b in Annex, 

Table 4 below is its shortened version. No single model (autoregressive or moving average) 

dominates the conditional means which are predominantly some versions of ARMA. However, 

a clear AR structure is confirmed for the EUR/PLN, while a constant only is chosen for the 

conditional mean of FX CARRY. Interestingly, for all but one series the best fit is obtained by 

using the EGARCH model with t-Student’s error terms for the conditional variance equation. For 

PL BANKS, the GJR-GARCH is chosen. Therefore, the choice to include asymmetric models in the 

set of candidates proves right. The leverage terms are mostly significant, indicating that the 

response of volatility to shocks of positive and negative sign is different in the variables. The 

yields of government bonds, where the leverage terms tend to be insignificant constitute 

a notable exception. There is no obvious tendency of a certain lag length structure chosen by 

the AIC, although more models manifest two or more lags in the variance equation. We also 

note the sum of autoregressive and moving average parameters in the variance equation is 

often close to 1. It indicates that volatility exhibits high level of persistence with large changes 

followed by other large changes and small changes followed by other small changes. 

With the chosen model, we construct a transformed variable as in eq. (9), which is used for 

copula analysis (see Figure 1 in Annex).  
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Table 4. Results for the marginal distributions (short view). 

 Conditional Mean Conditional Variance 

EUR/PLN AR(3) EGARCH(3,3) 

EUR/USD ARMA(2,3) EGARCH(3,3) 

PL 2Y ARMA(3,3) EGARCH(2,3) 

PL 10Y ARMA(2,3) EGARCH(3,3) 

DE 2Y ARMA(3,3) EGARCH(3,3) 

DE 10Y ARMA(2,2) EGARCH(1,3) 

US 2Y ARMA(1,3) EGARCH(2,3) 

US 10Y ARMA(3,3) EGARCH(3,3) 

EMBI ARMA(3,2) EGARCH(2,2) 

WIG ARMA(3,3) EGARCH(2,2) 

PL BANKS ARMA(3,2) GJR(2,1) 

DAX ARMA(2,2) EGARCH(2,3) 

EU BANKS ARMA(2,1) EGARCH(2,3) 

SP500 ARMA(1,1) EGARCH(1,3) 

MSCI ARMA(2,3) EGARCH(2,2) 

VIX ARMA(2,2) EGARCH(2,3) 

VIX(-1) ARMA(2,2) EGARCH(2,3) 

FX CARRY Const. only EGARCH(3,3) 

FX EM (-1) ARMA(2,1) EGARCH(3,3) 

Note: All models have t-Student’s error terms  
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With the chosen model, we construct a transformed variable as in eq. (9), which is used for 

copula analysis (see Figure 1 in Annex).  
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Table 4. Results for the marginal distributions (short view). 

 Conditional Mean Conditional Variance 

EUR/PLN AR(3) EGARCH(3,3) 

EUR/USD ARMA(2,3) EGARCH(3,3) 

PL 2Y ARMA(3,3) EGARCH(2,3) 

PL 10Y ARMA(2,3) EGARCH(3,3) 

DE 2Y ARMA(3,3) EGARCH(3,3) 

DE 10Y ARMA(2,2) EGARCH(1,3) 

US 2Y ARMA(1,3) EGARCH(2,3) 

US 10Y ARMA(3,3) EGARCH(3,3) 

EMBI ARMA(3,2) EGARCH(2,2) 

WIG ARMA(3,3) EGARCH(2,2) 

PL BANKS ARMA(3,2) GJR(2,1) 

DAX ARMA(2,2) EGARCH(2,3) 

EU BANKS ARMA(2,1) EGARCH(2,3) 

SP500 ARMA(1,1) EGARCH(1,3) 

MSCI ARMA(2,3) EGARCH(2,2) 

VIX ARMA(2,2) EGARCH(2,3) 

VIX(-1) ARMA(2,2) EGARCH(2,3) 

FX CARRY Const. only EGARCH(3,3) 

FX EM (-1) ARMA(2,1) EGARCH(3,3) 

Note: All models have t-Student’s error terms  
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5. Dependence and contagion – empirical results 

Table below for each analysed pair of variables presents copulas that pass the goodness-of-fit 

test and the copula that is chosen as the best description of the dependence between them. 

The most often allowed copula is t-Student, followed by Gaussian and Symmetrised Joe-Clayton. 

However, it is worth noting that for a large number of pairs the Gaussian copula is rejected as 

a satisfactory description of the dependence function. In our view, this is a further argument 

against a common practice of using the linear correlation coefficient as a universal measure of 

dependence between variables, particularly financial ones. In pair-wise comparisons, it turns 

out that some pairs of variables, e.g. PL 10Y and US 10Y yields, can be described by any of the 

considered copula, while others (i.e. Polish and Eurozone banks’ shares) – by none. 

Table 5. Goodness-of-fit test results and the choice of the copula. 

  
Normal Clayton Rotated 

Clayton Plackett Frank Gumbel Rotated 
Gumbel 

t-
Student 

Symm. 
Joe-

Clayton 

Indepen
-dence 
copula 

EUR/PLN VIX   

0.275 
 

(0.231)   

1.154 
 

(0.655)   

0.044 
0.117 

(0.485) 

 

EUR/PLN EUR/USD        

0.030 
3.822 

(0.072)  

 

EUR/PLN FX CARRY 
-0.049 

 
(0.255) 

0.000 
 

(0.226) 

0.000 
 

(0.231) 

0.907 
 

(0.753) 

-0.193 
 

(0.769) 

1.000 
 

(0.248) 

1.000 
 

(0.244) 

 -0.041 
13.464 
(0.588)  

no 
param. 

 
(0.319) 

EUR/PLN FX EM(-1) 
0.120 

 
(0.067)  

0.132 
 

(0.942)   

1.070 
 

(0.920)  

  0.116 
15.491 
(0.078) 

0.000 
0.034 

(0.899) 

 

PL 2Y VIX 
0.060 

 
(0.223)   

1.208 
 

(0.314) 

0.373 
 

(0.286)  

1.042 
 

(0.090) 

  0.060 
62.029 
(0.246) 

0.003 
0.000 

(0.182) 

 

PL 2Y DE2Y 
0.077 

 
(0.135) 

0.084 
 

(0.095)  

1.238 
 

(0.770) 

0.416 
 

(0.075) 

1.039 
 

(0.083) 

1.048 
 

(0.204) 

  0.074 
18.449 
(0.230) 

0.003 
0.001 

(0.148) 

 

PL 2Y US2Y 
0.048 

 
(0.230) 

0.061 
 

(0.513)  

1.138 
 

(0.158) 

0.257 
 

(0.168) 

1.018 
 

(0.058) 

1.032 
 

(0.557) 

  0.047 
36.293 
(0.220) 

0.002 
0.000 

(0.386) 

 

PL 2Y EMBI 
0.094 

 
(0.129)  

0.106 
 

(0.484)   

1.057 
 

(0.675)  

   0.094 
18.720 
(0.199) 

0.000 
0.021 

(0.592) 

 

PL 10Y VIX 
0.075 

 
(0.060)  

0.076 
 

(0.170) 

1.265 
 

(0.104) 

0.462 
 

(0.099) 

1.034 
 

(0.094)  

  0.075 
31.804 
(0.059) 

0.000 
0.004 

(0.184) 

 

PL 10Y DE10Y   

0.153 
 

(0.145)   

1.082 
 

(0.097)   

0.000 
0.053 

(0.083) 

 

PL 10Y US10Y 
0.071 

 
(0.447) 

0.071 
 

(0.118) 

0.082 
 

(0.208) 

1.235 
 

(0.261) 

0.406 
 

(0.268) 

1.046 
 

(0.389) 

1.044 
 

(0.365) 

  0.071 
12.127 
(0.753) 

0.000 
0.008 

(0.247) 

 

PL 10Y EMBI   

0.144 
 

(0.110)   

1.076 
 

(0.167)   

0.001 
0.038 

(0.066) 

 

Notes: The table continues overleaf, see notes on the next page. 
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Table 5 (continued). Goodness-of-fit test results and the choice of the copula. 

  Normal Clayton Rotated 
Clayton Plackett Frank Gumbel Rotated 

Gumbel 
t-

Student 

Symm. 
Joe-

Clayton 

Indepen
-dence 
copula 

WIG VIX(-1)       

1.174 
 

(0.432)  

0.135 
0.049 

(0.095) 

 

WIG DAX        

0.512 
9.522 

(0.084)  

 

WIG SP500 
0.351 

 
(0.187)       

  0.349 
13.007 
(0.339) 

0.144 
0.191 

(0.167) 

 

WIG MSCI        

0.551 
9.919 

(0.146)  

 

WIG 
BANKS VIX(-1) 

0.242 
 

(0.073)       

  0.241 
18.424 
(0.066)  

 

WIG 
BANKS DAX 

0.463 
 

(0.126)       

  0.467 
11.626 
(0.524)  

 

WIG 
BANKS SP500 

0.319 
 

(0.294)       

  0.319 
15.323 
(0.281)  

 

WIG 
BANKS MSCI 

0.491 
 

(0.087)       

  0.487 
11.887 
(0.252)  

 

WIG 
BANKS EU BANKS          

 

Notes: Each cell contains parameter estimates (in case of t-Student – the first number is correlation parameter and 

the second is the degree of freedom, in the case of Symmetrised Joe-Clayton –  and  respectively) and 

goodness-of-fit test’s p-value (in parentheses). A cell in bold and underlined denotes the copula that additionally is 

-closest to the “empirical copula for a given pair. An empty cell denotes a case of p-value lower than 0.05 and 

rejection of the copula class. 

A striking observation is that for a number of pairs many copulas, with often opposite properties 

(e.g. Gumbel and its rotated variant), are admitted as a satisfactory description of the 

dependence structure. It thus seems that with the data available, the goodness-of-fit alone 

provides rather weak guidance to choosing the copula, and the second criterion, the  distance 

to “empirical copula eq. (12), needed to be introduced. This was essential for drawing 

conclusions, as for example in many cases the two copulas admitted displayed entirely opposite 

tail behaviour ‒ tail independence in the case of Gaussian copula and tail dependence in the 

case of t-Student. Our conjecture is that if several copulas are admitted, these cases likely 

correspond to a weak dependence between the variables, and thus the estimated copula 

parameters imply in fact that the copula is close to independence. Indeed, for most of these 

cases the Spearman’s rank correlation coefficient computed on a pseudo-sample of 

transformed (as in eq. 9) rates of return is close to zero (Spearman’s -s of the transformed 

variables are virtually the same as in Table 3). A notable exception to the above pattern is the 

EUR/PLN and EUR/USD pair, with the single t-Student copula allowed by the goodness-of-fit test 
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5. Dependence and contagion – empirical results 

Table below for each analysed pair of variables presents copulas that pass the goodness-of-fit 
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(0.184) 
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0.000 
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(0.083) 
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0.071 

 
(0.447) 
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(0.118) 

0.082 
 

(0.208) 

1.235 
 

(0.261) 

0.406 
 

(0.268) 
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(0.389) 
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(0.365) 

  0.071 
12.127 
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0.008 
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PL 10Y EMBI   

0.144 
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1.076 
 

(0.167)   
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Notes: The table continues overleaf, see notes on the next page. 

 

 

19 
 

Table 5 (continued). Goodness-of-fit test results and the choice of the copula. 

  Normal Clayton Rotated 
Clayton Plackett Frank Gumbel Rotated 

Gumbel 
t-

Student 

Symm. 
Joe-

Clayton 

Indepen
-dence 
copula 

WIG VIX(-1)       

1.174 
 

(0.432)  

0.135 
0.049 

(0.095) 

 

WIG DAX        

0.512 
9.522 

(0.084)  

 

WIG SP500 
0.351 

 
(0.187)       

  0.349 
13.007 
(0.339) 

0.144 
0.191 

(0.167) 

 

WIG MSCI        

0.551 
9.919 

(0.146)  

 

WIG 
BANKS VIX(-1) 

0.242 
 

(0.073)       

  0.241 
18.424 
(0.066)  

 

WIG 
BANKS DAX 

0.463 
 

(0.126)       

  0.467 
11.626 
(0.524)  

 

WIG 
BANKS SP500 

0.319 
 

(0.294)       

  0.319 
15.323 
(0.281)  

 

WIG 
BANKS MSCI 

0.491 
 

(0.087)       

  0.487 
11.887 
(0.252)  

 

WIG 
BANKS EU BANKS          

 

Notes: Each cell contains parameter estimates (in case of t-Student – the first number is correlation parameter and 

the second is the degree of freedom, in the case of Symmetrised Joe-Clayton –  and  respectively) and 

goodness-of-fit test’s p-value (in parentheses). A cell in bold and underlined denotes the copula that additionally is 

-closest to the “empirical copula for a given pair. An empty cell denotes a case of p-value lower than 0.05 and 

rejection of the copula class. 

A striking observation is that for a number of pairs many copulas, with often opposite properties 

(e.g. Gumbel and its rotated variant), are admitted as a satisfactory description of the 

dependence structure. It thus seems that with the data available, the goodness-of-fit alone 

provides rather weak guidance to choosing the copula, and the second criterion, the  distance 

to “empirical copula eq. (12), needed to be introduced. This was essential for drawing 

conclusions, as for example in many cases the two copulas admitted displayed entirely opposite 

tail behaviour ‒ tail independence in the case of Gaussian copula and tail dependence in the 

case of t-Student. Our conjecture is that if several copulas are admitted, these cases likely 

correspond to a weak dependence between the variables, and thus the estimated copula 

parameters imply in fact that the copula is close to independence. Indeed, for most of these 

cases the Spearman’s rank correlation coefficient computed on a pseudo-sample of 

transformed (as in eq. 9) rates of return is close to zero (Spearman’s -s of the transformed 

variables are virtually the same as in Table 3). A notable exception to the above pattern is the 

EUR/PLN and EUR/USD pair, with the single t-Student copula allowed by the goodness-of-fit test 
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and low Spearman’s  of only 3%. To explain this fact, note that this is the only copula whose 

density has some mass in all four corners of the unit square, which is precisely an empirical 

observation we can make by inspecting the scatter plot of the pseudo-sample of this pair of 

currencies (see Figure 2 in Annex). On the other hand, the relationship between Polish and 

Eurozone banks’ shares, although quite strong (with Spearman’s  of 44%) must have some 

highly nonstandard shape, since all the copulas fitted fail the goodness-of-fit test.  

The choice of a single copula that best describes the dependence between the variables, as 

explained in Section 2.3, is based on the distance . Table 5 above shows that two copulas 

clearly stand out as the most widely occurring dependence structure – it is the t-Student and 

Symmetrised Joe-Clayton copulas (actually, the Gaussian copula appears only once). Thus, in 

most cases copulas that display tail dependence were chosen, though in some ‒ of rather low 

degree. 

In the next step, for each pair of variables we compute TDCs using the formulas in Table 1 for 

the chosen copula. The respective coefficients are presented in the table below. Each cell of the 

table reports lower and upper TDCs. In cases when the chosen copula does not allow tail 

dependence (i.e.  or  by assumption), it prints “0; if the copula allows tail 

dependence but the computed TDC is low, it prints “0.00, while in cases when the estimated 

TDC is equal to or higher than 0.05 ‒ the level which we consider economically significant ‒ it is 

in bold. 

Table 6. Estimated TDCs. 

EUR/PLN 
VIX EUR/USD FX CARRY FX EM(-1) 

0.04 / 0.12 0.09 / 0.09 0.00 / 0 0 / 0 

PL 2Y 
VIX DE 2Y US 2Y EMBI 

0 / 0 0.00 / 0.00 0.00 / 0.00 0.00 / 0.00 

PL 10Y 
VIX DE 10Y US 10Y EMBI 

0 / 0 0.00 / 0.05 0.00 / 0.01 0.00 / 0.04 

WIG 
VIX(-1) DAX SP500 MSCI 

0.14 / 0.05 0.09 / 0.09 0.14 / 0.19 0.10 / 0.10 

WIG BANKS 
VIX(-1) DAX SP500 MSCI 

0.00 / 0.00 0.05 / 0.05 0.01 / 0.01 0.06 / 0.06 

Notes: Each cell contains  / , 0 denotes no tail dependence implied by the chosen copula class, 0.00 

an estimated TDC up to two decimal places, in bold – values larger than or equal to 0.05. No copula was 

allowed for WIG Banks and EU Banks, therefore TDCs are not computed. 
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Two broad observations can be made based on the above results. First, asset classes differ 

greatly in their susceptibility to contagion, and second, the responses to upturns and downturns 

in global markets are often asymmetric.  

Equities appear most prone to contagion from all international markets under consideration. 

The developments on two key stock exchanges we are considering – German and American – 

both affect Warsaw, though the influence of the US market is more pronounced. The situation 

on emerging markets translates into Poland (with 10% probability), as could be expected. 

Importantly, sudden changes in uncertainty and risk premia on core markets, as elucidated by 

the VIX, have an asymmetric bearing on the Polish stocks. A sudden increase in VIX has a 14% 

chance of spilling to the Warsaw stock exchange, while a reverse situation has only 5% chance 

to lift the WIG. Perhaps surprisingly, Polish banks’ stocks behaviour differs from the broad WSE 

index. The contagion from global markets to Polish banks is more limited and related primarily 

to situation in Germany and other emerging markets. The regional factor – German stock 

exchange – can have both positive and negative spill-over effects on Polish banks, albeit with 

a modest probability of 5%. It may be a reflection of the financial linkages of the banking sector 

with their Eurozone partners, whose situation is proxied by the DAX index. The above tail 

dependence coefficients are similar to the average probabilities found by Christoffersen et al. 

(2012) for a group of emerging and developed economies in the same period, and are in the 

lower range of estimates reported by Aloui et al. (2011) among big emerging economies and the 

US stock market. These two studies differ with regard to asymmetry between the lower and 

upper tail dependence – Christoffersen et al. (2012) find a lower tail dependence to be 

considerably higher compared to upper tail dependence, whereas Aloui et al. (2011) find no 

such asymmetry. For Polish stocks, both patterns emerge and – depending on the choice of 

foreign asset – the Polish stock market exhibits symmetric or asymmetric tail dependence. 

The Polish zloty is in some respects similar to equities. Just as a sudden increase in VIX weights 

on Polish stocks, it also depreciates the zloty with 12% probability, while a positive sentiment 

has only 4% chance of strengthening the Polish currency against the euro. The above pattern is 

consistent with the notion of crash risk that is prevalent for emerging market currencies. 

However, in the period under review, the Polish zloty did not fall (or rise) together with other 

emerging currencies or carry trade index in G10 currencies. Interestingly, although the overall 

dependence between EUR/PLN and EUR/USD is low (with Spearman’s  of 3%), there is 9% 

chance that they experience extreme changes together, both in the upper and lower tail. Low 
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Two broad observations can be made based on the above results. First, asset classes differ 

greatly in their susceptibility to contagion, and second, the responses to upturns and downturns 

in global markets are often asymmetric.  

Equities appear most prone to contagion from all international markets under consideration. 

The developments on two key stock exchanges we are considering – German and American – 

both affect Warsaw, though the influence of the US market is more pronounced. The situation 

on emerging markets translates into Poland (with 10% probability), as could be expected. 

Importantly, sudden changes in uncertainty and risk premia on core markets, as elucidated by 

the VIX, have an asymmetric bearing on the Polish stocks. A sudden increase in VIX has a 14% 

chance of spilling to the Warsaw stock exchange, while a reverse situation has only 5% chance 

to lift the WIG. Perhaps surprisingly, Polish banks’ stocks behaviour differs from the broad WSE 

index. The contagion from global markets to Polish banks is more limited and related primarily 

to situation in Germany and other emerging markets. The regional factor – German stock 

exchange – can have both positive and negative spill-over effects on Polish banks, albeit with 

a modest probability of 5%. It may be a reflection of the financial linkages of the banking sector 

with their Eurozone partners, whose situation is proxied by the DAX index. The above tail 

dependence coefficients are similar to the average probabilities found by Christoffersen et al. 

(2012) for a group of emerging and developed economies in the same period, and are in the 

lower range of estimates reported by Aloui et al. (2011) among big emerging economies and the 

US stock market. These two studies differ with regard to asymmetry between the lower and 

upper tail dependence – Christoffersen et al. (2012) find a lower tail dependence to be 

considerably higher compared to upper tail dependence, whereas Aloui et al. (2011) find no 

such asymmetry. For Polish stocks, both patterns emerge and – depending on the choice of 

foreign asset – the Polish stock market exhibits symmetric or asymmetric tail dependence. 

The Polish zloty is in some respects similar to equities. Just as a sudden increase in VIX weights 

on Polish stocks, it also depreciates the zloty with 12% probability, while a positive sentiment 

has only 4% chance of strengthening the Polish currency against the euro. The above pattern is 
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dependence in tranquil times should therefore not lead one to false complacency, as the strong 

dependence may reveal itself in stress times. It also underscores the usefulness of copulas as 

a description of full dependence structure. Compared to tail dependence among the G10 

currencies reported by Benediktsdóttir and Scotti (2009), the respective probabilities of the 

EUR/PLN versus the VIX or EUR/USD are relatively low, though certainly not negligible. The 

literature provides mixed results concerning asymmetry – Patton (2006) and Benediktsdottir 

and Scotti (2009) do find it, whereas Dias and Embrechts (2010) report t-Student copula model 

to provide the best fit. Our results suggest that both patterns are present for the zloty. Thus, 

similarly to equities, when considering potential dependence structure one should allow both 

for symmetric and asymmetric behaviour in the tails. 

Polish bonds differ from equities and foreign exchange in that they do exhibit very limited 

contagion from foreign markets. PL 2Y do not seem to be affected by any of the external factors 

considered. Even if a copula admits some dependence, which is a case for all factors other than 

VIX, the computed TDC is close to zero. This may be due to the fact that the yields on the short 

term bonds are generally determined mainly by the expectations about future local interest 

rates. In the period under review, monetary policy in Poland operated under inflation targeting 

framework, freely floating interest rates and not particularly open economy – a mix that 

probably contributed to interest rates primarily reflecting domestic conditions. For 10-year 

bonds, the contagion is however visible, though relatively weak compared to other asset classes 

and limited to Germany (and to some extent other emerging markets) – rapidly rising yields on 

DE 10Y spill over to analogous bonds in Poland with 5% chance. This can be due to higher risk 

premia embedded in longer-term bonds, particularly credit risk that has been found to co-move 

with global factor for a number of emerging economies, as documented by Longstaff et al. 

(2011). Compared to the high degree of tail co-movement between bonds on economically 

connected developed markets, found by Garcia and Tsafack (2011) to be usually much above 

50%, the results suggest a much lower degree of contagion. 

It has to be acknowledged that choosing one copula from the allowable set (defined by the 

goodness-of-fit test) and making inferences based solely on this particular copula risks ignoring 

potentially useful information contained in the copulas that have passed the goodness-of-fit 

test, though with a worse fit. Also, note that we have not tested formally whether the distances 

of the various copulas from the “empirical copula eq. (12) are significantly different. It is well 

possible that the difference between the lowest distance and the second-lowest is actually 
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statistically insignificant. As a cross-check then, for each pair of indices we computed mean 

TDCs including copulas admitted by the goodness-of-fit test. The results are qualitatively very 

similar, with the exception of WIG and SP500 pair, where the non-rejection of the Gaussian 

copula lowered the mean TDC to  and , as compared to  and 

 implied by the chosen Symmetrised Joe-Clayton copula. Though still economically 

significant, the evidence of high degrees of (positive as well as negative) contagion from US to 

Polish stocks needs to be treated with caution. 
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6. Conclusions 

Our findings suggest that Polish equities, currency and long-term sovereign bonds are to 

a different extent susceptible to contagion from global markets, whereas short-term Polish 

bonds are not. Equities appear most prone to co-move with global risk and foreign stock 

markets in the tails as well as in the bulk of the distribution. The zloty is also susceptible to 

changes in risk on a global market, though the importance of developments in other currencies 

appears relatively smaller. As far as long-term bonds are considered, the contagion from global 

markets is relatively weak. It appears likely that lack of contagion in short-term bonds is 

a reflection of monetary policy independence and this may be also partly responsible for 

subdued dependence on the longer horizons. 

Even though Polish assets are susceptible to contagion, there may still exist benefits from 

international diversification. Though the tail dependence between Polish equities and foreign 

markets appears stronger than between foreign exchange and bonds, it remains lower 

compared to big emerging economies and weaker still compared to dependence found between 

the developed markets themselves. The diversification benefits for the zloty, which exhibits 

more limited co-movement with other emerging currencies and was actually independent from 

carry trades in G10 currencies, appear even higher, though not as high as in the case of Polish 

bonds. 

We find the t-Student copula to provide the best fit for the largest number of pairs in all three 

asset classes. Although the Gaussian copula cannot be rejected in a number of occasions, its fit 

is inferior to that of the t-Student, underscoring the importance of tail behaviour. While the 

above two copulas are symmetric, this does not necessarily mean that asymmetries in tails are 

irrelevant – quite the opposite, as the Symmetrised Joe-Clayton copula with substantial 

differences in tail behaviour was found for some pairs. The asymmetry is particularly visible for 

Polish equities and the zloty is much more likely to lose in value when global conditions (VIX) 

deteriorate, rather than to gain when they improve. This feature, together with asymmetric 

distribution of returns, is consistent with the crash risk embedded in Polish assets.  

Our findings underscore not only the importance of global, common factors in asset valuation, 

but also of flexible modelling approach. The co-movement is sometimes limited to tails, while 

the dependence in other regions of the distribution may be weak, so the inference based on 

measures that do not account for the whole dependence structure can be misleading. 

Unfortunately, even the best available goodness-of-fit test for copula models appear to have 
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problems with indicating the single correct dependence structure and has to be complemented 

with other measures (i.e. based on distance to empirical copula). The co-existence of symmetric 

and asymmetric dependence structure further suggests that a wide range of competing models 

is advisable. In this respect, we acknowledge the limitation to time invariant copulas is a serious 

restriction on the dependence relations, as the data cannot speak on the issue of dependence 

evolution, even though we thoroughly test the static dependence structure specification. 

Hence, allowing for dynamic copula is among the lines of future research. 
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Annex 

Table 7a. Results for the marginal distributions 

 EUR/PLN EUR/USD PL 2Y PL 10Y DE 2Y DE 10Y US 2Y US 10Y EMBI 
Conditional 

Mean AR(3) ARMA(2,3) ARMA(3,3) ARMA(2,3) ARMA(3,3) ARMA(2,2) ARMA(1,3) ARMA(3,3) ARMA(3,2) 

 
-2.4E-04 1,4E-04  -6,5E-06  -0,004  -0,005 -0,696 

(1.0E-04) (8,1E-05)  (2,0E-05)  (0,002)  (0,003) (0,245) 

 
-0,047 1,208 0,671 0,142 0,144 -0,884 0,998 -0,693 -0,605 

(0,018) (0,011) (0,007) (0,253) (0,167) (0,086) (0,002) (0,215) (0,019) 

 
-0,009 -0,971 -0,681 0,842 0,172 -0,841  -0,669 -0,951 

(0,018) (0,011) (0,004) (0,251) (0,160) (0,073)  (0,176) (0,013) 

 
-0,047  0,986  0,682   0,147 0,072 

(0,018)  (0,007)  (0,121)   (0,197) (0,019) 

  -1,238 -0,666 -0,057 -0,085 0,922 -1,080 0,635 0,679 

 (0,019) (0,009) (0,254) (0,165) (0,084) (0,018) (0,212) (0,001) 

  1,012 0,685 -0,859 -0,203 0,854 0,033 0,574 1,000 

 (0,022) (0,005) (0,222) (0,148) (0,071) (0,027) (0,175) (0,001) 

  -0,020 -0,976 -0,060 -0,699  0,052 -0,233  

 (0,016) (0,009) (0,034) (0,119)  (0,019) (0,190)  
Conditional 

Variance 
EGARCH(3,3) EGARCH(3,3) EGARCH(2,3) EGARCH(3,3) EGARCH(3,3) EGARCH(1,3) EGARCH(2,3) EGARCH(3,3) EGARCH(2,2) 

 
-0,749 -0,082 -0,008 -0,011 -0,203 -0,045 -0,001 -0,243 3,0E-04 

(0,169) (0,036) (0,005) (0,016) (0,077) (0,019) (0,002) (0,086) (5,1E-04) 

 
-0,717 0,457 1,505 1,346 -0,672 0,993 1,831 -0,930 1,844 

(0,005) (0,131) (0,118) (1,956) (0,130) (0,003) (0,098) (0,006) (0,035) 

 
         

      (the table continues overleaf) 
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-0,047  0,986  0,682   0,147 0,072 

(0,018)  (0,007)  (0,121)   (0,197) (0,019) 

  -1,238 -0,666 -0,057 -0,085 0,922 -1,080 0,635 0,679 

 (0,019) (0,009) (0,254) (0,165) (0,084) (0,018) (0,212) (0,001) 

  1,012 0,685 -0,859 -0,203 0,854 0,033 0,574 1,000 

 (0,022) (0,005) (0,222) (0,148) (0,071) (0,027) (0,175) (0,001) 

  -0,020 -0,976 -0,060 -0,699  0,052 -0,233  

 (0,016) (0,009) (0,034) (0,119)  (0,019) (0,190)  
Conditional 

Variance 
EGARCH(3,3) EGARCH(3,3) EGARCH(2,3) EGARCH(3,3) EGARCH(3,3) EGARCH(1,3) EGARCH(2,3) EGARCH(3,3) EGARCH(2,2) 

 
-0,749 -0,082 -0,008 -0,011 -0,203 -0,045 -0,001 -0,243 3,0E-04 

(0,169) (0,036) (0,005) (0,016) (0,077) (0,019) (0,002) (0,086) (5,1E-04) 

 
-0,717 0,457 1,505 1,346 -0,672 0,993 1,831 -0,930 1,844 

(0,005) (0,131) (0,118) (1,956) (0,130) (0,003) (0,098) (0,006) (0,035) 

 
         

      (the table continues overleaf) 

          

Annex 

Table 7a. Results for the marginal distributions 

 EUR/PLN EUR/USD PL 2Y PL 10Y DE 2Y DE 10Y US 2Y US 10Y EMBI 
Conditional 

Mean AR(3) ARMA(2,3) ARMA(3,3) ARMA(2,3) ARMA(3,3) ARMA(2,2) ARMA(1,3) ARMA(3,3) ARMA(3,2) 

 
-2.4E-04 1,4E-04  -6,5E-06  -0,004  -0,005 -0,696 

(1.0E-04) (8,1E-05)  (2,0E-05)  (0,002)  (0,003) (0,245) 

 
-0,047 1,208 0,671 0,142 0,144 -0,884 0,998 -0,693 -0,605 

(0,018) (0,011) (0,007) (0,253) (0,167) (0,086) (0,002) (0,215) (0,019) 

 
-0,009 -0,971 -0,681 0,842 0,172 -0,841  -0,669 -0,951 

(0,018) (0,011) (0,004) (0,251) (0,160) (0,073)  (0,176) (0,013) 

 
-0,047  0,986  0,682   0,147 0,072 

(0,018)  (0,007)  (0,121)   (0,197) (0,019) 

  -1,238 -0,666 -0,057 -0,085 0,922 -1,080 0,635 0,679 

 (0,019) (0,009) (0,254) (0,165) (0,084) (0,018) (0,212) (0,001) 

  1,012 0,685 -0,859 -0,203 0,854 0,033 0,574 1,000 

 (0,022) (0,005) (0,222) (0,148) (0,071) (0,027) (0,175) (0,001) 

  -0,020 -0,976 -0,060 -0,699  0,052 -0,233  

 (0,016) (0,009) (0,034) (0,119)  (0,019) (0,190)  
Conditional 

Variance 
EGARCH(3,3) EGARCH(3,3) EGARCH(2,3) EGARCH(3,3) EGARCH(3,3) EGARCH(1,3) EGARCH(2,3) EGARCH(3,3) EGARCH(2,2) 

 
-0,749 -0,082 -0,008 -0,011 -0,203 -0,045 -0,001 -0,243 3,0E-04 

(0,169) (0,036) (0,005) (0,016) (0,077) (0,019) (0,002) (0,086) (5,1E-04) 

 
-0,717 0,457 1,505 1,346 -0,672 0,993 1,831 -0,930 1,844 

(0,005) (0,131) (0,118) (1,956) (0,130) (0,003) (0,098) (0,006) (0,035) 

 
         

      (the table continues overleaf) 
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0,670 0,912 -0,507 -0,038 0,852  -0,831 0,910 -0,844 

(0,008) (0,056) (0,117) (3,414) (0,044)  (0,097) (0,008) (0,035) 

 
0,973 -0,377  -0,310 0,787   0,977  

(0,005) (0,121)  (1,462) (0,111)   (0,006)  

 
0,157 -0,206 0,399 0,403 0,156 -0,001 0,148 0,125 0,199 

(0,020) (0,050) (0,050) (0,049) (0,038) (0,049) (0,050) (0,018) (0,034) 

 
0,242 0,050 -0,338 -0,224 0,159 -0,032 -0,064 0,215 -0,194 

(0,034) (0,024) (0,047) (0,798) (0,040) (0,064) (0,097) (0,033) (0,033) 

 
0,111 0,250  -0,133 0,085 0,126 -0,068 0,099  

(0,021) (0,056)  (0,721) (0,047) (0,046) (0,054) (0,018)  

 
0,047 -0,038 0,064 0,061 -0,037 0,009 0,049 0,005 0,142 

(0,013) (0,029) (0,033) (0,033) (0,024) (0,030) (0,033) (0,012) (0,021) 

 
0,079 0,044 -0,056 -0,023 -0,034 0,014 -0,070 -0,027 -0,135 

(0,020) (0,022) (0,033) (0,130) (0,019) (0,043) (0,063) (0,018) (0,020) 

 
0,052 -0,007  -0,034 0,013 -0,036 0,020 -0,036  

(0,012) (0,029)  (0,122) (0,025) (0,030) (0,035) (0,010)  

t-Student’s 
degrees of 
freedom 

7,476 8,260 3,627 3,924 5,367 9,111 6,317 10,851 6,115 

(0,877) (1,177) (0,301) (0,314) (0,540) (1,482) (0,657) (1,923) (0,564) 

AIC -2,1E+04 -2,1E+04 -7894,804 -8602,841 -9798,696 -9906,941 -8784,208 -7687,686 2,0E+04 

Notes: The table reports ML estimates for the univariate ARMA-GARCH models of the marginal distributions. All models have 
t-Student’s error terms. Standard errors are in brackets. 
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Table 7b. Results for the marginal distributions (continued) 

 WIG PL BANKS DAX EU 
BANKS SP500 MSCI VIX VIX(-1) FX CARRY FX EM (-1) 

Conditional 
Mean ARMA(3,3) ARMA(3,2) ARMA(2,2) ARMA(2,1) ARMA(1,1) ARMA(2,3) ARMA(2,2) ARMA(2,2) Const. only ARMA(2,1) 

 
9,2E-06  5,2E-04 8,1E-05 1,4E-04 0,001 -0,001 0,001 5,4E-04  

(1,2E-05)  (4,2E-04) (7,0E-05) (7,2E-05) (4,1E-04) (3,8E-04) (3,8E-04) (8,1E-05)  

 
-0,297 -1,007 -0,099 0,754 0,572 0,111 -0,184 -0,179  1,077 

(0,101) (0,152) (0,033) (0,157) (0,138) (0,009) (0,079) (0,083)  (0,020) 

 
0,494 -0,679 -0,948 -0,059  -0,979 0,652 0,648  -0,082 

(0,083) (0,144) (0,032) (0,018)  (0,009) (0,069) (0,072)  (0,019) 

 
0,785 -0,009         

(0,091) (0,025)         

 
0,340 1,057 0,089 -0,724 -0,635 0,076 0,091 0,087  -0,990 

(0,095) (0,151) (0,038) (0,157) (0,132) (0,020) (0,070) (0,073)  (0,008) 

 
-0,495 0,705 0,933   0,959 -0,768 -0,764   

(0,075) (0,152) (0,037)   (0,009) (0,063) (0,066)   

 
-0,814     0,197     

(0,084)     (0,018)     

Conditional 
Variance EGARCH(2,2) GJR(2,1) EGARCH(2,3) EGARCH(2,3) EGARCH(1,3) EGARCH(2,2) EGARCH(2,3) EGARCH(2,3) EGARCH(3,3) EGARCH(3,3) 

 
-0,077 5,4E-06 -0,066 -0,022 -0,123 -0,035 -0,019 -0,022 -0,115 -0,031 

(0,026) (1,7E-06) (0,022) (0,013) (0,022) (0,012) (0,011) (0,013) (0,051) (0,020) 

 
1,911 0,183 1,463 1,704 0,987 1,783 1,729 1,704 0,458 1,247 

(0,168) (0,090) (0,133) (0,132) (0,002) (0,043) (0,101) (0,113) (0,158) (0,215) 

 
-1,359 0,704 -0,470 -0,707  -0,787 -0,732 -0,707 0,993 0,177 

(0,295) (0,088) (0,131) (0,130)  (0,042) (0,100) (0,111) (0,003) (0,363) 

 
          

       (the table continues overleaf) 
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0,670 0,912 -0,507 -0,038 0,852  -0,831 0,910 -0,844 

(0,008) (0,056) (0,117) (3,414) (0,044)  (0,097) (0,008) (0,035) 

 
0,973 -0,377  -0,310 0,787   0,977  

(0,005) (0,121)  (1,462) (0,111)   (0,006)  

 
0,157 -0,206 0,399 0,403 0,156 -0,001 0,148 0,125 0,199 

(0,020) (0,050) (0,050) (0,049) (0,038) (0,049) (0,050) (0,018) (0,034) 

 
0,242 0,050 -0,338 -0,224 0,159 -0,032 -0,064 0,215 -0,194 

(0,034) (0,024) (0,047) (0,798) (0,040) (0,064) (0,097) (0,033) (0,033) 

 
0,111 0,250  -0,133 0,085 0,126 -0,068 0,099  

(0,021) (0,056)  (0,721) (0,047) (0,046) (0,054) (0,018)  

 
0,047 -0,038 0,064 0,061 -0,037 0,009 0,049 0,005 0,142 

(0,013) (0,029) (0,033) (0,033) (0,024) (0,030) (0,033) (0,012) (0,021) 

 
0,079 0,044 -0,056 -0,023 -0,034 0,014 -0,070 -0,027 -0,135 

(0,020) (0,022) (0,033) (0,130) (0,019) (0,043) (0,063) (0,018) (0,020) 

 
0,052 -0,007  -0,034 0,013 -0,036 0,020 -0,036  

(0,012) (0,029)  (0,122) (0,025) (0,030) (0,035) (0,010)  

t-Student’s 
degrees of 
freedom 

7,476 8,260 3,627 3,924 5,367 9,111 6,317 10,851 6,115 

(0,877) (1,177) (0,301) (0,314) (0,540) (1,482) (0,657) (1,923) (0,564) 

AIC -2,1E+04 -2,1E+04 -7894,804 -8602,841 -9798,696 -9906,941 -8784,208 -7687,686 2,0E+04 

Notes: The table reports ML estimates for the univariate ARMA-GARCH models of the marginal distributions. All models have 
t-Student’s error terms. Standard errors are in brackets. 
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Table 7b. Results for the marginal distributions (continued) 

 WIG PL BANKS DAX EU 
BANKS SP500 MSCI VIX VIX(-1) FX CARRY FX EM (-1) 

Conditional 
Mean ARMA(3,3) ARMA(3,2) ARMA(2,2) ARMA(2,1) ARMA(1,1) ARMA(2,3) ARMA(2,2) ARMA(2,2) Const. only ARMA(2,1) 

 
9,2E-06  5,2E-04 8,1E-05 1,4E-04 0,001 -0,001 0,001 5,4E-04  

(1,2E-05)  (4,2E-04) (7,0E-05) (7,2E-05) (4,1E-04) (3,8E-04) (3,8E-04) (8,1E-05)  

 
-0,297 -1,007 -0,099 0,754 0,572 0,111 -0,184 -0,179  1,077 

(0,101) (0,152) (0,033) (0,157) (0,138) (0,009) (0,079) (0,083)  (0,020) 

 
0,494 -0,679 -0,948 -0,059  -0,979 0,652 0,648  -0,082 

(0,083) (0,144) (0,032) (0,018)  (0,009) (0,069) (0,072)  (0,019) 

 
0,785 -0,009         

(0,091) (0,025)         

 
0,340 1,057 0,089 -0,724 -0,635 0,076 0,091 0,087  -0,990 

(0,095) (0,151) (0,038) (0,157) (0,132) (0,020) (0,070) (0,073)  (0,008) 

 
-0,495 0,705 0,933   0,959 -0,768 -0,764   

(0,075) (0,152) (0,037)   (0,009) (0,063) (0,066)   

 
-0,814     0,197     

(0,084)     (0,018)     

Conditional 
Variance EGARCH(2,2) GJR(2,1) EGARCH(2,3) EGARCH(2,3) EGARCH(1,3) EGARCH(2,2) EGARCH(2,3) EGARCH(2,3) EGARCH(3,3) EGARCH(3,3) 

 
-0,077 5,4E-06 -0,066 -0,022 -0,123 -0,035 -0,019 -0,022 -0,115 -0,031 

(0,026) (1,7E-06) (0,022) (0,013) (0,022) (0,012) (0,011) (0,013) (0,051) (0,020) 

 
1,911 0,183 1,463 1,704 0,987 1,783 1,729 1,704 0,458 1,247 

(0,168) (0,090) (0,133) (0,132) (0,002) (0,043) (0,101) (0,113) (0,158) (0,215) 

 
-1,359 0,704 -0,470 -0,707  -0,787 -0,732 -0,707 0,993 0,177 

(0,295) (0,088) (0,131) (0,130)  (0,042) (0,100) (0,111) (0,003) (0,363) 

 
          

       (the table continues overleaf) 



Narodowy Bank Polski34

32 
 

 
0,439        -0,462 -0,427 

(0,142)        (0,156) (0,166) 

 
-0,019 0,056 -0,107 -0,057 -0,199 0,047 0,116 0,115 0,137 0,306 

(0,032) (0,015) (0,041) (0,046) (0,043) (0,031) (0,053) (0,053) (0,043) (0,030) 

 
0,093  0,228 0,220 0,265 -0,015 -0,089 -0,085 0,069 -0,267 

(0,039)  (0,074) (0,083) (0,066) (0,033) (0,099) (0,099) (0,028) (0,088) 

 
  -0,058 -0,126 0,051  -0,016 -0,018 -0,041 -0,004 

  (0,058) (0,053) (0,048)  (0,055) (0,055) (0,050) (0,072) 

 
-0,098 0,087 -0,255 -0,212 -0,243 -0,205 0,101 -0,101 -0,187 0,083 

(0,024) (0,022) (0,027) (0,030) (0,031) (0,023) (0,035) (0,035) (0,031) (0,027) 

 
0,077  0,137 0,190 -0,020 0,198 -0,012 0,008 0,001 0,018 

(0,023)  (0,072) (0,071) (0,044) (0,022) (0,068) (0,068) (0,012) (0,048) 

 
  0,064 -0,002 0,153  -0,071 0,073 0,160 -0,096 

  (0,046) (0,043) (0,031)  (0,038) (0,038) (0,030) (0,035) 

t-Student’s 
degrees of 
freedom 

7,606 6,814 13,398 8,926 9,704 8,262 6,324 6,294 5,347 5,670 

(1,000) (0,816) (2,521) (1,396) (1,575) (0,968) (0,657) (0,654) (0,565) (0,364) 

AIC -1,7E+04 -1,6E+04 -1,7E+04 -1,6E+04 -1,8E+04 -1,8E+04 -8338,925 -8338,545 -2,2E+04 -2,4E+04 

Notes: The table reports ML estimates for the univariate ARMA-GARCH models of the marginal distributions. All models have t-Student’s error 
terms, except for PL BANKS following GJR-GARCH process with t-Student’s error term. Standard errors are in brackets.  

 

 

 
Figure 1. Histograms of the transformed variables. 
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0,439        -0,462 -0,427 

(0,142)        (0,156) (0,166) 

 
-0,019 0,056 -0,107 -0,057 -0,199 0,047 0,116 0,115 0,137 0,306 

(0,032) (0,015) (0,041) (0,046) (0,043) (0,031) (0,053) (0,053) (0,043) (0,030) 

 
0,093  0,228 0,220 0,265 -0,015 -0,089 -0,085 0,069 -0,267 

(0,039)  (0,074) (0,083) (0,066) (0,033) (0,099) (0,099) (0,028) (0,088) 

 
  -0,058 -0,126 0,051  -0,016 -0,018 -0,041 -0,004 

  (0,058) (0,053) (0,048)  (0,055) (0,055) (0,050) (0,072) 

 
-0,098 0,087 -0,255 -0,212 -0,243 -0,205 0,101 -0,101 -0,187 0,083 

(0,024) (0,022) (0,027) (0,030) (0,031) (0,023) (0,035) (0,035) (0,031) (0,027) 

 
0,077  0,137 0,190 -0,020 0,198 -0,012 0,008 0,001 0,018 

(0,023)  (0,072) (0,071) (0,044) (0,022) (0,068) (0,068) (0,012) (0,048) 

 
  0,064 -0,002 0,153  -0,071 0,073 0,160 -0,096 

  (0,046) (0,043) (0,031)  (0,038) (0,038) (0,030) (0,035) 

t-Student’s 
degrees of 
freedom 

7,606 6,814 13,398 8,926 9,704 8,262 6,324 6,294 5,347 5,670 

(1,000) (0,816) (2,521) (1,396) (1,575) (0,968) (0,657) (0,654) (0,565) (0,364) 

AIC -1,7E+04 -1,6E+04 -1,7E+04 -1,6E+04 -1,8E+04 -1,8E+04 -8338,925 -8338,545 -2,2E+04 -2,4E+04 

Notes: The table reports ML estimates for the univariate ARMA-GARCH models of the marginal distributions. All models have t-Student’s error 
terms, except for PL BANKS following GJR-GARCH process with t-Student’s error term. Standard errors are in brackets.  

 

 

 
Figure 1. Histograms of the transformed variables. 
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Figure 2. Bi-variate pseudo-samples of the transformed variables. 
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