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Abstract

This paper introduces a time domain framework to analyze global identification of

stochastically nonsingular DSGE models. A formal identification condition is estab-

lished that relies on the restrictions linking the observationally equivalent minimal

state space representations and on the inherent constraints imposed by them on deep

model parameters. We next develop an algorithm that checks global identification

by searching for observationally equivalent model parametrizations. The algorithm

is efficient as the identification conditions it employs shrink considerably the space

of candidate deep parameter points and does not require solving the model at each

of these points. We also derive two complementary necessary conditions for global

identification. Their usefulness and the working of the algorithm are illustrated with

an example.

JEL: C13, C51, E32

Keywords: global identification, DSGE models
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1 Introduction

Dynamic stochastic general equilibrium (DSGE) models have developed into useful tools

for macroeconomic analysis. A growing number of policy making institutions, and central

banks in particular, use them not only for designing counter-factual experiments, but also

for assessing the current stance of the economy and forecasting. The latter application

has been supported by growing evidence that estimated medium-sized DSGE models can

be competitive with time series models and expert judgment (Del Negro and Schorfheide,

2013).

It has been well understood that DSGE models can suffer from serious identification

deficiencies, making estimation problematic at best. One of the first papers to examine

this issue was Canova and Sala (2009) who developed simple diagnostic tools for detecting

problems with identification in DSGE models estimated by impulse response matching.

Their findings allowed them to state in this context that “observational equivalence, par-

tial and weak identification problems are widespread”. A more formal analysis, applicable

also to likelihood-based methods, is offered by Iskrev (2010). He establishes conditions for

local identification based on the rank of the Jacobian matrix that maps the deep param-

eters of a DSGE model to its implied first and second moments of observable variables.

Komunjer and Ng (2011) draw on control theory and spectral analysis. They derive their

local identification conditions based on the rank of the appropriately defined Jacobian ma-

trix that uses the restrictions between the observationally equivalent state space systems.

Another important theoretical contribution is by Qu and Tkachenko (2012) who establish

their rank conditions for local identification using the spectral density matrix that maps

from deep model parameters to functions defined in a Banach space.

Local identification is the necessary condition for existence of well-behaved estimators

and hence is “to be or not to be” for econometricians. However, one might argue that what

really matters for economists is whether there exist another point in the parameter space,

possibly distinctly far from the original one, that results in the same autocovariances,

impulse responses etc. - a question that relates to the problem of global identification.

In this paper we offer a theoretical analysis of global identification of DSGE models.

Similarly to Komunjer and Ng (2011), our framework relies on conditions linking the ob-

servationally equivalent minimal state space representations, derived using classic linear

system theory. This allows us to state the necessary (order) condition for global identifica-

tion. We next use the inherent constraints that are imposed by the model solution on the

structural parameters to establish the formal and operational condition for their global

identification. This result has two applications. First, it allows us to state two useful

necessary conditions for a special case of linear restrictions imposed on semi-structural
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parameters. Second, we use it to develop an algorithm that checks global identification

by searching for observationally equivalent model parametrizations. The algorithm is effi-

cient as the identification conditions it employs shrink considerably the space of candidate

deep parameter points and does not require solving the model at each of these points.

This contrasts with Qu and Tkachenko (2013) - the only formal attempt to handle global

identification known to us to date.

Our approach has several further important features that make it particularly attrac-

tive. As already mentioned, it has a global rather than local flavor. Also, the whole

analysis is done in the time domain and hence can be considered more transparent than

approaches employing spectral methods. Importantly, and unlike the previous literature

on local identification (Iskrev, 2010; Komunjer and Ng, 2011; Qu and Tkachenko, 2012),

our method does not rely on evaluating the ranks of the matrices that are obtained numer-

ically. Problems that may arise with this approach are acknowledged by Iskrev (2010) and

Komunjer and Ng (2011), see also Canova et al. (2013). In the last appendix we provide

additional mathematical arguments on why identification based on differential calculus

may be condemned to failure. In contrast, our method is based on solving the system of

nonlinear equations and hence is less prone to the aforementioned problems.

The rest of this paper is structured as follows. Section two lays out the structure of a

typical DSGE model and its solution. Section three discusses the equivalent state space

representations. In section four we work out the formal condition for global identification.

Section five presents our algorithm for checking global identification. Applications of the

derived necessary conditions and algorithm to a widely analyzed DSGE model of An and

Schorfheide (2007) are described in section six. Section seven concludes. The paper is

supplemented with technical appendices containing the proofs of the derived theorems

and propositions, as well as some additional discussion of the related literature.

4

2 DSGE model

A DSGE model is a system of non-linear equations involving expectations. While solving

this type of models using global methods is in principle possible, it can be prohibitively

time consuming unless the number of state variables is very small. In consequence, most

studies use local approximations of the original models. In particular, likelihood-based

estimation that requires calculating the model solution at each optimization step is usually

done with linearized models.1

Once linearized, most DSGE models can be cast in the following form

Γ1(θ)

[
st+1

Etpt+1

]
= Γ0(θ)

[
st

pt

]
+ Γ2(θ)εt+1 (1)

where st is an n× 1 vector of states, pt is a q× 1 vector of controls, matrices Γ0(θ), Γ1(θ)

and Γ2(θ) are explicit functions of deep model parameters collected in an m × 1 vector

θ ∈ Θ ⊆ Rm, and εt ∼ i.i.d.N(0,Σ(θ)) is a k × 1 vector of exogenous variables, where

Σ(θ) : (k × k) is assumed to be symmetric positive definite for every θ ∈ Θ.

Assuming that system (1) has a unique stable solution,2 it can be written as

st = A(θ)st−1 +B(θ)εt (2)

pt = F (θ)st (3)

where A(θ) : (n×n), B(θ) : (n×k) and F (θ) : (q×n) are matrices that implicitly depend

on deep model parameters θ.

Let yt denote an r×1 vector of observable variables. Then the measurement equations,

linking observables to model variables, can be written as

yt = G(θ)

[
st

pt

]
+ J(θ)εt (4)

where G(θ) : r × (n + q) and J(θ) : (r × k) are matrices that may depend on θ. Note

that equation (4) allows for measurement errors, collected with structural shocks in the

already defined vector εt.

If we decompose G(θ) into blocks corresponding to states and controls G(θ) = [Gs(θ)

Gp(θ)], then using the model solution (2) and (3) allows us to rewrite measurement equa-

1See Fernández-Villaverde et al. (2006) for a discussion on how second order approximation errors affect
the likelihood function.

2See Blanchard and Kahn (1980). Other popular solution algorithms include Anderson and Moore
(1985), Uhlig (1999), Klein (2000) or King and Watson (2002). Anderson (2008) offers a comparison of
their accuracy and efficiency.
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(1985), Uhlig (1999), Klein (2000) or King and Watson (2002). Anderson (2008) offers a comparison of
their accuracy and efficiency.
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tion (4) as

yt = C(θ)st−1 +D(θ)εt (5)

where matrices C(θ) : (r × n) and D(θ) : (r × k) are defined as

C(θ) = (Gs(θ) +Gp(θ)F (θ))A(θ) (6)

D(θ) = (Gs(θ) +Gp(θ)F (θ))B(θ) + J(θ) (7)

Consequently, the law of motion for observable variables yt has a representation in

the state space form given by transition equation (2) and measurement equation (5). For

future reference, such a representation will be called the ABCD-representation. The term

is not accidental and indicates that we are in the world of the A, B, C and Ds explored

by Fernández-Villaverde et al. (2007).

In what follows, we restrict our attention to the square case r = k, which means

that the system is stochastically nonsingular. Moreover, from now on, we use the generic

simplifying notation X := X(θ), where X is a matrix that explicitly or implicitly depends

on θ. Analogously, when referring to other points in the deep parameter space, we write

X̄ := X(θ̄).

6

3 Equivalent state-space representations

This section derives the conditions linking the observationally equivalent ABCD-representa-

tions. The obtained results will be used in the next section to establish the conditions for

global identification of deep parameters in DSGE models.

Let y = (y1, . . . , yT ) ∈ Y ⊆ Rr×T denote data underlying a DSGE model and p(y; s0, A,

B,C,D,Σ) be a probability density function (pdf) of its ABCD-representation with respect

to Lebesgue measure on Y, i.e.
´
Y p(y; s0, A,B,C,D,Σ)dy = 1.3 In fact, we show in

Appendix 2 that such a pdf exists if and only if the following holds

Assumption 1. D is nonsingular for all θ ∈ Θ.

This assumption is explicitly adopted in a similar context e.g. by Fernández-Villaverde

et al. (2007) and Dupor and Han (2011). To state the next assumption we need to define

the observability matrix O = [C ′...A′C ′...A′2C ′... . . .
...A′n−1C ′]′ and the controllability matrix

K = [B
...AB

...A2B
... . . .

...An−1B].

Assumption 2. Matrices O and K have full column and row rank, respectively, i.e.

rank(O) = rank(K) = n.

Assumption 2 is well known from the linear system theory and holds if and only if

the ABCD-representation is written for minimal dimension state vector st (which always

exists). It is not restrictive in the sense that usually we can rewrite the model so that

it holds. In particular, it precludes an ABCD-representation in which there are columns

of zeros in matrix A. See Komunjer and Ng (2011) and their supplementary material for

more discussion on this point, with explicit examples on how to obey Assumption 2 in

specific models. In Appendix 3 we show that in order to check if Assumptions 1 and 2 are

satisfied, we just have to solve the model for any (e.g. randomly selected) θ ∈ Θ. If these

two assumptions are valid for this θ, then in fact they hold for almost all θ ∈ Θ.

Our last assumption is

Assumption 3. The initial state vector s0 is a known constant.

Naturally, in a stationary environment (i.e. when the system started long before time

0), Assumption 3 can be strengthened to s0 = 0. In fact, the latter is implicitly done by

Komunjer and Ng (2011) since they assume that all information concerning identification

is included in the transfer function.

We use the standard definition of identification of a sampling model in terms of a pdf,

see e.g. Haavelmo (1944) or Rothenberg (1971):

3The initial state appears as an argument of the ABCD-representation since we do not require it to be
identically equal to zero.
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Definition 1. A sampling model is globally identified at φ ∈ Φ if and only if, for all

φ̄ ∈ Φ, [p(y;φ) = p(y; φ̄) for all y ∈ Y] ⇒ φ = φ̄

Definition 1 makes it explicit that identification is a matter of a well designed model.

In contrast, the definition used in Komunjer and Ng (2011) refers to asymptotic properties

of a model (see Komunjer and Ng (2011), p. 2000).

Our identification analysis is based on the following theorem

Theorem 1. Let Assumptions 1 to 3 hold. Then p(y; s0, A,B,C,D,Σ) = p(y; s0, Ā, B̄, C̄,

D̄, Σ̄) for all y ∈ Y implies: 1) Ā = TAT−1, 2) B̄ = TBU , 3) C̄ = CT−1, 4) D̄ = DU , 5)

Σ̄ = U−1ΣU ′−1, 6) s0 = Ts0, for some nonsingular matrices T : (n× n) and U : (k × k).

The conclusion of Theorem 1 is essentially the same as that of Proposition 1-S in

Komunjer and Ng (2011) (modulo treatment of s0). However, the hypotheses underlying

our results differ. A more detailed discussion of our Theorem 1 in relation to Komunjer and

Ng (2011) is available in Appendix 1. In particular, we demonstrate that our assumptions

are weaker.

In Appendix 2 we show that U = LHL̄−1, where H : (k × k) is an orthogonal matrix

while L and L̄ are lower triangular matrices with positive diagonal elements that come

from the Choleski decomposition of Σ and Σ̄, respectively, i.e. Σ = LL′, Σ̄ = L̄L̄′. In

particular, if we assume that shocks εt are independent, i.e. Σ = Ik, then we have a useful

corollary

Corollary 1. Let Assumptions 1 to 3 hold. Moreover, assume εt ∼ i.i.d.N(0, Ik). Then

p(y; s0, A,B,C,D) = p(y; s0, Ā, B̄, C̄, D̄) for all y ∈ Y implies: 1) Ā = TAT−1, 2) B̄ =

TBH, 3) C̄ = CT−1, 4) D̄ = DH, 5) s0 = Ts0, for some nonsingular matrix T : (n× n)

and orthogonal matrix H : (k × k).

Remark 1. Note that unless the initial state st is assumed equal to zero, it affects identifi-

cation of the DSGE model by putting restrictions on possible T ′s.4 In general, and unlike

by Assumption 3, we can treat the initial state vector as an unknown constant so that

it essentially becomes an additional parameter. This may be natural if one contemplates

Bayesian estimation for then a prior on s0 can be imposed. In such a case, condition 6)

from Theorem 1, and 5) from Corollary 1, should be replaced by s̄0 = Ts0.

What Theorem 1 and Corollary 1 imply is that the ABCD-representation is not iden-

tified. We can only hope for identification of some subset of elements in A, B, C, D and

Σ. A highly relevant question is therefore: what is the maximal number of functionally

4Since Komunjer and Ng (2011) implicitly assume s0 = 0, the conditions 6) in Theorem 1 and 5) in
Corollary 1 do not show up in their Proposition 1-S.

8

independent elements in these matrices that we can (in principle) uniquely retrieve? One

can think of this problem as finding the number of functionally independent elements in

the reduced form of the ABCD-representation. We have

Proposition 1. Let Assumptions 1 to 3 hold. The maximal number of functionally in-

dependent elements in the ABCD-representation of a linearized DSGE model is 2nk +
1
2k(k + 1) + n if s0 �= 0, or 2nk + 1

2k(k + 1) if s0 = 0. This holds irrespective of whether

εt ∼ i.i.d.N(0, Ik) or εt ∼ i.i.d.N(0,Σ).

This proposition says that since the reduced form contains exactly 2nk+ 1
2k(k+1)+n

functionally independent elements (for the case s0 �= 0), we cannot pin down uniquely

more than 2nk + 1
2k(k + 1) + n deep parameters comprising vector θ.5 This brings us to

the first necessary condition for global identification of DSGE models

Proposition 2. Let Assumptions 1 to 3 hold. The necessary (order) condition for global

identification of a linearized DSGE model is that the number of deep parameters is less

than or equal to 2nk + 1
2k(k + 1) + n if s0 �= 0, or 2nk + 1

2k(k + 1) if s0 = 0 .

Note that this order condition for global identification is exactly the necessary con-

dition for local identification given in Komunjer and Ng (2011), Proposition 2-S, which

accomodates the square case but implicitly assumes that s0 = 0.

5This is provided that the particular point θ at which we check global identifiability belongs to the set
of regular points, see Fisher (1966), p. 163.
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Definition 1. A sampling model is globally identified at φ ∈ Φ if and only if, for all

φ̄ ∈ Φ, [p(y;φ) = p(y; φ̄) for all y ∈ Y] ⇒ φ = φ̄

Definition 1 makes it explicit that identification is a matter of a well designed model.

In contrast, the definition used in Komunjer and Ng (2011) refers to asymptotic properties

of a model (see Komunjer and Ng (2011), p. 2000).

Our identification analysis is based on the following theorem

Theorem 1. Let Assumptions 1 to 3 hold. Then p(y; s0, A,B,C,D,Σ) = p(y; s0, Ā, B̄, C̄,

D̄, Σ̄) for all y ∈ Y implies: 1) Ā = TAT−1, 2) B̄ = TBU , 3) C̄ = CT−1, 4) D̄ = DU , 5)

Σ̄ = U−1ΣU ′−1, 6) s0 = Ts0, for some nonsingular matrices T : (n× n) and U : (k × k).

The conclusion of Theorem 1 is essentially the same as that of Proposition 1-S in

Komunjer and Ng (2011) (modulo treatment of s0). However, the hypotheses underlying

our results differ. A more detailed discussion of our Theorem 1 in relation to Komunjer and

Ng (2011) is available in Appendix 1. In particular, we demonstrate that our assumptions

are weaker.

In Appendix 2 we show that U = LHL̄−1, where H : (k × k) is an orthogonal matrix

while L and L̄ are lower triangular matrices with positive diagonal elements that come

from the Choleski decomposition of Σ and Σ̄, respectively, i.e. Σ = LL′, Σ̄ = L̄L̄′. In

particular, if we assume that shocks εt are independent, i.e. Σ = Ik, then we have a useful

corollary

Corollary 1. Let Assumptions 1 to 3 hold. Moreover, assume εt ∼ i.i.d.N(0, Ik). Then
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cation of the DSGE model by putting restrictions on possible T ′s.4 In general, and unlike

by Assumption 3, we can treat the initial state vector as an unknown constant so that

it essentially becomes an additional parameter. This may be natural if one contemplates

Bayesian estimation for then a prior on s0 can be imposed. In such a case, condition 6)

from Theorem 1, and 5) from Corollary 1, should be replaced by s̄0 = Ts0.

What Theorem 1 and Corollary 1 imply is that the ABCD-representation is not iden-

tified. We can only hope for identification of some subset of elements in A, B, C, D and

Σ. A highly relevant question is therefore: what is the maximal number of functionally

4Since Komunjer and Ng (2011) implicitly assume s0 = 0, the conditions 6) in Theorem 1 and 5) in
Corollary 1 do not show up in their Proposition 1-S.
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independent elements in these matrices that we can (in principle) uniquely retrieve? One

can think of this problem as finding the number of functionally independent elements in

the reduced form of the ABCD-representation. We have

Proposition 1. Let Assumptions 1 to 3 hold. The maximal number of functionally in-

dependent elements in the ABCD-representation of a linearized DSGE model is 2nk +
1
2k(k + 1) + n if s0 �= 0, or 2nk + 1

2k(k + 1) if s0 = 0. This holds irrespective of whether

εt ∼ i.i.d.N(0, Ik) or εt ∼ i.i.d.N(0,Σ).

This proposition says that since the reduced form contains exactly 2nk+ 1
2k(k+1)+n

functionally independent elements (for the case s0 �= 0), we cannot pin down uniquely

more than 2nk + 1
2k(k + 1) + n deep parameters comprising vector θ.5 This brings us to

the first necessary condition for global identification of DSGE models

Proposition 2. Let Assumptions 1 to 3 hold. The necessary (order) condition for global

identification of a linearized DSGE model is that the number of deep parameters is less

than or equal to 2nk + 1
2k(k + 1) + n if s0 �= 0, or 2nk + 1

2k(k + 1) if s0 = 0 .

Note that this order condition for global identification is exactly the necessary con-

dition for local identification given in Komunjer and Ng (2011), Proposition 2-S, which

accomodates the square case but implicitly assumes that s0 = 0.

5This is provided that the particular point θ at which we check global identifiability belongs to the set
of regular points, see Fisher (1966), p. 163.
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4 Identification of deep parameters

We are now ready to establish the formal condition for global identification of deep param-

eters in linearized DSGE models and provide some further necessary conditions. Using the

identification condition given in definition 1 and assuming that system (1) has a unique

stable solution, we are in a position to state

Definition 2. A linearized DSGE model is globally identified at θ ∈ Θ if and only if, for

all θ̄ ∈ Θ, [p(y; s0, A,B,C,D,Σ) = p(y; s0, Ā, B̄, C̄, D̄, Σ̄) for all y ∈ Y] ⇒ (Ā = A, B̄ =

B, C̄ = C, D̄ = D, Σ̄ = Σ, θ̄ = θ)

Our goal is to obtain an equivalent but more operational definition of identification,

provided that Assumptions 1 to 3 hold. To this end, let us denote the conclusion from The-

orem 1 as Ā, B̄, C̄,D̄, Σ̄, s0 ∈ E , where E = {Ā, B̄, C̄,D̄, Σ̄, s0|Ā = TAT−1; B̄ = TBU ; C̄ =

CT−1; D̄ = DU ; Σ̄ = U−1ΣU ′−1; s0 = Ts0;nonsingular T, U}. In Appendix 4 we show

that Definition 2 can be equivalently stated as

Definition 3. Let Assumptions 1 to 3 hold. Then a linearized DSGE model is globally

identified at θ ∈ Θ if and only if, for all θ̄ ∈ Θ, [Ā = TAT−1; B̄ = TBU ; C̄ = CT−1; D̄ =

DU ; Σ̄ = U−1ΣU ′−1; s0 = Ts0] ⇒ (T = In, U = Ik, θ̄ = θ)

Unfortunately, Definition 3 is still hardly operational since its application would amount

to searching over the whole deep parameter space to check whether Ā, B̄, C̄,D̄, Σ̄, s0 ∈ E
holds only for T = In, U = Ik, θ̄ = θ. Importantly, the model solution would need to be

computed for every candidate θ̄. To circumvent this problem, we use the links between

the model’s semi-structural parameters Γ0, Γ1, Γ2, G, J and its solution given by matrices

A, B, C, D, F . Two of such links are already available as equations (6) and (7), which

were obtained by plugging the model solution to measurement equation (5). However,

they impose constraints only on G and J . To find inherent constraints on Γ0, Γ1 and Γ2,

let us rewrite system (1) by partitioning Γ0 and Γ1 into blocks corresponding to states

and controls [
Γs
1 Γp

1

] [ st+1

Etpt+1

]
=

[
Γs
0 Γp

0

] [ st

pt

]
+ Γ2εt+1 (8)

Using (2) and (3) yields

Γs
1Ast + Γs

1Bεt+1 = (Γs
0 + Γp

0F − Γp
1FA)st + Γ2εt+1 (9)

Since equation (9) must hold for all (permissible) values of st and εt+1, it follows that

Γs
1A = Γs

0 + Γp
0F − Γp

1FA (10)
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CT−1; D̄ = DU ; Σ̄ = U−1ΣU ′−1; s0 = Ts0;nonsingular T, U}. In Appendix 4 we show

that Definition 2 can be equivalently stated as

Definition 3. Let Assumptions 1 to 3 hold. Then a linearized DSGE model is globally

identified at θ ∈ Θ if and only if, for all θ̄ ∈ Θ, [Ā = TAT−1; B̄ = TBU ; C̄ = CT−1; D̄ =
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let us rewrite system (1) by partitioning Γ0 and Γ1 into blocks corresponding to states

and controls [
Γs
1 Γp

1

] [ st+1

Etpt+1

]
=

[
Γs
0 Γp

0

] [ st

pt

]
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Using (2) and (3) yields
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1Ast + Γs
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0 + Γp

0F − Γp
1FA)st + Γ2εt+1 (9)
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0 + Γp
0F − Γp
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Γs
1B = Γ2 (11)

Naturally, equations (10), (11), and also (6) and (7) must hold for any θ̄ ∈ Θ. Let us

collect these constraints in set Z, defined as

Z = {Ā, B̄, C̄,D̄|Γ̄s
1Ā = Γ̄s

0 + Γ̄p
0F̄ − Γ̄p

1F̄ Ā; Γ̄s
1B̄ = Γ̄2; C̄ = (Ḡs + ḠpF̄ )Ā;

D̄ = (Ḡs + ḠpF̄ )B̄ + J̄} (12)

One can think of Z as a counterpart of intrinsic constraints imposed on structural param-

eters by reduced form parameters in classic simultaneous equations models, even though

one might argue that this analogy is too far-fetched since the ABCD-representation is not

the reduced form of the underlying DSGE model. It is important to notice that Z is a tau-

tology. This means that Ā, B̄, C̄,D̄, Σ̄, s0 ∈ E ⇔ (Ā, B̄, C̄,D̄, Σ̄, s0 ∈ E) ∧ (Ā, B̄, C̄,D̄ ∈ Z).

Hence, definition 3 may be equivalently stated as

Definition 4. Let Assumptions 1 to 3 hold. Then a linearized DSGE model is globally

identified at θ ∈ Θ if and only if, for all θ̄ ∈ Θ, [Γ̄s
1TAT

−1 = Γ̄s
0+Γ̄p

0F̄−Γ̄p
1F̄ TAT−1; Γ̄s

1TBU

= Γ̄2;C = (Ḡs+ ḠpF̄ )TA;DU = (Ḡs+ ḠpF̄ )TBU+ J̄ ; Σ̄ = U−1ΣU ′−1; s0 = Ts0] ⇒ (T =

In, U = Ik, θ̄ = θ)

Definition 4 will prove essential for designing an efficient algorithm to check global

identification of a DSGE model. The key ingredient of definition 4 is that it involves

semi-structural parameters Γ0, Γ1, Γ2, G and J . This fact is important since in many

applications those parameters will be subject to the known linear restrictions. This opens

up a possibility to give an analytical identification condition for semi-structural parame-

ters, which of course will become a necessary identification condition for deep parameters.

In fact, we state a relatively easily applicable necessary condition for global identification,

which can be considered as a useful complementary tool to the order condition given in

Proposition 2.

To this end, let us assume that all restrictions imposed on Γ0, Γ1, Γ2, G and J are linear,

which may be formally stated as Υvec([Γs
1

...Γp
1

...Γs
0

...Γp
0

...Γ2]
′) = d and Ψvec([G

...J ]′) = h. In

this notation, Υ : (rΓ×(n+q)(2n+2q+k)) is a known matrix, d : (rΓ×1) is a known vector

and rΓ is the number of independent restrictions imposed on Γ0, Γ1 and Γ2. Similarly,

Ψ : (rGJ × r(n + q + k)) is a known matrix, h : (rGJ × 1) is a known vector and rGJ is

the number of independent restrictions imposed on G and J . Note that in this setup we

allow for cross-restrictions between rows within [Γs
1

...Γp
1

...Γs
0

...Γp
0

...Γ2] and within [G
...J ].

Proposition 3. Assume that all restrictions imposed on Γ0, Γ1, Γ2, G and J are linear.
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Define matrices

Q =


 In+q ⊗

[
A′ A′F ′ −In −F ′ 0n×k

B′ 0k×q 0k×n 0k×q −Ik

]

Υ


 and R =


 Ir ⊗

[
A′ A′F ′ 0n×k

B′ B′F ′ Ik

]

Ψ


.

If a linearized DSGE model is globally identified at θ ∈ Θ, then Q and R are of full

column rank (equivalently Q′Q and R′R are nonsingular). The latter implies that rΓ ≥
(n+ q)(n+ 2q) and rGJ ≥ rq.

If there are no restrictions involving parameters from different rows in [Γs
1

...Γp
1

...Γs
0

...Γp
0

...Γ2],

Proposition 3 can be specialized. To this end, denote by Γ(i) the ith row of [Γs
1

...Γp
1

...Γs
0

...Γp
0

...Γ2].

Let all linear restrictions imposed on the ith row of [Γs
1

...Γp
1

...Γs
0

...Γp
0

...Γ2] be written as ΥiΓ
′
(i) =

di, where Υi : (ri × (2n+ 2q + k)) is a known matrix, di : (ri × 1) is a known vector and

ri is the number of independent restrictions imposed on Γ(i). The restrictions imposed on

[G
...J ] are given as before. Then we have a useful corollary

Corollary 2. Assume that there are no restrictions between rows of [Γ1
...Γ0

...Γ2] and all

restrictions imposed on [Γ1
...Γ0

...Γ2] and [G
...J ] are linear. Define matrices

Qi =




A′ A′F ′ −In −F ′ 0n×k

B′ 0k×q 0k×n 0k×q −Ik

Υi


 and R =


 Ir ⊗

[
A′ A′F ′ 0n×k

B′ B′F ′ Ik

]

Ψ


.

If a linearized DSGE model is globally identified at θ ∈ Θ, then, for every i = 1, ..., n+ q,

Qi and R are of full column rank (equivalently Q′
iQi and R′R are nonsingular). The latter

implies that ri ≥ n+ 2q for all i, and rGJ ≥ rq.

Remark 2. The results in this section were derived for εt ∼ i.i.d.N(0,Σ). However, it is

straightforward to obtain the analogous results when εt ∼ i.i.d.N(0, Ik). In particular,

Proposition 3 and Corollary 2 are still valid.
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5 Algorithm checking identification

Having necessary conditions for global identification (such as Proposition 2 or 3) is useful.

However, it would also be desirable to have an analytical sufficient condition for global

identification. Unfortunately, we were unable to produce it. What we offer instead is

the insight that immediately follows from our considerations presented in the previous

section, which imply that a DSGE model is globally identified at θ ∈ Θ if and only if the

system of equations collected in the square bracket in Definition 4 has a unique solution

T = In, U = Ik, θ̄ = θ. It follows that if we can find a solution to the system

Γ̄s
1TAT

−1 = Γ̄s
0 + Γ̄p

0F̄ − Γ̄p
1F̄ TAT−1 (13)

Γ̄s
1TBU = Γ̄2 (14)

C = (Ḡs + ḠpF̄ )TA (15)

DU = (Ḡs + ḠpF̄ )TBU + J̄ (16)

Σ̄ = U−1ΣU ′−1 (17)

s0 = Ts0 (18)

such that θ̄ �= θ, the DSGE model is not globally identified at θ.

Note that, for given θ, matrices A, B, C, D and Σ are known while matrices Γ̄0, Γ̄1,

Γ̄2, Ḡ, J̄ and Σ̄ are analytically linked to θ̄. Hence, using some θ of interest, our algorithm

will search for θ̄, as well as for some nonsingular T and U , and some F̄ , that solve the

system of equations (13) to (18). The efficiency of our procedure when applied even to

large DSGE models follows from two facts. First, unlike Qu and Tkachenko (2013), we

do not have to solve the model for each candidate deep parameter point to check whether

a model is globally identified. Instead, using intrinsic constraints (12) we automatically

connect deep parameters with a model solution through the system of nonlinear equations

(13) to (18). Second, by using the minimal ABCD-representation and Theorem 1, we

reduce the number of additional “unknowns” from A, B, C and D in (12) to T and U in

the ultimate system of nonlinear equations (13)-(18).

For a typical DSGE model, the system given by equations equations (13) to (18) is

nonlinear in θ̄ and hence numerical methods have to be applied to solve them. Using the

fact that, by construction, the system is satisfied for θ̄ = θ, F̄ = F , T = In and U = Ik,

we generate the starting values for the numerical algorithm by randomizing around this

point.6 Naturally, the more diffuse distribution we use in the randomization, the longer

6We use Matlab routine fsolve. If our model conforms to Corollary 1 rather than to Theorem 1, we
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system of equations (13) to (18). The efficiency of our procedure when applied even to

large DSGE models follows from two facts. First, unlike Qu and Tkachenko (2013), we

do not have to solve the model for each candidate deep parameter point to check whether

a model is globally identified. Instead, using intrinsic constraints (12) we automatically
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(13) to (18). Second, by using the minimal ABCD-representation and Theorem 1, we

reduce the number of additional “unknowns” from A, B, C and D in (12) to T and U in

the ultimate system of nonlinear equations (13)-(18).

For a typical DSGE model, the system given by equations equations (13) to (18) is

nonlinear in θ̄ and hence numerical methods have to be applied to solve them. Using the

fact that, by construction, the system is satisfied for θ̄ = θ, F̄ = F , T = In and U = Ik,

we generate the starting values for the numerical algorithm by randomizing around this

point.6 Naturally, the more diffuse distribution we use in the randomization, the longer
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it takes to obtain a solution, but the more likely it is to find alternative parameter values

that are far from a given θ.

Several remarks are in order. In a linearized model, stochastic properties of shocks

collected in εt affect only the variance-covariance matrix Σ and do not show up in the model

equations. Hence, while searching for observationally equivalent model parametrizations,

we can abstract from the subset of θ̄ that define Σ̄, and recover them afterwards using

(17). Moreover, if we follow Komunjer and Ng (2011) and assume s0 = 0, then we can

also drop condition (18) as it does not impose any restrictions on the solution. Finally, it

is instructive to briefly discuss two special model setups, in both of which we additionally

assume that A is nonsingular.7 The first case highlights the role of measurement errors.

It is easy to verify that, if all shocks in our DSGE model are structural, and additionally

matrix B is full row rank,8 then equations (15) and (16) become identical, simplifying to

(Gs +GpF ) = (Ḡs + ḠpF̄ )T (19)

The second special case concerns the choice of observable variables. If these are chosen

such that Ḡp is nonsingular for any θ̄ ∈ Θ,9 then (15) can be used to solve for F̄ and hence

the numerical algorithm needs to search only for θ̄, T and U .

suggest to parametrize an orthogonal H by H = 2(Ik +X)−1 − Ik, where X : (k × k) is a skew symmetric
matrix, i.e. it satisfies X +X ′ = 0.

7This assumption seems to be“generic”or“typical” if the state space is minimal. It fact, using arguments
from Appendix 3, if A is nonsingular for any θ ∈ Θ, then A will be nonsingular for almost all θ.

8A necessary condition for that is n ≤ k, i.e. the number of states cannot be larger than the number of
shocks (and observables in the square case).

9This condition is satisfied e.g. for the canonical New Keynesian model of Clarida et al. (1999), where
the observable variables are output, inflation and the interest rate.

14

6 Example: An-Schorfheide model

We use the findings presented above to analyze the model in An and Schorfheide (2007).

Identification of this model was also examined locally by Komunjer and Ng (2011) so it

provides a natural object to highlight the main features of our approach. We first use a

simplified version of the model to demonstrate usefulness of the necessary conditions for

global identification given by Propositions 2 and 3, and next apply our algorithm to the

full version.

6.1 Model summary

When written in log-linearized form, the model is given by the following equations

xt = Etxt+1 + gt − Etgt+1 −
1

τ
(Rt − Etπt+1 − Etzt+1)

πt = βEtπt+1 +
τ(1− ν)

νπ̄2φ
(xt − gt)

Rt = ρmRt−1 + (1− ρm)[ψ1πt + ψ2(xt − gt)] + σmεm,t

zt = ρzzt−1 + σzεz,t

gt = ρggt−1 + σgεg,t

There are five endogenous variables in the model: detrended output xt, inflation πt, in-

terest rate Rt, productivity zt and government spending gt. They are driven by three

mutually uncorrelated white noise shocks to productivity growth εz,t, government pur-

chases εg,t and monetary policy εm,t. The 13-dimensional vector of parameters is θ =

[ τ ν ψ1 ψ2 π̄ φ β ρz ρg ρm σz σg σm ]′. For further use, let us define the

following two parameter groups: θPhi = [ ν π̄ φ ], collecting those appearing only in

the slope of the Phillips curve, and θTay = [ ψ1 ψ2 ρm σm ], consisting of parameters

showing up only in the Taylor rule. The baseline parameter values used by Komunjer and

Ng (2011) are reproduced in Table 1 for convenience. We will use them as our benchmark

θ.

It is easy to notice that three of the model parameters, namely ν, π̄ and φ, cannot be

separately identified since all of them show up only in the last term of the Phillips curve.

Hence, while checking identification we always fix any two in θPhi at their benchmark

values, which leaves us with at most eleven free parameters.
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6.2 Simple case

We start with a simple case, in which government spending and productivity growth are

white noise and the Taylor rule does not allow for interest rate smoothing, i.e. ρz = ρg =

ρm = 0.10 Note that, with these assumptions, shocks to productivity growth do not show

up in the model so we can accommodate only two observables, which we chose to be xt

and πt so that yt = [ xt πt ]′. Reducing the model to just these two endogenous variables

yields the following two-equation system

yt = Etyt+1 + εg,t −
1

τ
(ψ1πt + ψ2(yt − εg,t) + εm,t − Etπt+1)

πt = βEtπt+1 +
τ(1− ν)

νπ̄2φ
(yt − εg,t)

and the matrices associated with (1) for a vector of controls pt = [ yt πt ]′ are

Γ0 =

[
1 + ψ2

τ
ψ1

τ

− τ(1−ν)
νπ̄2φ

1

]
Γ1 =

[
1 1

τ

0 β

]
Γ2 =

[
−(1 + ψ2

τ )σg
1
τ σm

τ(1−ν)
νπ̄2φ

σg 0

]

Since in this model version there are no state variables (n = 0) and only two shocks

(k = 2), the maximum number of parameters that can be identified according to the

order condition established in Proposition 2 is only three. However, we can use Corollary

2 to figure out that leaving only three free parameters might not be enough to ensure

identification. To see it, let us fix all parameters but ψ1, ψ2 and σm at their baseline

values. This results in three linear restrictions on the first row of [Γ1
...Γ0

...Γ2],
11 while at

least four (the number of controls q = 2) are needed for identification, so the model is still

not identified.

6.3 Full model

We showed using a simple example how our necessary conditions can be easily used to

immediately detect identification problems. We now move to the fully-fledged model

variant. In this case, these necessary conditions are not powerful enough to give a negative

verdict on identification, hence we use our algorithm described in section 5.

If we define an auxiliary variable R̃t = ρmRt−1 + σmεm,t, the An and Schorfheide

(2007) model can be cast in the form given by (1), with states st = [ zt gt R̃t ]′,

controls pt = [ yt πt Rt ]′, exogenous shocks εt = [ εz,t εg,t εm,t ]′ and matrices Γ0,

10A similar setup has recently been analyzed by Le et al. (2013).
11These restrictions are: Γ11

0 σg + Γ11
2 = 0, Γ11

1 = 1 and Γ12
1 = 1

τ
, where Γlk

i is the lth row, kth column
element of Γi.
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Γ1 and Γ2 defined as

Γ0 =




ρz 0 0 0 0 0

0 ρg 0 0 0 0

0 0 0 0 0 ρm

−ρz
τ −(1− ρg) 0 1 0 1

τ

0 τ(1−ν)
νπ̄2φ

0 − τ(1−ν)
νπ̄2φ

1 0

0 −(1− ρm)ψ2 1 (1− ρm)ψ2 (1− ρm)ψ1 −1




Γ1 =




1 0 0 0 0 0

0 1 0 0 0 0

0 0 1 0 0 0

0 0 0 1 1
τ 0

0 0 0 0 β 0

0 0 0 0 0 0




Γ2 =




σz 0 0

0 σg 0

0 0 σm

0 0 0

0 0 0

0 0 0




The vector of observable variables is now yt = [ xt πt Rt ]′, which means that G =

[ 03×3 I3 ] for all θ.

We know from the earlier literature that this setup is not identified, even if we fix

two of the three parameters in θPhi. As discussed by Komunjer and Ng (2011), there are

further identification issues concerning the coefficients in the Taylor rule. The results of

applying our algorithm that we document in Table 2 confirm these findings. For instance,

reparametrizing the model such that ψ1 = 2, ψ2 = −0.67, ρm = 0.688 and σm = 0.0018

results in exactly the same likelihood (and hence impulse responses and moments) for

observables as under our benchmark values for these parameters, holding the remaining

ones fixed. Consistently with Komunjer and Ng (2011), our algorithm cannot find any

observationally equivalent state space representation if we additionally fix either of the

following three Taylor rule parameters [ ψ1 ψ2 ρm ]. However, and in contrast to Ko-

munjer and Ng (2011), we find that fixing the standard deviation of monetary shocks σm

does the trick as well.

We supplement the identification analysis of the An and Schorfheide (2007) model

with an examination of the effect of replacing interest rate smoothing by autoregression

in the monetary policy shock (assumed white noise in the baseline). More specifically, the

monetary policy rule is now given by

Rt = ψ1πt + ψ2(xt − gt) +mt
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where

mt = ρmmt−1 + σmεm,t

As can be seen from Table 3, fixing ρm at a non-zero level is now not enough to ensure

identification of the remaining Taylor rule parameters. On the other hand, restricting any

other parameter in θTay is sufficient for identification of the rest in this set, including ρm.

The following two considerations highlight the attraction of our algorithm compared

to the previous literature. First, Komunjer and Ng (2011) show that if they reduce the

degree of inertia in shocks εz and εg to 0.1 and 0.15, respectively, their method fails to

confirm identification of the model, even if any of the Taylor rule parameters is restricted.

More generally, their method is sensitive to the tolerance level they set while performing

the matrix rank tests. Our algorithm does not suffer from such numerical problems. In

particular, if we consider low (but non-zero) shock inertia, our identification analysis leads

to the same conclusions as for the benchmark parameter set.

The second remark is related to the global flavor of our algorithm. The qualitative

results presented above can be obtained with a minimum degree of randomization of the

initial values in our algorithm. To search through more distant areas of the parameter

space, this parametrization of the algorithm needs to be increased, which can be easily

done. However, doing so does not lead to a discovery of any observationally equivalent set

of parameters if two of the θPhi subset and one of the θTay subset are fixed. This suggests

that the restrictions discussed above are sufficient globally - a result that Komunjer and

Ng (2011) could not establish with their local approach. Importantly, unless we restrict

π̄ to be positive, our algorithm does find an observationally equivalent representation of

the model with restricted ν, φ and either of θTay, which is obtained for π̄ = −1.008, i.e.

the negative of π̄ in our original parametrization. While this result is trivial and not

economically meaningful, it builds our confidence in the algorithm as having a potential

to go beyond a local analysis.

18

7 Concluding remarks

In this paper we developed a time domain framework for analyzing global identification

of DSGE models. In particular, we produced an operational condition for global identi-

fication and showed how to apply it to design the algorithm that efficiently searches for

observationally equivalent deep parameter sets. We also demonstrated how the algorithm

can be used to analyze global identification of a standard small-scale DSGE model that

is widely used in the literature. To balance our contribution in relation to Komunjer and

Ng (2011), we should mention that the price of using the time domain approach is that

we have to confine ourselves to stochastically nonsingular models.

Our framework can be easily applied to more sophisticated models. We did (though

not reported) it for the medium-sized small open economy model described in Justiniano

and Preston (2010). The reason why this setup might be of interest is related to some

identification problems encountered by these authors while they estimated the model.

However, applying our algorithm to this example did not result in finding parameter

values that would be observationally equivalent to the baseline parametrization used by

Justiniano and Preston (2010). This is consistent with Iskrev (2010) or Komunjer and

Ng (2011), who show that identification problems in richer models, like the canonical

Smets and Wouters (2007) setup, are less widespread than one might expect given the

evidence for small models. Our mathematical insight into these problems presented in

Appendix 7 may be some form of explanation. It follows that some of the identification

problems plaguing estimation of medium-sized DSGE models are of a weak rather than

strong nature, e.g. they might result from low curvature of the likelihood function for a

given dataset rather than from intrinsic features of the model structure.
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Tables and figures

Table 1: Baseline parametrization of An-Schorfheide model

Parameter Value Parameter Value

τ 2.0 ρz 0.9
ν 0.1 ρg 0.95
ψ1 1.5 ρm 0.75
ψ2 0.125 σz 0.003
π̄ 1.008 σg 0.006
φ 53.68 σm 0.002
β 0.9975

Table 2: Identification of An-Schorfheide model - baseline

Restricted parameters Non-identified parameters

none θPhi; θTay

any one in θPhi other two in θPhi; θTay

any two in θPhi θTay

any two in θPhi; ψ1 none
any two in θPhi; ψ2 none
any two in θPhi; ρm none
any two in θPhi; σm none

Note: θPhi ≡ [ ν π̄ φ ] and θTay ≡ [ ψ1 ψ2 ρm σm ].

Table 3: Identification of An-Schorfheide model - alternative Taylor rule

Restricted parameters Non-identified parameters

A. Baseline
any two in θPhi; any one in θTay none

B. Alternative
any two in θPhi; ψ1 none
any two in θPhi; ψ2 none
any two in θPhi; ρm ψ1; ψ2; σm
any two in θPhi; σm none

Note: θPhi ≡ [ ν π̄ φ ] and θTay ≡ [ ψ1 ψ2 ρm σm ].
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Appendices

Appendix 1: Discussion of Theorem 1 in relation to Komunjer and Ng

(2011)

Although Komunjer and Ng (2011), KN henceforth, work in the frequency domain, we

are able to compare our assumptions to prove Theorem 1 with those adopted by them.

First of all, in contrast to KN, we do not need to assume that A is a stable matrix for all

θ ∈ Θ (Assumption 2 in KN). That is, our ABCD-representation does not have to imply

a stationary moving average solution. The second difference is not so transparent and to

fully appreciate it we have to define the concept of transfer function

H(z) = D + C(zIn −A)−1B (20)

where z ∈ C (a set of complex numbers). KN assume that the transfer function is left-

invertible, which holds if and only if |z| > 1 ⇒ rank(H(z)) = k (i.e. transfer function

has full column rank). Our counterpart assumption is that D is nonsingular. The natural

question is about the relationship between these two assumptions. To answer it, the

following result is important12

Proposition. If the transfer function is left-invertible, then rank(D) = k, i.e. D is of

full column rank.

Proof. Assume that k ≤ r. The transfer function is said to be left-invertible if and only if

|z| > 1 ⇒ rank(H(z)) = k. This condition is equivalent to |z| > 1 ⇒ rank(D + C(In −
Az−1)−1Bz−1) = k if and only if |s| < 1 ⇒ rank(D + C(In − As)−1Bs) = k (where

z−1 = s), if and only if |s| < 1 ⇒ det((D+C(In −As)−1Bs)′(D+C(In −As)−1Bs)) �= 0,

if and only if det((D+C(In−As)−1Bs)′(D+C(In−As)−1Bs)) = 0 ⇒ |s| ≥ 1. Using the

last equivalent definition, we prove contrapositive of the proposition, i.e. rank(D) < k

implies det((D + C(In − As)−1Bs)′(D + C(In − As)−1Bs)) = 0 and |s| < 1. To this

end note that rank(D) < k if and only if det(D′D) = 0. However, 0 = det(D′D) =

det((D + C(In − A · 0)−1B · 0)′(D + C(In − A · 0)−1B · 0)) = 0. Hence there exists s = 0

(with |s| < 1) such that det((D + C(In − As)−1Bs)′(D + C(In − As)−1Bs)) = 0. This

proves the proposition.

Since in the square case left-invertibility reads |z| > 1 ⇒ det(H(z)) �= 0, we immedi-

ately have

Corollary. Assume k = r. If the transfer function is left-invertible then D is nonsingular.

12Though our approach is strictly confined to the square case, the following proposition is proved for
k ≤ r.
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There are two perspectives from which we can comment on the above proposition and

corollary. The first one is mathematical and the second one methodological. As for the

former, our contribution in comparison to KN is that we prove an analogous theorem under

weaker conditions, which is always welcomed. Moreover, we use the time domain frame-

work that does not have a clause “with T infinitely large”. The other (methodological)

perspective is related to non-invertible and/or non-fundamental solutions to (log)linearized

DSGE models.13 Although, in principle, the KN framework accommodates identification

problems in the non-invertible case, it does so only in the context of the innovations

representation of the original ABCD-representation. In our framework we judge global

identification in a model as it stands (which may be non-invertible or even have a diver-

gent moving average component), whereas using the approach of KN one must first take

a stand on whether the (stationary) solution is invertible or not, choose the appropri-

ate representation and then check (local) identifiability. However, the main point from

our perspective is that the innovations representation’s parameters are highly nonlinear

functions of A, B, C, D and Σ. Hence, the straightforward relationship with Γ0, Γ1 and

Γ2 from model (1) breaks down, which makes the problem of global identification more

difficult to tackle, at least in our approach.

Appendix 2: Proof of Theorem 1

Using equations (2) and (5), the whole data sampling process may be compactly written

as




y1

y2

y3
...

yT



=




C

CA

CA2

...

CAT−1



s0 +




D 0 0 · · · 0

CB D 0 · · · 0

CAB CB D · · · 0
...

...
...

. . .
...

CAT−2B CAT−3B CAT−4B · · · D







ε1

ε2

ε3
...

εT




Since εt ∼ i.i.d.N(0,Σ), where Σ is positive definite, we can decompose Σ = LL′, where

L is lower triangular with positive diagonal elements. Then we can rewrite the system

above as

13There is a rapidly growing literature on the problem of invertibility and/or fundamentalness of solutions
to DSGE models. This theoretical problem is not new and was subject of debate in 90’s, see e.g. Hansen
and Sargent (1991). However, the recent “news shocks” literature confirms resurgence of interests in this
problem, see e.g. Blanchard et al. (2012), Kurmann and Otrok (2013), Sims (2012), Schmitt-Grohé and
Uribe (2012), Leeper et al. (2013).
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H(z) = D + C(zIn −A)−1B (20)

where z ∈ C (a set of complex numbers). KN assume that the transfer function is left-

invertible, which holds if and only if |z| > 1 ⇒ rank(H(z)) = k (i.e. transfer function

has full column rank). Our counterpart assumption is that D is nonsingular. The natural

question is about the relationship between these two assumptions. To answer it, the

following result is important12

Proposition. If the transfer function is left-invertible, then rank(D) = k, i.e. D is of

full column rank.

Proof. Assume that k ≤ r. The transfer function is said to be left-invertible if and only if
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last equivalent definition, we prove contrapositive of the proposition, i.e. rank(D) < k

implies det((D + C(In − As)−1Bs)′(D + C(In − As)−1Bs)) = 0 and |s| < 1. To this

end note that rank(D) < k if and only if det(D′D) = 0. However, 0 = det(D′D) =

det((D + C(In − A · 0)−1B · 0)′(D + C(In − A · 0)−1B · 0)) = 0. Hence there exists s = 0

(with |s| < 1) such that det((D + C(In − As)−1Bs)′(D + C(In − As)−1Bs)) = 0. This

proves the proposition.

Since in the square case left-invertibility reads |z| > 1 ⇒ det(H(z)) �= 0, we immedi-

ately have

Corollary. Assume k = r. If the transfer function is left-invertible then D is nonsingular.

12Though our approach is strictly confined to the square case, the following proposition is proved for
k ≤ r.
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There are two perspectives from which we can comment on the above proposition and

corollary. The first one is mathematical and the second one methodological. As for the

former, our contribution in comparison to KN is that we prove an analogous theorem under

weaker conditions, which is always welcomed. Moreover, we use the time domain frame-

work that does not have a clause “with T infinitely large”. The other (methodological)

perspective is related to non-invertible and/or non-fundamental solutions to (log)linearized

DSGE models.13 Although, in principle, the KN framework accommodates identification

problems in the non-invertible case, it does so only in the context of the innovations

representation of the original ABCD-representation. In our framework we judge global

identification in a model as it stands (which may be non-invertible or even have a diver-

gent moving average component), whereas using the approach of KN one must first take

a stand on whether the (stationary) solution is invertible or not, choose the appropri-

ate representation and then check (local) identifiability. However, the main point from

our perspective is that the innovations representation’s parameters are highly nonlinear

functions of A, B, C, D and Σ. Hence, the straightforward relationship with Γ0, Γ1 and

Γ2 from model (1) breaks down, which makes the problem of global identification more

difficult to tackle, at least in our approach.

Appendix 2: Proof of Theorem 1

Using equations (2) and (5), the whole data sampling process may be compactly written

as




y1

y2

y3
...

yT



=




C

CA

CA2

...

CAT−1



s0 +




D 0 0 · · · 0

CB D 0 · · · 0

CAB CB D · · · 0
...

...
...

. . .
...

CAT−2B CAT−3B CAT−4B · · · D







ε1

ε2

ε3
...

εT




Since εt ∼ i.i.d.N(0,Σ), where Σ is positive definite, we can decompose Σ = LL′, where

L is lower triangular with positive diagonal elements. Then we can rewrite the system

above as

13There is a rapidly growing literature on the problem of invertibility and/or fundamentalness of solutions
to DSGE models. This theoretical problem is not new and was subject of debate in 90’s, see e.g. Hansen
and Sargent (1991). However, the recent “news shocks” literature confirms resurgence of interests in this
problem, see e.g. Blanchard et al. (2012), Kurmann and Otrok (2013), Sims (2012), Schmitt-Grohé and
Uribe (2012), Leeper et al. (2013).
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


y1

y2

y3
...

yT



=




C

CA

CA2

...

CAT−1



s0 +




DL 0 0 · · · 0

CBL DL 0 · · · 0

CABL CBL DL · · · 0
...

...
...

. . .
...

CAT−2BL CAT−3BL CAT−4BL · · · DL







ε�1
ε�2
ε�3
...

ε�T




where ε�t ∼ i.i.d.N(0, Ik).

Let us define y = (y′1, y
′
2, . . . , y

′
T )

′ and

µ =




C

CA

CA2

...

CAT−1



s0; R =




DL 0 0 · · · 0

CBL DL 0 · · · 0

CABL CBL DL · · · 0
...

...
...

. . .
...

CAT−2BL CAT−3BL CAT−4BL · · · DL




It follows that y ∼ N(µ,Ω) := p(y;µ,Ω), where Ω = RR′. We have the following sequence

of equivalences: D is nonsingular (Assumption 1), if and only if DL is nonsingular (since

L is the Choleski “square root”, which is nonsingular by assumption that all diagonal

elements in L are positive), if and only if R is nonsingular, if and only if Ω is positive

definite. But note that p(y;µ,Ω) = p(y; µ̄, Ω̄) for all y ∈ Y implies Ω = Ω̄ (see e.g.

Theorem 4 in Rothenberg (1971)). On the other hand, Ω = RR′ = R̄R̄′ = Ω̄ if and only if

R̄ = RV , where V is orthogonal (by Vinograd’s theorem). Since R is nonsigular, we have

R−1R̄ = V . But since R−1R̄ is block lower triangular, it follows that V is block diagonal

and each diagonal block is itself an orthogonal matrix. Denote the first diagonal block

of V as H : (k × k), with (HH ′ = H ′H = Ik). Since R̄ = RV , then writing the first k

columns in this relationship we have




D̄L̄

C̄B̄L̄

C̄ĀB̄L̄
...

C̄ĀT−2B̄L̄



=




DLH

CBLH

CABLH
...

CAT−2BLH



⇔




D̄

C̄B̄

C̄ĀB̄
...

C̄ĀT−2B̄



=




DU

CBU

CABU
...

CAT−2BU




where U = LHL̄−1. Using a part of the above relations we get
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


C̄

C̄Ā
...

C̄Ān−1



B̄ =




C

CA
...

CAn−1



BU

or equivalently ŌB̄ = OBU . Using Assumption 2 implies B̄ = Ō−OBU , where Ō−

denotes any left inverse of Ō. Further, it is easy to see that

C̄K̄ = [C̄B̄
...C̄ĀB̄

...C̄Ā2B̄
... . . .

...C̄Ān−1B̄] = CK(In ⊗ U)

which implies by Assumption 2 that C̄ = CK(In ⊗ U)K̄−, where K̄− is any right inverse

of K̄. On the other hand it is evident that

ŌK̄ = OK(In ⊗ U)

which implies by Assumption 2 that Ō = OK(In⊗U)K̄− and then In = Ō−OK(In⊗U)K̄−.

Since In ⊗ U is nonsingular and K has full row rank, it follows that K(In ⊗ U)K̄− is

nonsingular and hence Ō−O = (K(In ⊗ U)K̄−)−1. Note that this implies that Ō−O is

nonsingular, too. Moreover, it is easy to realize that

ŌĀK̄ = OAK(In ⊗ U)

which implies by Assumption 2 that Ā = Ō−OAK(In⊗U)K̄−. In addition, D̄L̄ = DLH ⇒
D̄L̄L̄′D̄′ = DLL′D′ ⇒ D̄Σ̄D̄′ = DΣD′ ⇒ Σ̄ = D̄−1DΣ(D̄−1D)′ (by Assumption 1). But

D̄−1D = U−1, thus Σ̄ = U−1ΣU ′−1. Since p(y;µ,Ω) = p(y; µ̄, Ω̄) for all y ∈ Y also implies

µ = µ̄, we have Os0 = Ōs0 ⇒ Ō−Os0 = s0. Ultimately, putting all these results together,

we obtain D̄ = DU , B̄ = Ō−OBU , C̄ = CK(In ⊗ U)K̄−, Ā = Ō−OAK(In ⊗ U)K̄−,

Σ̄ = U−1ΣU ′−1 and Ō−Os0 = s0. Denoting T = Ō−O and bearing in mind that Ō−O =

(K(In ⊗ U)K̄−)−1, the theorem follows.

Appendix 3: Proof of Proposition 1

If M is a manifold, let dim(M) denote the number of local coordinates in the Euclidean

space required to describe the points in M . Denote the set S = {A,B,C,D,Σ, s0

∈ Rn+nk+k+ 

k(k+)+n| Assumptions 1 and 2 hold} = S1 ∩ S2 ∩ S3, where S1 =

{A,B,C,D,Σ, s0 ∈ Rn+nk+k+ 

k(k+)+n| rank(O) = n} = {A,B,C,D,Σ ∈ Rn+nk+k+ 


k(k+)+n|

det(O′O) �= 0}, S2 = {A,B,C,D,Σ ∈ Rn+nk+k+ 

k(k+)+n| rank(K) = n} = {A,B,C,D,Σ

∈ Rn+nk+k+ 

k(k+)+n| det(KK ′) �= 0} and S3 = {A,B,C,D,Σ ∈ Rn+nk+k+ 


k(k+)+n|

det(D) �= 0}. Evidently, each Si for i = 1, 2, 3 is an open subset of Rn+nk+k+ 

k(k+)+n
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


y1

y2

y3
...

yT



=




C

CA

CA2

...

CAT−1



s0 +




DL 0 0 · · · 0

CBL DL 0 · · · 0

CABL CBL DL · · · 0
...

...
...

. . .
...

CAT−2BL CAT−3BL CAT−4BL · · · DL







ε�1
ε�2
ε�3
...

ε�T




where ε�t ∼ i.i.d.N(0, Ik).

Let us define y = (y′1, y
′
2, . . . , y

′
T )

′ and

µ =




C

CA

CA2

...

CAT−1



s0; R =




DL 0 0 · · · 0

CBL DL 0 · · · 0

CABL CBL DL · · · 0
...

...
...

. . .
...

CAT−2BL CAT−3BL CAT−4BL · · · DL




It follows that y ∼ N(µ,Ω) := p(y;µ,Ω), where Ω = RR′. We have the following sequence

of equivalences: D is nonsingular (Assumption 1), if and only if DL is nonsingular (since

L is the Choleski “square root”, which is nonsingular by assumption that all diagonal

elements in L are positive), if and only if R is nonsingular, if and only if Ω is positive

definite. But note that p(y;µ,Ω) = p(y; µ̄, Ω̄) for all y ∈ Y implies Ω = Ω̄ (see e.g.

Theorem 4 in Rothenberg (1971)). On the other hand, Ω = RR′ = R̄R̄′ = Ω̄ if and only if

R̄ = RV , where V is orthogonal (by Vinograd’s theorem). Since R is nonsigular, we have

R−1R̄ = V . But since R−1R̄ is block lower triangular, it follows that V is block diagonal

and each diagonal block is itself an orthogonal matrix. Denote the first diagonal block

of V as H : (k × k), with (HH ′ = H ′H = Ik). Since R̄ = RV , then writing the first k

columns in this relationship we have




D̄L̄

C̄B̄L̄

C̄ĀB̄L̄
...

C̄ĀT−2B̄L̄



=




DLH

CBLH

CABLH
...

CAT−2BLH



⇔




D̄

C̄B̄

C̄ĀB̄
...

C̄ĀT−2B̄



=




DU

CBU

CABU
...

CAT−2BU




where U = LHL̄−1. Using a part of the above relations we get
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


C̄

C̄Ā
...

C̄Ān−1



B̄ =




C

CA
...

CAn−1



BU

or equivalently ŌB̄ = OBU . Using Assumption 2 implies B̄ = Ō−OBU , where Ō−

denotes any left inverse of Ō. Further, it is easy to see that

C̄K̄ = [C̄B̄
...C̄ĀB̄

...C̄Ā2B̄
... . . .

...C̄Ān−1B̄] = CK(In ⊗ U)

which implies by Assumption 2 that C̄ = CK(In ⊗ U)K̄−, where K̄− is any right inverse

of K̄. On the other hand it is evident that

ŌK̄ = OK(In ⊗ U)

which implies by Assumption 2 that Ō = OK(In⊗U)K̄− and then In = Ō−OK(In⊗U)K̄−.

Since In ⊗ U is nonsingular and K has full row rank, it follows that K(In ⊗ U)K̄− is

nonsingular and hence Ō−O = (K(In ⊗ U)K̄−)−1. Note that this implies that Ō−O is

nonsingular, too. Moreover, it is easy to realize that

ŌĀK̄ = OAK(In ⊗ U)

which implies by Assumption 2 that Ā = Ō−OAK(In⊗U)K̄−. In addition, D̄L̄ = DLH ⇒
D̄L̄L̄′D̄′ = DLL′D′ ⇒ D̄Σ̄D̄′ = DΣD′ ⇒ Σ̄ = D̄−1DΣ(D̄−1D)′ (by Assumption 1). But

D̄−1D = U−1, thus Σ̄ = U−1ΣU ′−1. Since p(y;µ,Ω) = p(y; µ̄, Ω̄) for all y ∈ Y also implies

µ = µ̄, we have Os0 = Ōs0 ⇒ Ō−Os0 = s0. Ultimately, putting all these results together,

we obtain D̄ = DU , B̄ = Ō−OBU , C̄ = CK(In ⊗ U)K̄−, Ā = Ō−OAK(In ⊗ U)K̄−,

Σ̄ = U−1ΣU ′−1 and Ō−Os0 = s0. Denoting T = Ō−O and bearing in mind that Ō−O =

(K(In ⊗ U)K̄−)−1, the theorem follows.

Appendix 3: Proof of Proposition 1

If M is a manifold, let dim(M) denote the number of local coordinates in the Euclidean

space required to describe the points in M . Denote the set S = {A,B,C,D,Σ, s0

∈ Rn+nk+k+ 

k(k+)+n| Assumptions 1 and 2 hold} = S1 ∩ S2 ∩ S3, where S1 =

{A,B,C,D,Σ, s0 ∈ Rn+nk+k+ 

k(k+)+n| rank(O) = n} = {A,B,C,D,Σ ∈ Rn+nk+k+ 


k(k+)+n|

det(O′O) �= 0}, S2 = {A,B,C,D,Σ ∈ Rn+nk+k+ 

k(k+)+n| rank(K) = n} = {A,B,C,D,Σ

∈ Rn+nk+k+ 

k(k+)+n| det(KK ′) �= 0} and S3 = {A,B,C,D,Σ ∈ Rn+nk+k+ 


k(k+)+n|

det(D) �= 0}. Evidently, each Si for i = 1, 2, 3 is an open subset of Rn+nk+k+ 

k(k+)+n
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since it is the inverse image of the open set R\{0}. As a finite intersection of open subsets

is open, we conclude that S is the manifold and dim(S) = n2 +2nk+ k2 + 1
2k(k+1)+ n.

In fact, since the determinant is a polynomial that is an analytic function of its elements,

it implies that S is dense in Rn+nk+k+ 

k(k+)+n (for analytic functions such as the

determinant, the latter cannot be equal to 0 on an open subset of Rn+nk+k+ 

k(k+)+n,

unless it is identically equal to zero). Hence, to check if Assumptions 1 and 2 are valid

we have to solve the model for any θ ∈ Θ (which may be randomly selected or a common

calibration). If Assumptions 1 and 2 hold at any θ ∈ Θ, then, since S is an open and dense

subset of Rn+nk+k+ 

k(k+)+n, we conclude that Assumptions 1 and 2 hold for almost

all θ ∈ Θ. Equivalently, all θ ∈ Θ such that Assumptions 1 and 2 are violated form a

nowhere dense subset of Rn+nk+k+ 

k(k+)+n of measure zero.

Let G1 and G2 be groups. Let us define the direct product of groups as their Carte-

sian product G = G1 × G2 with the group composition gḡ := (g1ḡ1, g2ḡ2), for any

g = (g1, g2), ḡ = (ḡ1, ḡ2) ∈ G. Such defined G is also a group. As long as G1 and G2

are manifolds, we get dim(G) = dim(G1)+ dim(G2). In fact, in our case G1 and G2 will

be manifolds being open subsets of the Euclidean space or its submanifold.

To proceed further, we need a few basic notions from group theory. Let X be any

set. Consider the mapping G×X → X that sends (g, x) into g ◦ x, where “◦” is a binary

operation. We say that a group G acts on X if: 1) e ◦ x = x for all x ∈ X, where “e”

denotes the identity element in group G; 2) ḡ ◦ (g ◦ x) = (ḡg) ◦ x for all g, ḡ ∈ G and

x ∈ X. Note that X may be the Cartesian product i.e. X = X1 × X2 × . . . × Xn. If

this is the case, the action of G on X will be defined as g ◦ (x1, x2, . . . , xn) := (g ◦1 x1,
g ◦2 x2, ..., g ◦n xn). Note that a binary operation may be distinct for every Xi. Since the

case when X is the Cartesian product is what we need in our proof, we confine ourselves

to this case. For any given x1, . . . , xn ∈ X1 × . . . ×Xn, let us define Stabx1,...,xn = {g ∈
G|(x1, x2, . . . , xn) = g ◦ (x1, x2, . . . , xn)} and call it the stabilizer of x1, . . . , xn. We say

that G acts freely on X if Stabx1,...,xn = {e} for all x1, . . . , xn ∈ X1× . . .×Xn (recall that

e denotes the identity element in G). Lastly, define the orbit of x1, . . . , xn as Orbx1,...,xn =

{g ◦ (x1, x2, . . . , xn)|g ∈ G} ≡ {g ◦1 x1, g ◦2 x2, . . . , g ◦n xn| g ∈ G}.
Now we are in a position to prove the proposition. First, consider the case εt ∼

i.i.d.N(0,Σ). Let us define the set E = {TAT−1, TBU ′, CT−1, DU ′, U ′−1ΣU−1, T s0|
T ∈ GLn, U ∈ GLk},14 where GLq denotes the general linear group, i.e. GLq = {g ∈ Rq×q|
det(g) �= 0}. In fact, it is easy to show that E is the orbit of A,B,C,D,Σ, s0 for we can

write E = OrbA,B,C,D,Σ,s0 = {(T, U) ◦(A,B,C,D,Σ, s0)| (T, U) ∈ GLn × GLk}. Indeed,

to prove that the direct product of groups (GLn × GLk) acts on S we have to check

14With some abuse to definition of E introduced in section 4, we replaced U by U ′. This is a matter of
convention and has no consequences.
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two conditions that define the group action. Since the identity element in the direct

product of groups GLn × GLk is (In, Ik), putting T = In and U = Ik in E we easily

get (In, Ik) ◦ (A,B,C,D,Σ, s0) = (A,B,C,D,Σ, s0). To check the second defining prop-

erty of the group action, we have to show that (T̄ , Ū) ◦ ((T, U)◦ (A,B,C,D,Σ, s0)) =

((T̄ , Ū)(T, U)) ◦(A,B,C,D,Σ, s0) := (T̄ T, ŪU) ◦(A,B,C,D,Σ, s0), where the last equal-

ity follows form the rule of group composition in the group direct product. We have (T̄ , Ū)◦
((T, U)◦ (A,B,C,D,Σ, s0)) = (T̄ , Ū)◦(TAT−1, TBU ′, CT−1, DU ′, U ′−1ΣU−1, T s0) =

(T̄ TAT−1T̄−1, T̄ TBU ′Ū ′, CT−1T̄−1, DU ′Ū ′, Ū ′−1U ′−1ΣU−1Ū−1, T̄ T s0) = (T̄ TA(T̄ T )−1,

T̄ TB(ŪU)′, C(T̄ T )−1, D(ŪU)′, (ŪU)′−1Σ(ŪU)−1, T̄ T s0) = (T̄ T, ŪU) ◦(A,B,C,D,Σ, s0).

Hence (GLn ×GLk) acts on S and E = OrbA,B,C,D,Σ,s0 .

Now we demonstrate that StabA,B,C,D,Σ,s0 = {(T, U) ∈ GLn × GLk| A = TAT−1,

B = TBU ′, C = CT−1, D = DU ′, Σ = U ′−1ΣU−1, s0 = Ts0}= {In, Ik}, the identity

element in GLn×GLk. If A = TAT−1 and C = CT−1 then [C ′...A′C ′...A′2C ′... . . .
...A′n−1C ′]′=

[C ′...A′C ′...A′2C ′... . . .
...A′n−1C ′]′T−1. But by Assumption 2, [C ′...A′C ′...A′2C ′... . . .

...A′n−1C ′]′ pos-

sesses a left inverse, hence it follows that T−1 = In ⇔ T = In. Moreover, by Assumption

1, D = DU ′ ⇔ U ′ = D−1D = Ik = U . Hence, under our assumptions, GLn × GLk acts

freely on S.
In order to proceed further we need to impose some regularity condition

Assumption. (Regularity condition, RC): Each point A,B,C,D,Σ, s0 ∈ S has arbitrarily

small neighborhood V whose intersection with each orbit OrbA,B,C,D,Σ,s0 is a pathwise

connected subset V ∩ OrbA,B,C,D,Σ,s0 of the orbit (a subset is pathwise connected if any

two points can be joined by a smooth curve).

Next, let us introduce the following

Definition. Let a group G act on X1 × . . . ×Xn. A real valued function I : X1 × . . . ×
Xn → R is called invariant if for all x1, . . . , xn ∈ X1 × . . . × Xn and all g ∈ G we have

I(g ◦ (x1, x2, . . . , xn)) = I(x1, x2, . . . , xn).

Under the free action and when the RC holds, each orbit is a submanifold of S (see

e.g. Olver, 1993, p. 22) that is completely characterized by its (functionally independent)

invariants. In fact, the total number of these invariants (so-called the complete set of

functionally independent invariants) gives the dimension of each orbit (being a manifold),

see e.g. Olver, 1993, p. 210-214. In particular, by Theorem 2.17 in Olver (1993), at each

A,B,C,D,Σ, s0 ∈ S there are precisely dim(S) − dim(GLn × GLk) = n2 + 2nk + k2 +
1
2k(k+1)+ n − (n2 + k2) = 2nk+ 1

2k(k+1)+ n functionally independent invariants in a

neighborhood of A,B,C,D,Σ, s0 (we used the fact that since GLq may be identified with

an open subset of Rq2 , bothGLn andGLk are manifolds and dim(GLn×GLk) = dim(GLn)
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since it is the inverse image of the open set R\{0}. As a finite intersection of open subsets

is open, we conclude that S is the manifold and dim(S) = n2 +2nk+ k2 + 1
2k(k+1)+ n.

In fact, since the determinant is a polynomial that is an analytic function of its elements,

it implies that S is dense in Rn+nk+k+ 

k(k+)+n (for analytic functions such as the

determinant, the latter cannot be equal to 0 on an open subset of Rn+nk+k+ 

k(k+)+n,

unless it is identically equal to zero). Hence, to check if Assumptions 1 and 2 are valid

we have to solve the model for any θ ∈ Θ (which may be randomly selected or a common

calibration). If Assumptions 1 and 2 hold at any θ ∈ Θ, then, since S is an open and dense

subset of Rn+nk+k+ 

k(k+)+n, we conclude that Assumptions 1 and 2 hold for almost

all θ ∈ Θ. Equivalently, all θ ∈ Θ such that Assumptions 1 and 2 are violated form a

nowhere dense subset of Rn+nk+k+ 

k(k+)+n of measure zero.

Let G1 and G2 be groups. Let us define the direct product of groups as their Carte-

sian product G = G1 × G2 with the group composition gḡ := (g1ḡ1, g2ḡ2), for any

g = (g1, g2), ḡ = (ḡ1, ḡ2) ∈ G. Such defined G is also a group. As long as G1 and G2

are manifolds, we get dim(G) = dim(G1)+ dim(G2). In fact, in our case G1 and G2 will

be manifolds being open subsets of the Euclidean space or its submanifold.

To proceed further, we need a few basic notions from group theory. Let X be any

set. Consider the mapping G×X → X that sends (g, x) into g ◦ x, where “◦” is a binary

operation. We say that a group G acts on X if: 1) e ◦ x = x for all x ∈ X, where “e”

denotes the identity element in group G; 2) ḡ ◦ (g ◦ x) = (ḡg) ◦ x for all g, ḡ ∈ G and

x ∈ X. Note that X may be the Cartesian product i.e. X = X1 × X2 × . . . × Xn. If

this is the case, the action of G on X will be defined as g ◦ (x1, x2, . . . , xn) := (g ◦1 x1,
g ◦2 x2, ..., g ◦n xn). Note that a binary operation may be distinct for every Xi. Since the

case when X is the Cartesian product is what we need in our proof, we confine ourselves

to this case. For any given x1, . . . , xn ∈ X1 × . . . ×Xn, let us define Stabx1,...,xn = {g ∈
G|(x1, x2, . . . , xn) = g ◦ (x1, x2, . . . , xn)} and call it the stabilizer of x1, . . . , xn. We say

that G acts freely on X if Stabx1,...,xn = {e} for all x1, . . . , xn ∈ X1× . . .×Xn (recall that

e denotes the identity element in G). Lastly, define the orbit of x1, . . . , xn as Orbx1,...,xn =

{g ◦ (x1, x2, . . . , xn)|g ∈ G} ≡ {g ◦1 x1, g ◦2 x2, . . . , g ◦n xn| g ∈ G}.
Now we are in a position to prove the proposition. First, consider the case εt ∼

i.i.d.N(0,Σ). Let us define the set E = {TAT−1, TBU ′, CT−1, DU ′, U ′−1ΣU−1, T s0|
T ∈ GLn, U ∈ GLk},14 where GLq denotes the general linear group, i.e. GLq = {g ∈ Rq×q|
det(g) �= 0}. In fact, it is easy to show that E is the orbit of A,B,C,D,Σ, s0 for we can

write E = OrbA,B,C,D,Σ,s0 = {(T, U) ◦(A,B,C,D,Σ, s0)| (T, U) ∈ GLn × GLk}. Indeed,

to prove that the direct product of groups (GLn × GLk) acts on S we have to check

14With some abuse to definition of E introduced in section 4, we replaced U by U ′. This is a matter of
convention and has no consequences.
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two conditions that define the group action. Since the identity element in the direct

product of groups GLn × GLk is (In, Ik), putting T = In and U = Ik in E we easily

get (In, Ik) ◦ (A,B,C,D,Σ, s0) = (A,B,C,D,Σ, s0). To check the second defining prop-

erty of the group action, we have to show that (T̄ , Ū) ◦ ((T, U)◦ (A,B,C,D,Σ, s0)) =

((T̄ , Ū)(T, U)) ◦(A,B,C,D,Σ, s0) := (T̄ T, ŪU) ◦(A,B,C,D,Σ, s0), where the last equal-

ity follows form the rule of group composition in the group direct product. We have (T̄ , Ū)◦
((T, U)◦ (A,B,C,D,Σ, s0)) = (T̄ , Ū)◦(TAT−1, TBU ′, CT−1, DU ′, U ′−1ΣU−1, T s0) =

(T̄ TAT−1T̄−1, T̄ TBU ′Ū ′, CT−1T̄−1, DU ′Ū ′, Ū ′−1U ′−1ΣU−1Ū−1, T̄ T s0) = (T̄ TA(T̄ T )−1,

T̄ TB(ŪU)′, C(T̄ T )−1, D(ŪU)′, (ŪU)′−1Σ(ŪU)−1, T̄ T s0) = (T̄ T, ŪU) ◦(A,B,C,D,Σ, s0).

Hence (GLn ×GLk) acts on S and E = OrbA,B,C,D,Σ,s0 .

Now we demonstrate that StabA,B,C,D,Σ,s0 = {(T, U) ∈ GLn × GLk| A = TAT−1,

B = TBU ′, C = CT−1, D = DU ′, Σ = U ′−1ΣU−1, s0 = Ts0}= {In, Ik}, the identity

element in GLn×GLk. If A = TAT−1 and C = CT−1 then [C ′...A′C ′...A′2C ′... . . .
...A′n−1C ′]′=

[C ′...A′C ′...A′2C ′... . . .
...A′n−1C ′]′T−1. But by Assumption 2, [C ′...A′C ′...A′2C ′... . . .

...A′n−1C ′]′ pos-

sesses a left inverse, hence it follows that T−1 = In ⇔ T = In. Moreover, by Assumption

1, D = DU ′ ⇔ U ′ = D−1D = Ik = U . Hence, under our assumptions, GLn × GLk acts

freely on S.
In order to proceed further we need to impose some regularity condition

Assumption. (Regularity condition, RC): Each point A,B,C,D,Σ, s0 ∈ S has arbitrarily

small neighborhood V whose intersection with each orbit OrbA,B,C,D,Σ,s0 is a pathwise

connected subset V ∩ OrbA,B,C,D,Σ,s0 of the orbit (a subset is pathwise connected if any

two points can be joined by a smooth curve).

Next, let us introduce the following

Definition. Let a group G act on X1 × . . . ×Xn. A real valued function I : X1 × . . . ×
Xn → R is called invariant if for all x1, . . . , xn ∈ X1 × . . . × Xn and all g ∈ G we have

I(g ◦ (x1, x2, . . . , xn)) = I(x1, x2, . . . , xn).

Under the free action and when the RC holds, each orbit is a submanifold of S (see

e.g. Olver, 1993, p. 22) that is completely characterized by its (functionally independent)

invariants. In fact, the total number of these invariants (so-called the complete set of

functionally independent invariants) gives the dimension of each orbit (being a manifold),

see e.g. Olver, 1993, p. 210-214. In particular, by Theorem 2.17 in Olver (1993), at each

A,B,C,D,Σ, s0 ∈ S there are precisely dim(S) − dim(GLn × GLk) = n2 + 2nk + k2 +
1
2k(k+1)+ n − (n2 + k2) = 2nk+ 1

2k(k+1)+ n functionally independent invariants in a

neighborhood of A,B,C,D,Σ, s0 (we used the fact that since GLq may be identified with

an open subset of Rq2 , bothGLn andGLk are manifolds and dim(GLn×GLk) = dim(GLn)
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+ dim(GLk) = n2 + k2). Hence dim(OrbA,B,C,D,Σ,s0) = dim(E) = 2nk + 1
2k(k + 1) + n,

for each A,B,C,D,Σ, s0 ∈ S.
Now assume that εt ∼ i.i.d.N(0, Ik). Since the covariance is the identity matrix, we

work with the set SH = {A,B,C,D, s0 ∈ Rn+nk+k+n| Assumptions 1 and 2 hold}.
Evidently, SH is the manifold with dim(SH) = n2 + 2nk + k2 + n. Define the set

EH = {TAT−1, TBH ′, CT−1, DH ′, T s0| T ∈ GLn, H ∈ Ok}, where Ok denotes the

orthogonal group, i.e. Ok = {g ∈ Rk×k| g′g = gg′ = Ik}. Using the same arguments

as above, it is easy to show that EH is the orbit of A,B,C,D, s0 for we can write EH
= OrbA,B,C,D,s0 = {(T,H)◦(A,B,C,D, s0)| (T,H) ∈ GLn × Ok}, where GLn × Ok de-

notes the direct product of two groups (with component-wise group composition as before).

Evidently, StabA,B,C,D,s0= {In, Ik}, the identity element in GLn×Ok (the proof is literally

the same replacing H with U). Hence, under the RC, using the same theory from Olver

(1993) we have: dim(OrbA,B,C,D,s0) = dim(EH) = dim(SH) − dim(GLn×Ok) = dim(SH)

− dim(GLn) − dim(Ok) = n2 + 2nk + k2 + n −n2 −1
2k(k − 1) = 2nk + 1

2k(k + 1) + n,

for each A,B,C,D, s0 ∈ SH , where we used the fact that Ok is the manifold of dimension
1
2k(k − 1).

Appendix 4: Equivalence between Definitions 2 and 3

Note that Theorem 1 may be trivially strengthened to p(y; s0, A,B,C,D,Σ) =p(y; s0, Ā, B̄,

C̄, D̄, Σ̄); ∀y ∈ Y ⇔ Ā, B̄, C̄,D̄, Σ̄, s0 ∈ E (see section 4 for definition of E). Then definition

2 may be rewritten as Ā, B̄, C̄,D̄, Σ̄, s0 ∈ E ⇒ (Ā = A, B̄ = B, C̄ = C, D̄ = D, Σ̄ = Σ, θ̄ =

θ). But this is equivalent to [Ā, B̄, C̄,D̄, Σ̄, s0 ∈ E ⇒ (Ā = A, B̄ = B, C̄ = C, D̄ = D, Σ̄ =

Σ)] ∧ [Ā, B̄, C̄,D̄, Σ̄, s0 ∈ E ⇒ θ̄ = θ]. To state an alternative definition of identification

we prove

Lemma. Under Assumptions 1 and 2 we have [Ā, B̄, C̄,D̄, Σ̄, s0 ∈ E ⇒ (Ā = A, B̄ =

B, C̄ = C, D̄ = D, Σ̄ = Σ)] ⇔ [Ā, B̄, C̄,D̄, Σ̄, s0 ∈ E ⇒ (T = In, U = Ik)].

Proof. If the solution of the system Ā = TAT−1; B̄ = TBU ; C̄ = CT−1; D̄ = DU ; Σ̄ =

U−1ΣU ′−1; s0 = Ts0 (with respect to T, U) is T = In, U = Ik, then the system simplifies to

Ā = A, B̄ = B, C̄ = C, D̄ = D, Σ̄ = Σ. On the other hand, if Ā, B̄, C̄,D̄, Σ̄, s0 ∈ E holds, it

follows that D̄ = DU and [C̄ ′...Ā′C̄ ′...Ā′2C̄ ′... . . .
...Ā′n−1C̄ ′]′ = [C ′...A′C ′...A′2C ′... . . .

...A′n−1C ′]′T−1.

If those equations have a unique solution D̄ = D, then by Assumption 1 D̄ = DU ⇒ D =

DU ⇔ U = D−1D = Ik. Moreover, if Ā, B̄, C̄,D̄, Σ̄, s0 ∈ E implies Ā = A, C̄ = C, then

[C ′...A′C ′...A′2C ′... . . .
...A′n−1C ′]′ = [C ′...A′C ′...A′2C ′... . . .

...A′n−1C ′]′T−1. But by Assumption 2,

[C ′...A′C ′...A′2C ′... . . .
...A′n−1C ′]′ possesses a left inverse, hence it follows that T−1 = In ⇔

T = In.
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Using the above Lemma we have p(y; s0, A,B,C,D,Σ) = p(y; s0, Ā, B̄, C̄, D̄, Σ̄); ∀y ∈
Y ⇒(Ā = A, B̄ = B, C̄ = C, D̄ = D, Σ̄ = Σ, θ̄ = θ) if and only if Ā, B̄, C̄,D̄, Σ̄, s0 ∈ E
⇒ (Ā = A, B̄ = B, C̄ = C, D̄ = D, Σ̄ = Σ, θ̄ = θ), if and only if ¯[A, B̄, C̄,D̄, Σ̄, s0 ∈ E
⇒ T = In, U = Ik] ∧ [Ā, B̄, C̄,D̄, Σ̄, s0 ∈ E ⇒ θ̄ = θ], if and only if Ā, B̄, C̄,D̄, Σ̄, s0 ∈ E
⇒ T = In, U = Ik, θ̄ = θ.

Appendix 5: Proof of Proposition 3

Using Definition 4, a DSGE model is globally identified at θ ∈ Θ if and only if E ∧
Z = {Γ̄s

1TAT
−1 = Γ̄s

0 + Γ̄p
0F̄ − Γ̄p

1F̄ TAT−1, Γ̄s
1TBU = Γ̄2, C = (Ḡs + ḠpF̄ )TA, DU =

(Ḡs + ḠpF̄ )TBU + J̄ , Σ̄ = U−1ΣU ′−1, s0 = Ts0} implies T = In, U = Ik, θ̄ = θ, implies

T = In, U = Ik, F̄ = F, Γ̄s
1 = Γs

1, Γ̄
s
0 = Γs

0, Γ̄
p
0 = Γp

0, Γ̄
p
1 = Γp

1, Γ̄2 = Γ2, Ḡ
s = Gs, Ḡp =

Gp, J̄ = J . Applying the tautology [α ⇒ (β ∧ γ)] ⇒ [(α ∧ β) ⇒ γ] that is true for

any statements α, β, γ, we have [(E ∧ Z) ⇒ T = In, U = Ik, θ̄ = θ] ⇒ [(E ∧ Z, T =

In, U = Ik, F̄ = F ) ⇒ Γ̄s
1 = Γs

1, Γ̄
s
0 = Γs

0, Γ̄
p
0 = Γp

0, Γ̄
p
1 = Γp

1, Γ̄2 = Γ2, Ḡ
s = Gs, Ḡp =

Gp, J̄ = J ]. The last conclusion holds if and only if {Γ̄s
1A = Γ̄s

0 + Γ̄p
0F − Γ̄p

1FA, Γ̄s
1B = Γ̄2,

C = (Ḡs + ḠpF )A, D = (Ḡs + ḠpF )B + J̄} has one and only one solution with respect

to Γ̄1, Γ̄2, Γ̄0, Ḡ and J̄ . To simplify the notation, let us drop the bar symbols connected

with semi-structural parameters. Let all linear restrictions imposed on [Γs
1

...Γp
1

...Γs
0

...Γp
0

...Γ2] be

written as Υvec([Γ1
...Γ0

...Γ2]
′) = d, where Υ : rΓ × (n+ q)(2n+ 2q + k) is a known matrix,

d : (rΓ×1) is a known vector and rΓ is the number of independent restrictions imposed on

Γ1,Γ0,Γ2. Similarly, let all linear restrictions on G and J be written as Ψvec([G
...J ]′) = h

, where Ψ : rGJ × r(n+ q+ k) is a known matrix, h : (rGJ × 1) is a known vector and rGJ

is the number of all linear restrictions imposed on G and J . All equations together with

the restrictions can be compactly written

[
Q 0

0 R

]
 vec([Γ1

...Γ0
...Γ2]

′)

vec([G
...J ]′)


 =

[
c1

c2

]

whereQ =


 In+q ⊗

[
A′ A′F ′ −In −F ′ 0n×k

B′ 0k×q 0k×n 0k×q −Ik

]

Υ


, R =


 Ir ⊗

[
A′ A′F ′ 0n×k

B′ B′F ′ Ik

]

Ψ


,

c1 =

[
0(n+k)(n+q)×1

d

]
, c2 =


 vec([C

...D]′)

h


. Since the system is linear in Γ1,Γ0,Γ2, G

and J (and consistent by construction), the solution will be unique if and only if

[
Q 0

0 R

]

has full column rank, which holds if and only if Q is of full column rank and R is of full
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+ dim(GLk) = n2 + k2). Hence dim(OrbA,B,C,D,Σ,s0) = dim(E) = 2nk + 1
2k(k + 1) + n,

for each A,B,C,D,Σ, s0 ∈ S.
Now assume that εt ∼ i.i.d.N(0, Ik). Since the covariance is the identity matrix, we

work with the set SH = {A,B,C,D, s0 ∈ Rn+nk+k+n| Assumptions 1 and 2 hold}.
Evidently, SH is the manifold with dim(SH) = n2 + 2nk + k2 + n. Define the set

EH = {TAT−1, TBH ′, CT−1, DH ′, T s0| T ∈ GLn, H ∈ Ok}, where Ok denotes the

orthogonal group, i.e. Ok = {g ∈ Rk×k| g′g = gg′ = Ik}. Using the same arguments

as above, it is easy to show that EH is the orbit of A,B,C,D, s0 for we can write EH
= OrbA,B,C,D,s0 = {(T,H)◦(A,B,C,D, s0)| (T,H) ∈ GLn × Ok}, where GLn × Ok de-

notes the direct product of two groups (with component-wise group composition as before).

Evidently, StabA,B,C,D,s0= {In, Ik}, the identity element in GLn×Ok (the proof is literally

the same replacing H with U). Hence, under the RC, using the same theory from Olver

(1993) we have: dim(OrbA,B,C,D,s0) = dim(EH) = dim(SH) − dim(GLn×Ok) = dim(SH)

− dim(GLn) − dim(Ok) = n2 + 2nk + k2 + n −n2 −1
2k(k − 1) = 2nk + 1

2k(k + 1) + n,

for each A,B,C,D, s0 ∈ SH , where we used the fact that Ok is the manifold of dimension
1
2k(k − 1).

Appendix 4: Equivalence between Definitions 2 and 3

Note that Theorem 1 may be trivially strengthened to p(y; s0, A,B,C,D,Σ) =p(y; s0, Ā, B̄,

C̄, D̄, Σ̄); ∀y ∈ Y ⇔ Ā, B̄, C̄,D̄, Σ̄, s0 ∈ E (see section 4 for definition of E). Then definition

2 may be rewritten as Ā, B̄, C̄,D̄, Σ̄, s0 ∈ E ⇒ (Ā = A, B̄ = B, C̄ = C, D̄ = D, Σ̄ = Σ, θ̄ =

θ). But this is equivalent to [Ā, B̄, C̄,D̄, Σ̄, s0 ∈ E ⇒ (Ā = A, B̄ = B, C̄ = C, D̄ = D, Σ̄ =

Σ)] ∧ [Ā, B̄, C̄,D̄, Σ̄, s0 ∈ E ⇒ θ̄ = θ]. To state an alternative definition of identification

we prove

Lemma. Under Assumptions 1 and 2 we have [Ā, B̄, C̄,D̄, Σ̄, s0 ∈ E ⇒ (Ā = A, B̄ =

B, C̄ = C, D̄ = D, Σ̄ = Σ)] ⇔ [Ā, B̄, C̄,D̄, Σ̄, s0 ∈ E ⇒ (T = In, U = Ik)].

Proof. If the solution of the system Ā = TAT−1; B̄ = TBU ; C̄ = CT−1; D̄ = DU ; Σ̄ =

U−1ΣU ′−1; s0 = Ts0 (with respect to T, U) is T = In, U = Ik, then the system simplifies to

Ā = A, B̄ = B, C̄ = C, D̄ = D, Σ̄ = Σ. On the other hand, if Ā, B̄, C̄,D̄, Σ̄, s0 ∈ E holds, it

follows that D̄ = DU and [C̄ ′...Ā′C̄ ′...Ā′2C̄ ′... . . .
...Ā′n−1C̄ ′]′ = [C ′...A′C ′...A′2C ′... . . .

...A′n−1C ′]′T−1.

If those equations have a unique solution D̄ = D, then by Assumption 1 D̄ = DU ⇒ D =

DU ⇔ U = D−1D = Ik. Moreover, if Ā, B̄, C̄,D̄, Σ̄, s0 ∈ E implies Ā = A, C̄ = C, then

[C ′...A′C ′...A′2C ′... . . .
...A′n−1C ′]′ = [C ′...A′C ′...A′2C ′... . . .

...A′n−1C ′]′T−1. But by Assumption 2,

[C ′...A′C ′...A′2C ′... . . .
...A′n−1C ′]′ possesses a left inverse, hence it follows that T−1 = In ⇔

T = In.
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Using the above Lemma we have p(y; s0, A,B,C,D,Σ) = p(y; s0, Ā, B̄, C̄, D̄, Σ̄); ∀y ∈
Y ⇒(Ā = A, B̄ = B, C̄ = C, D̄ = D, Σ̄ = Σ, θ̄ = θ) if and only if Ā, B̄, C̄,D̄, Σ̄, s0 ∈ E
⇒ (Ā = A, B̄ = B, C̄ = C, D̄ = D, Σ̄ = Σ, θ̄ = θ), if and only if ¯[A, B̄, C̄,D̄, Σ̄, s0 ∈ E
⇒ T = In, U = Ik] ∧ [Ā, B̄, C̄,D̄, Σ̄, s0 ∈ E ⇒ θ̄ = θ], if and only if Ā, B̄, C̄,D̄, Σ̄, s0 ∈ E
⇒ T = In, U = Ik, θ̄ = θ.

Appendix 5: Proof of Proposition 3

Using Definition 4, a DSGE model is globally identified at θ ∈ Θ if and only if E ∧
Z = {Γ̄s

1TAT
−1 = Γ̄s

0 + Γ̄p
0F̄ − Γ̄p

1F̄ TAT−1, Γ̄s
1TBU = Γ̄2, C = (Ḡs + ḠpF̄ )TA, DU =

(Ḡs + ḠpF̄ )TBU + J̄ , Σ̄ = U−1ΣU ′−1, s0 = Ts0} implies T = In, U = Ik, θ̄ = θ, implies

T = In, U = Ik, F̄ = F, Γ̄s
1 = Γs

1, Γ̄
s
0 = Γs

0, Γ̄
p
0 = Γp

0, Γ̄
p
1 = Γp

1, Γ̄2 = Γ2, Ḡ
s = Gs, Ḡp =

Gp, J̄ = J . Applying the tautology [α ⇒ (β ∧ γ)] ⇒ [(α ∧ β) ⇒ γ] that is true for

any statements α, β, γ, we have [(E ∧ Z) ⇒ T = In, U = Ik, θ̄ = θ] ⇒ [(E ∧ Z, T =

In, U = Ik, F̄ = F ) ⇒ Γ̄s
1 = Γs

1, Γ̄
s
0 = Γs

0, Γ̄
p
0 = Γp

0, Γ̄
p
1 = Γp

1, Γ̄2 = Γ2, Ḡ
s = Gs, Ḡp =

Gp, J̄ = J ]. The last conclusion holds if and only if {Γ̄s
1A = Γ̄s

0 + Γ̄p
0F − Γ̄p

1FA, Γ̄s
1B = Γ̄2,

C = (Ḡs + ḠpF )A, D = (Ḡs + ḠpF )B + J̄} has one and only one solution with respect

to Γ̄1, Γ̄2, Γ̄0, Ḡ and J̄ . To simplify the notation, let us drop the bar symbols connected

with semi-structural parameters. Let all linear restrictions imposed on [Γs
1

...Γp
1

...Γs
0

...Γp
0

...Γ2] be

written as Υvec([Γ1
...Γ0

...Γ2]
′) = d, where Υ : rΓ × (n+ q)(2n+ 2q + k) is a known matrix,

d : (rΓ×1) is a known vector and rΓ is the number of independent restrictions imposed on

Γ1,Γ0,Γ2. Similarly, let all linear restrictions on G and J be written as Ψvec([G
...J ]′) = h

, where Ψ : rGJ × r(n+ q+ k) is a known matrix, h : (rGJ × 1) is a known vector and rGJ

is the number of all linear restrictions imposed on G and J . All equations together with

the restrictions can be compactly written

[
Q 0

0 R

]
 vec([Γ1

...Γ0
...Γ2]

′)

vec([G
...J ]′)


 =

[
c1

c2

]

whereQ =


 In+q ⊗

[
A′ A′F ′ −In −F ′ 0n×k

B′ 0k×q 0k×n 0k×q −Ik

]

Υ


, R =


 Ir ⊗

[
A′ A′F ′ 0n×k

B′ B′F ′ Ik

]

Ψ


,

c1 =

[
0(n+k)(n+q)×1

d

]
, c2 =


 vec([C

...D]′)

h


. Since the system is linear in Γ1,Γ0,Γ2, G

and J (and consistent by construction), the solution will be unique if and only if

[
Q 0

0 R

]

has full column rank, which holds if and only if Q is of full column rank and R is of full
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column rank. The last conclusion of the proposition follows from the fact that for any

matrix to have a full column rank it is necessary that the number of rows must at least

equal to the number of columns. This imposes a requirement on the minimal number of

rows in Υ and Ψ.

Appendix 6: Proof of Corollary 2

Assume there are no restrictions involving parameters from different rows in [Γs
1

...Γp
1

...Γs
0

...Γp
0

...Γ2].

Denote by Γ(i) the ith row of [Γs
1

...Γp
1

...Γs
0

...Γp
0

...Γ2]. Let all linear restrictions imposed on the

ith row of [Γs
1

...Γp
1

...Γs
0

...Γp
0

...Γ2] be written as ΥiΓ
′
(i) = di, where Υi : ri × (2n + 2q + k) is a

known matrix, di : (ri × 1) is a known vector and ri is the number of independent restric-

tions imposed on Γ(i). In addition, assume that the linear restrictions imposed on [G
...J ]

are given precisely as in the previous appendix. In this case, matrix Q from Proposition

3 (i.e. previous appendix) takes the following form

Q =




Q� 0 0 0

0 Q� 0 0

0 0
. . . 0

0 0 0 Q�

Υ1 0 0 0

0 Υ2 0 0

0 0
. . . 0

0 0 0 Υn+q




where Q� =

[
A′ A′F ′ −In −F ′ 0n×k

B′ 0k×q 0k×n 0k×q −Ik

]
. By Proposition 3, if a DSGE model is

globally identified at θ ∈ Θ, then Q is of full column rank and R is of full column rank.

But in the present case Q is of full column rank iff Qi =




A′ A′F ′ −In −F ′ 0n×k

B′ 0k×q 0k×n 0k×q −Ik

Υi




is of full column rank for each i = 1, ..., n+ q. The last conclusion is proved by arguments

used in the previous appendix.

Appendix 7: Mathematical considerations on local and global identifica-

tion

In this appendix we indicate some possible problems in establishing local and global iden-

tification in DSGE modeling. To fix ideas, we assume εt ∼ i.i.d.N(0,Σ) and s0 �= 0

32

throughout this section (though see the remark at the end of this appendix). What Propo-

sition 1 says formally (see Appendix 3) is that the equivalence class from the conclusion

of Theorem 1, i.e. E = {TAT−1, TBU, CT−1, DU, U−1ΣU ′−1, T s0| T, U nonsingular}, is
the manifold of dimension 2nk+ 1

2k(k+1)+n, for every A,B,C,D,Σ, s0. Hence, E may be

fully parametrized with 2nk+ 1
2k(k+1)+n elements. In fact, the classic theory of canoni-

cal forms in linear system theory is all about finding such a parametrization. Although we

can readily obtain one canonical form for the general ABCD-representation,15 finding the

canonical form for the ABCD-representation that is explicitly derived from a given DSGE

model is not an easy task. The problem is that it is difficult to arrive at the canonical

form that obeys the restrictions explicitly imposed on semi-structural parameters Γ0, Γ1,

Γ2, G and J . What we know for sure is that in every E (for each A,B,C,D,Σ, s0) we can

find at least one canonical form that obeys the restrictions imposed on semi-structural

parameters (put T = In and U = Ik). This is sufficient for our further mathematical

considerations.

The usual situation in DSGE modeling is that the number of deep parameters is

relatively small in comparison with the number of functionally independent elements in

the ABCD-representation. Interestingly, this fact has far reaching consequences for global

(and local) identification, which will be explained below. To this end, we first reproduce

the relevant definitions and theorems from differential topology and next discuss them in

the context of our problem.

In general, we are interested in the behavior of some function f : V → E , where V

is an open subset of Rp, for some p (think of V as a space of all deep or semi-structural

parameters). To keep our presentation as simple as possible, we suppose that the canonical

form is given. Note that the canonical form is parametrized with nE = 2nk+ 1
2k(k+1)+n

functionally independent elements. This amounts to considering f : V → RnE , x =

(x1, x2, . . . , xp) �→ f(x) = (f1(x), f2(x), . . . , fnE (x)). If each component fi possesses all its

partial derivatives of order r ≥ 1, which are continuous at all points x ∈ V , we say that

f is a Cr−map. A C∞− map is called a smooth function. An (nE × p) Jacobian matrix

15Consider the function g(A,B,C,D,Σ, s0) = (T0AT−1
0 , T0BD−1, CT−1

0 , Ik, DΣD′, T0s0), where T0 is a
nonsigular matrix comprising the first n independent rows from the observability matrix O (which must
exist by Assumption 2). Then it is easy to show that Ā, B̄, C̄, D̄, Σ̄, s̄0 ∈ E if and only if g(Ā, B̄, C̄, D̄, Σ̄, s̄0)
= g(A,B,C,D,Σ, s0). Hence, setting A� = T0AT−1

0 , B� = T0BD−1, C� = CT−1
0 , D� = Ik, Σ

� = DΣD′,
s�0 = T0s0, the pdf of the general ABCD-representation may be parametrized with uniformly globally
identified parameter s�0, A

�, B�, C�, D�, Σ� i.e. p(y; s0, A,B,C,D,Σ) = p(y; s�0, A
�, B�, C�, D�, Σ�) for

all y ∈ Y and all s0, A,B,C,D,Σ. You can convince yourself that s�0, A
�, B�, C�, D�, Σ� contain in total

2nk + 1
2
k(k + 1) + n functionally independent elements, as suggested by Proposition 1. This fact will be

made evident if we analytically derive T0AT−1
0 and CT−1

0 . It turns out that those two matrices contain nk
functionally independent elements (in particular, many 0’s and 1’s). For example, if C has full row rank
then CT−1

0 comprises only 0’s and 1’s, otherwise it also consists of unrestricted elements, see e.g. Guidorzi
(1975) or Goodwin and Payne (1977), pp. 66-68.
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column rank. The last conclusion of the proposition follows from the fact that for any

matrix to have a full column rank it is necessary that the number of rows must at least

equal to the number of columns. This imposes a requirement on the minimal number of

rows in Υ and Ψ.

Appendix 6: Proof of Corollary 2
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...Γp
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...Γs
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0
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f is a Cr−map. A C∞− map is called a smooth function. An (nE × p) Jacobian matrix

15Consider the function g(A,B,C,D,Σ, s0) = (T0AT−1
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= g(A,B,C,D,Σ, s0). Hence, setting A� = T0AT−1

0 , B� = T0BD−1, C� = CT−1
0 , D� = Ik, Σ

� = DΣD′,
s�0 = T0s0, the pdf of the general ABCD-representation may be parametrized with uniformly globally
identified parameter s�0, A

�, B�, C�, D�, Σ� i.e. p(y; s0, A,B,C,D,Σ) = p(y; s�0, A
�, B�, C�, D�, Σ�) for

all y ∈ Y and all s0, A,B,C,D,Σ. You can convince yourself that s�0, A
�, B�, C�, D�, Σ� contain in total

2nk + 1
2
k(k + 1) + n functionally independent elements, as suggested by Proposition 1. This fact will be

made evident if we analytically derive T0AT−1
0 and CT−1

0 . It turns out that those two matrices contain nk
functionally independent elements (in particular, many 0’s and 1’s). For example, if C has full row rank
then CT−1

0 comprises only 0’s and 1’s, otherwise it also consists of unrestricted elements, see e.g. Guidorzi
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is defined as J(x) := ∂f ′(x)/∂x. If the rank of J(x) is p at every point x ∈ V ⊂ Rp, we

call f : V → RnE an immersion. In other words, an immersion is locally injective (i.e.

locally 1-1) at every x ∈ V (by the Implicit Function Theorem). An immersion that is

an injective (i.e. 1-1) map will be called a 1-1 immersion. If, as in our application, V is

the space of deep (or semi-structural) parameters, then immersion is simply a name for

a model that is locally identifiable at every point of deep (or semi-structural) parameters

space, and 1-1 immersion is a model that is globally identified at every point of deep (or

semi-structural) parameters space.

Theorem. (Sternberg, 1964, pp. 58-59) Let V be an open set in Rp. Let f : V → RnE be a

smooth function, where nE ≥ 2p. Given any ε > 0, there is a p×nE matrix R = (rij) such

that for each i, j, |rij | < ε and such that the map g : V → RnE defined as g(x) = f(x)+xR

is an immersion, where x = (x1, x2, . . . , xp) is a row vector.

Definition. Let f : Rp → RnE and δ : Rp → R+be a positive continuous function. W say

that g : Rp → RnE is a δ−approximation of f if d(f(x), g(x)) < δ(x) for all x ∈ Rp, where

d is the metric in RnE .

Theorem. (Adachi, 1993, p. 49 and 54) Given a smooth function f : Rp → RnE and

the positive continuous function δ : Rp → R+we have: a) if nE ≥ 2p, there exists an

immersion g : Rp → RnE which is a δ−approximation of f ; b) if nE ≥ 2p+1, there exists

a 1-1 immersion g : Rp → RnE which is a δ−approximation of f .

To state the last theorem in this section, let Cr(V,RnE ) denote the space of all

Cr−maps from V to RnE . The elements of C∞(V,RnE ) are smooth functions. Let us

define the norm ‖f‖r,L := {|f |r |x ∈ L, r ≥ 1}, where |f |r = sup
i,x

|fi(x)| + sup
i,j,x

∣∣∣∂fi(x)∂xj

∣∣∣

+ · · · + sup
i,α,x

∣∣∣ ∂rfi(x)
(∂x1)α1 (∂x2)α2 ...(∂xp)

αp

∣∣∣, where α1 + α2 + . . . + αp = r. In other words, g

will be close to f in ‖·‖r,L norm if g and all its partial derivatives up to order r will be

uniformly (on L) close to those of f . This norm makes C∞(V,RnE ) into topological space

C∞(V,RnE )r,L, where neighborhoods are defined in terms of ‖·‖r,L.

Theorem. (Hirsch, 1976, ch. 2) Let V be an open set in Rp and L ⊂ V compact. Then

a) if nE ≥ 2p, the set of all smooth immersions f : Rp → RnE is open and dense in

C∞(V,RnE )r,L; and b) if nE ≥ 2p + 1, the set of all smooth 1-1 immersions is open and

dense in C∞(V,RnE )r,L.

Let us interpret the above theorems in the context of DSGE models. To this end, think

of the domain f : V → RnE as the space of all deep parameters Θ (recall that the range is

the space of functionally independent elements in an equivalence class), hence p = dim(Θ)

34

and nE = 2nk + 1
2k(k + 1) + n.16 First, the first theorem of this appendix is suggestive

in that it undermines the sense of checking local identifiability using the derivatives since

∂g′(θ)/∂θ = ∂f ′(θ)/∂θ + R′, where all entries in matrix R are arbitrarily close to 0. Hence,

as long as nE ≥ 2 · dim(Θ), such a defined g has derivatives arbitrarily close to that of f

at all θ ∈ Θ, but at the same time is locally identified at all θ ∈ Θ. Second, the second

theorem says that as long as nE ≥ 2 · dim(Θ) + 1, any smooth map f : Θ → RnE can

be approximated arbitrarily closely by smooth 1-1 immersions, hence by a model that is

globally identified at all θ ∈ Θ (i.e. uniformly).

There is an obvious consequence of this result. Bearing in mind that in most applica-

tions the mapping from θ to A,B,C,D,Σ is only numerically given, establishing both local

and global identification using differential calculus is not possible if nE ≥ 2 · dim(Θ) + 1.

The last theorem suggests that if nE ≥ 2 · dim(Θ) (nE ≥ 2 · dim(Θ)+1), the property of a

DSGE model to be uniformly locally (globally) identified is generic (i.e. typical). Although

it is known that there are generic properties that at the same time can have arbitrarily

small Lebesgue measure, in our case the notions of “genericity” and “almost everywhere”

are equivalent in some formal sense, see e.g. Hunt et al. (1992). Hence, the last theorem

roughly means that if nE ≥ 2 · dim(Θ) (nE ≥ 2 · dim(Θ) + 1), almost all smooth functions

are locally identified (globally identified) at all θ ∈ Θ. In other words, if nE ≥ 2·dim(Θ)+1

and numerical solution to a DSGE model is used, you cannot arrive at the model that

is not uniformly globally identified at all θ ∈ Θ since an infinitely small perturbation to

the model solution algorithm results in a uniformly globally identified model.17 Moreover,

even if your linearized DSGE model is not (uniformly) globally or locally identified, tak-

ing into account higher order terms in the approximation (or just analyzing the nonlinear

model as it is) will almost surely identify your model. Another implication of the above

theorems may be stated informally as: if you tell me that condition nE ≥ 2 · dim(Θ) + 1

is met in your particular DSGE model (keep in mind however footnote 16), I will say that

there is a priori zero probability that your DSGE model will not be globally identified at

all θ ∈ Θ.

Although we reproduced the theorems involving smooth functions, there are versions

16This makes sense provided that there is no evident non-identification at the level of the mapping from
deep parameters to semi-structural parameters. Otherwise, you should think of the domain of f : V → RnE

as the space of semi-structural parameters. In fact, the mapping from deep parameters to functionally
independent elements may be symbolically defined as a composite map f2 ◦ f1, where f1 is a map θ
�→ Γ1,Γ0,Γ2, G, J and f2 is a map Γ1,Γ0,Γ2, G, J �→ u (where u denotes an element of 2nk + 1

2
k(k +

1) + n dimensional manifold). Clearly, identification (i.e. injection) of f1 is the necessary condition for
identification (i.e. injection) of the whole composite map f2 ◦ f1.

17A good analogue is computation of the determinant of a square (say n × n) matrix, in which each
entry is generated independently from some continuous distribution. Since the set of nonsingular matrices

forms an open and dense subset of Rn2

, the probability that your randomly selected matrix is singular has
Lebesgue measure 0.
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that require only Cr−maps for r ≥ 1, see e.g. Hirsch (1976). Moreover, since ‖f‖r,L norm

does not control the closeness “at infinity” (since L is compact), it may not be always fully

satisfying. However, there is a modified norm that results in the so-called strong topology.

See e.g. Hirsch (1976) for this more general treatment. Further, the material in this

appendix is literally the same if instead of εt ∼ i.i.d.N(0,Σ) we assume εt ∼ i.i.d.N(0, Ik)

since the dimension of manifold E remains the same (see Proposition 1). On the other

hand, if s0 = 0, then all results in this appendix are perfectly valid given that we adjust

the dimension of E so as nE = 2nk + 1
2k(k + 1).
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