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Abstract

Central bank lending to commercial banks is typically collateralized which reduces

central bank’s credit risk exposure to “double default events” when the counterparty

and the issuer of the underlying collateral asset both default in a short period of time.

This paper presents a simple model for correlated defaults which are the key drivers

of residual credit risk in central bank’s repo portfolios. In the model default times of

counterparties and collateral issuers are determined by idiosyncratic and systematic

factors, whereby a name defaults if it is struck by either factor for the first time. The

novelty of our approach lies in representing systematic factors as increasing sequences

of random variables. Such a setting allows to build a rich dependence structure that is

free of the flaws inherent in the Gaussian copula-based approaches currently regarded

as state of the art solutions for central banks.
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1 Introduction

That central bank credit should be collateralized is one of the most firmly established prin-

ciples of central banking, unscathed even by the innovations introduced in response to the

recent crisis. In theory one could imagine that the provision of reserves to the banking system

might take the form of unsecured lending. However, Bindseil and Papadia (2009) note that

there are a number of good reasons for central banks to insist on adequate collateralization,

the most important of which is that they have neither the mandate nor the practical exper-

tise to take on and manage credit risk. Obviously perfect protection against credit losses is

impossible and in any case not really desired as it would most likely conflict with the pur-

suit of central bank’s monetary policy objectives. Still, the requirement that central bank

counterparties submit collateral of sufficient quality and quantity significantly mitigates the

extent of credit risk taken by the central bank since, in the event of counterparty default,

the central bank can still close the position and return its balance sheet to original size by

selling the pledged assets. In such secured transactions – whether they have the form of

collateralized lending or, more commonly, repurchase agreements (repos) – the central bank

still faces residual credit risk that can materialize only in so called double default events

when the counterparty who has submitted the collateral and the collateral issuer default

within a short period of time. Thus, the key aspect of managing credit risk in the context

of central bank’s policy operations consists in modeling joint defaults of counterparties and

issuers.

These issues have gained in importance during the recent crisis, following the marked

lengthening of central bank balance sheets in most industrialized economies, and the asso-

ciated rise in risk exposures (see e.g. the BIS study by Archer and Moser-Boehm, 2013).1

To the extent that a central bank follows the so called “inertia principle,” i.e. maintains

its risk control framework at least inert in a crisis, it is likely to see its risk-taking increase

as a result of an interplay of the following main factors: (i) the increase of probabilities

of default of central bank counterparties and issuers of debt instruments used as collateral;

(ii) increase of correlation risks between central bank counterparties and collateral credit

quality; (iii) the shift of central bank lending towards stressed counterparties who tend to

lose market access; (iv) the lengthening of central bank’s balance sheet due to a flight of

households out of bank deposits into banknotes. There are good reasons for the central bank

to provide elastic credit, even though this leads to higher and more concentrated exposures.

The original rationale for the inertia principle was presented already by Bagehot (1873) and

illustrated more recently by Bindseil (2009). Bindseil and Jablecki (2013) go further to argue

1In another testimony to the relevance of these issues Buiter and Rahbari (2012) wonder whether the
ECB’s loss absorption capacity (“deep pockets of the ECB”) is enough to counter potential losses on its
collateralized operations. They conclude that it is.

2
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that since in a systemic crisis the probabilities of default of central bank counterparties and

collateral issuers are likely to be endogenously related to the extent of central bank’s liquid-

ity provision, a more forthcoming liquidity policy of the central bank and a loosening of the

risk control framework can, paradoxically, reduce the central bank’s ultimate risk exposure.

This is not to say that central banks can be indifferent to the extent of credit risk they are

taking. To the contrary, as public institutions, central banks have special duties in terms

of transparency and accountability, and thus they should be able to accurately measure and

account for the risk they are taking, irrespective of whether the act of taking such risk is

economically justified or not.

The need to properly measure the residual central bank credit risk exposure stemming

from collateralized transactions is relevant not only in a crisis but also in normal times. This

is underscored by the fact that – from the central bank’s perspective – the actual use of

collateral, as well as the resulting concentration of counterparties and issuers in the portfolio

cannot be fully anticipated. Hence, the actual risk-taking cannot be known ex ante and

the central bank can only ensure that it remains within its accepted risk budget by closely

monitoring and stress testing the use of collateral and the level of portfolio concentration

and their impact on the relevant risk measures.2 It is therefore of critical importance that

the central bank understands and can properly measure its residual credit risk exposure and

the sensitivity of that exposure to concentration and correlation of counterparty and issuer

defaults.

Growing awareness of the issues related to portfolio concentration and default correlation

has pushed central banks to develop and implement portfolio credit risk models making use

of simulation techniques and copula dependence structures. For example, a recent study by a

task force of Market Operations Committee of the European System of Central Banks found

that“the CreditMetrics methodology (...) is used or being tested by most central banks par-

ticipating in the task force, either directly, using the CreditManager software, or through

in-house systems” (ECB, 2007). The ECB itself as the first central bank has implemented

a state-of the-art approach to estimating tail risk measures for a portfolio of collateralized

lending operations (Heinle and Koivu, 2009). If collapsed drastically to the single issue of

modeling default correlation, such models are based on the industry standard of Gaussian

copula (cf. any of the classic textbooks Bluhm, Overbeck, and Wagner, 2002; Schönbucher,

2003 or Lando, 2004 for an overview of the main concepts and methods). Unfortunately,

2As explained by ECB risk managers Heinle and Koivu (2009): “Any efficient collateralization framework
will provide some discretion to counterparties on what types of collateral to use, and to what extent. This
discretion implies that the actual risk taking, for instance driven by concentration risks, cannot be anticipated.
The central bank only can ensure that the outcome is actually acceptable by closely monitoring the actual
use of the collateralization framework by counterparties, and establishing a sound methodology to measure
residual risks. If it is not acceptable, specific changes to the framework are necessary to address the non-
anticipated (concentration) risks that arose.”

3

Gaussian copula is not suited very well for analyzing the concentration of defaults in time.

As recently argued by Morini (2011) in the context of the subprime crisis, Gaussian copula

allows for paradoxical and misleading results such as an inverse relation between correlation

and the model probability of loss concentration (see also e.g. O’Kane, 2008).3 As a remedy

to the failings of the Gaussian copula, Morini proposes the Marshall and Olkin (1967) fatal

shock model, which although appears to have some theoretical advantages over the latter,

is not very useful in practice as a portfolio credit risk model (cf. in particular Andersen

and Sidenius, 2004 for a discussion of problems associated with calibrating a Marshall-Olkin

model).

Against this background we propose a simple generalization of the Marshall-Olkin ap-

proach based on the redefinition of a systematic factor as a sequence of positive random

variables, rather than a single random variable. The model, first suggested in Gatarek and

Jab�lecki (2013), is naturally suited to handle dependencies between default times of the kind

encountered e.g. in modeling residual credit risk exposure in a repo portfolio. The modifi-

cation we prose is inspired by the problem of modeling default correlation in the context of

CDOs, as explained in Gatarek (2010). Our approach has three main advantages over the

Marshall-Olkin approach. First, on the intuitive level, it is more natural to think that system-

atic defaults occur in a sequence, not all at once as per Marshall-Olkin. Truly simultaneous

defaults can be expected only for entities with strong capital links (parent-subsidiary) or in

an “end of the world scenario.” Second, on the practical level, our model requires calibration

of much fewer parameters than the multivariate Marshall-Olkin model (for d obligors and N

systematic factors we get d × N factor loadings vs. 2d in multivariate Marshall-Olkin cop-

ula) – and in practice a single factor construction allows for sufficient flexibility in modeling

default correlation. And finally, on the formal level, the model preserves the stopping time

property of defaults lost both in copulas and in the Marshall-Olkin model. Thus, modeling

credit risk can be handled in the familiar mathematical framework of martingale methods,

which is consistent with the approaches used for other asset classes. Given the systemic

importance of central banks in many industrialized countries and the recent lengthening of

their balance sheets drawing attention to central banks’ risk exposures, we show how the

model can be applied to managing residual credit risk in a central bank’s repo portfolio.

Obviously, however, the issue of estimating joint default probabilities is pervasive, especially

in view of the growing importance of repo markets globally. Hence, the ideas presented are

3Interestingly, Morini (2011) believes that the much discussed lack of tail dependence in the Gaussian
copula was a lesser problem in the crisis: “the problems in the credit derivatives market and structured
finance that led to the credit crunch did not come from this kind of loss concentration [in a single portfolio].
They came from actual or feared losses that were not high in a single portfolio (...) but were concentrated in
a short period of time, creating panic and liquidity difficulties” (p. 139). On the problem of tail dependence
see Embrechts, Lindskog, and McNeil (2003).

4
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valid directly for any institution with a large repo portfolio, and in fact can be used also in

the context of pricing and risk-managing more complex financial instruments, such as credit

default swaps, default swaptions, and CDOs (cf. Gatarek, 2010; Gatarek and Jab lecki, 2013).

The rest of the paper proceeds as follows. In Section 2 we briefly describe current best

practice solutions for risk-managing a central bank repo portfolio and discuss their main

shortcomings. Section 3 presents our model of default correlation and shows how it can be

applied to central bank risk management problem. Section 4 concludes.

5

2 Risk measurement in central bank’s collateralized

lending

When the central bank conducts its monetary operations through repurchase agreements or

collateralized lending (which are almost indistinguishable from an economic point of view) its

credit risk is limited strictly to the so called double default case when both the counterparty

and the collateral issuer default in a short period of time.4 The time frame is crucial and stems

from a practical consideration that in most cases it would not be advisable to immediately

sell the collateral captured after counterparty default, as such a sale could adversely impact

market prices (which might already be affected by the counterparty default event itself),

leading to potential losses for the central bank. Thus, strictly speaking, in the context of

central bank repo operations the risk of joint defaults actually means the risk that first

the counterparty defaults (before the maturity of the repo) and then, during the realization

period needed to orderly liquidate the pledged collateral, the issuer defaults as well. Such

probability of joint defaults depends on the following three key factors:

the counterparty’s probability of default (PD);

the collateral issuer’s PD; and

the default correlation between the counterparty and the collateral issuer.

Hence, measuring residual credit risk exposure entails modeling the PDs of counterparties

and issuers as well as their correlation. Given potentially huge number of counterparties

and collateral issuers this is an extremely difficult problem in central banks, not only con-

ceptually but also in terms of practical implementation (IT infrastructure, systems, software

etc.). In what follows we focus only on the theoretical side of the problem and to motivate

further discussion, we begin by presenting what seems to be the “best practice” approach

to measuring residual credit risk in central banks5, namely the Gaussian copula model, a

variant of which was implemented e.g. by the ECB in 2006 (Heinle and Koivu, 2009)6.

4Strictly speaking, residual credit risk is only one source of risk to which a central bank is exposed in
a collateralized operation. In theory, since the central bank is not threatened by illiquidity, it could – in
the event of counterparty default – hold the collateral to maturity, in which case it would only have to
care about double default. In practice, however, central banks tend to liquidate collateral before maturity –
probably considering this to be optimal – and thus also care about mark-to-market losses on a given asset
in liquidation before maturity.

5Unlike private agents, central banks are not bound by any international risk management standards akin
to the Basle accords, and are also less transparent about the models and techniques applied. Thus, strictly
speaking, there is no such thing as a publicly available set of best practices adopted by the central banking
community (a fact recently brought up by Bank of England’s executive director for markets Paul Fisher).

6Although the ECB methodology has been updated since the publication of the Heinle and Koivu (2009)
paper, the key features – especially the Gaussian copula – remain the same.
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4Strictly speaking, residual credit risk is only one source of risk to which a central bank is exposed in
a collateralized operation. In theory, since the central bank is not threatened by illiquidity, it could – in
the event of counterparty default – hold the collateral to maturity, in which case it would only have to
care about double default. In practice, however, central banks tend to liquidate collateral before maturity –
probably considering this to be optimal – and thus also care about mark-to-market losses on a given asset
in liquidation before maturity.

5Unlike private agents, central banks are not bound by any international risk management standards akin
to the Basle accords, and are also less transparent about the models and techniques applied. Thus, strictly
speaking, there is no such thing as a publicly available set of best practices adopted by the central banking
community (a fact recently brought up by Bank of England’s executive director for markets Paul Fisher).

6Although the ECB methodology has been updated since the publication of the Heinle and Koivu (2009)
paper, the key features – especially the Gaussian copula – remain the same.
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2.1 Copula-based approach to residual risk measurement

The general framework for estimating the joint default probability for a portfolio of credits

(the “Black Scholes” of the correlation market) is the so called Gaussian latent factor model,

inspired by the structural approach to credit risk proposed by Merton (1974), and used

widely in different forms in commercial and regulatory applications.7 In the model each

obligor i is assigned a standard normal variable Ai and a time-dependent default threshold

zi(T ). It is assumed that default occurs before time T if the variable Ai (which itself is not

observable and has no dynamics) finds itslef below the threshold zi(T ). Formally,

P(τi ≤ T ) = P(Ai ≤ zi(T )) = PD(T ), (1)

where τi is the default time of credit i and PD(T ) is the T -year probability of default.

Equation (1) shows how the model can be calibrated to an obligor’s credit curve. For

example, given the annual PD for name i, the value of zi(1) can be easily determined, as

zi(1) = Φ−1(PD(1)) (Φ−1(·) being the inverse of the standard normal CDF), and zi(1) in

turn can then be used in simulations. Typically counterparty and issuer’s PDs are derived

from their credit ratings, as provided either by external rating agencies, counterparties’ own

internal systems or in-house credit assessment models.8

Default correlation is introduced in the model through linear correlation of the variables

Ai, so called asset correlation. Specifically, each Ai is decomposed into a systematic compo-

nent Z and an idiosyncratic component Y :

Ai = wiZ +
√

1− w2
i Yi (2)

where Z and Yi are standard normal with cov(Yi, Yj) = 0 and cov(Yi, Z) = 0. The asset

correlation between Ai and Aj is then given by ρasseti,j = wiwj.
9 Since with the size of a central

bank portfolio it would be practically impossible to guarantee the technical restriction that

the correlation matrix composed of all pairs wiwj is positive definite, a common practice –

at least before the crisis – was to use a fixed correlation coefficient10. The final key building

7The earliest published version of the model is a 1987 memo by Vasicek, subsequently published as Vasicek
(2002). In the 1990s the model became popularized by Goupton, Finger, and Bhatia (1997) who based on
it the CreditMetrics risk management framework, underlying also the ECB approach. Finally, a version of
the model – called Asymptotic Single Risk Factor (Gordy, 2003) – was used for the calculation of regulatory
capital under the Basel IRB framework.

8Sometimes central banks specify also a minimum rating/PD threshold for counterparties. For example,
to limit the extent of risk taking before the euro area sovereign debt crisis, the Eurosystem had required that
collateral issuer’s credit must be of at least single-A quality (corresponding an annual PD of 10 bp) but the
threshold has since been suspended to counteract potential collateral scarcity.

9Note that asset correlation is a different concept from default time correlation ρ(τi, τj) and default
indicator correlation ρ( {i} {j}). In general, conditional on default probabilities, default correlation is an
increasing function of asset correlation (Hanson, Pesaran, and Schuermann, 2008).

10For example, as of end 2006 (the most recent date for which these calculations are publicly available),
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block of the model is specification of the nature of the multivariate dependence between

marginal probabilities of default. A common approach – followed i.a. by the ECB – was to

use the Gaussian copula with ρasset as the correlation parameter in the copula function.

In such a setup the central bank loss function is determined by simulation, hence no

additional distributional assumptions are needed. Stripped to its essentials, the simulation

involves drawing pseudo-random realizations of the variable Ai and determining the number

of counterparty and issuer defaults across the portfolio. Then, on the basis of the assumed

recovery rates, central bank losses in each draw are calculated, allowing ultimately for the

calculation of the respective tail risk measures (VaR, expected shortfall, etc.). For example,

in the ECB’s approach, risk is estimated over an annual horizon, so for each counterparty i

it is verified whether Ai ≤ zi(1) and for each issuer j whether Aj ≤ zj(1/LHj). Here, LHj

stands for the liquidation horizon of the least liquid instrument from issuer j. The scaling

of issuers’ PDs down to the liquidation horizon is a way to reflect in the model the temporal

dimension of double defaults. This conveys the idea that while the counterparty can default

at any time within the chosen horizon of 1 year, for the central bank to suffer a loss, the

issuer has to default during the normally much shorter time assumed to be needed for the

liquidation of the pledged assets.11

2.2 Some problems with copula-based estimation of double default

events

Since a model is by definition only an imperfect representation of reality, no risk model is

likely to be “the right one.” However, as argued by Derman (2001) in one of the first essays

on model risk, a useful model should provide at least a realistic or plausible description of

the factors that determine its outcome. In the case of a model for estimating residual credit

the Eurosystem repo portfolio consisted of some 18,000 counterparty-issuer pairs. Thus, Heinle and Koivu
(2009) report the use of a fixed correlation coefficient of 24 per cent, even though – writing in 2009 – seem
somewhat dissatisfied with the low correlation input. In practical terms, what drives default correlation and
the probability of joint defaults in the Eurosystem portfolio is its concentration on the level of counterparties
and collateral. Such concentration can materialize along several dimensions, including concentration on
the level of issuers, asset categories, industries, countries and banking groups. The Eurosystem has taken
some precautions to mitigate concentration risk by prohibiting counterparties to submit collateral issued
or guaranteed by themselves or entities with which they have close links. However, since the outbreak
of the crisis these restrictions have been progressively relaxed to allow for own-use of covered bonds and
asset backed securities as collateral. Similarly, the provisions against close links were waived for general
government bonds. While these changes may have been necessary to fend off collateral scarcity and extend
the ability of banks to take recourse to central bank credit operations, they may have increased residual
credit risk in the Eurosystem’s portfolio in a way that is not entirely clear and transparent.

11An important additional assumption is that collateral quality and maturity (and even prices) are constant
over time, until the time of default of the counterparty, as counterparties rebalance their collateral portfolio.
The ECB model assumes counterparties draw as much liquidity as they can before default so that current
collateral figures determine the exposure at default.
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block of the model is specification of the nature of the multivariate dependence between

marginal probabilities of default. A common approach – followed i.a. by the ECB – was to

use the Gaussian copula with ρasset as the correlation parameter in the copula function.

In such a setup the central bank loss function is determined by simulation, hence no
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events

Since a model is by definition only an imperfect representation of reality, no risk model is

likely to be “the right one.” However, as argued by Derman (2001) in one of the first essays

on model risk, a useful model should provide at least a realistic or plausible description of

the factors that determine its outcome. In the case of a model for estimating residual credit

the Eurosystem repo portfolio consisted of some 18,000 counterparty-issuer pairs. Thus, Heinle and Koivu
(2009) report the use of a fixed correlation coefficient of 24 per cent, even though – writing in 2009 – seem
somewhat dissatisfied with the low correlation input. In practical terms, what drives default correlation and
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and collateral. Such concentration can materialize along several dimensions, including concentration on
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over time, until the time of default of the counterparty, as counterparties rebalance their collateral portfolio.
The ECB model assumes counterparties draw as much liquidity as they can before default so that current
collateral figures determine the exposure at default.
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risk of a repo portfolio, this could be interpreted as a requirement that there be a clear and

intuitive relationship between the input parameters such as PDs and asset correlations and

the financial risk measured. Unfortunately, the Gaussian copula does not score very well on

this count. In what follows we describe the three main shortcomings of the copula-based

model for estimating the joint default probability, before providing what we believe is a

more accurate approach in the following section. Some of these problems have recently been

identified and discussed at length by Morini (2011) in the context of credit derivatives, but

as we argue below, they remain valid for central banks as risk managers of collateralized

lending portfolios.

Problem 1. No meaningful default clustering under perfect asset correlation

This problem is well known to practitioners and relates to the inability of the Gaussian latent

factor model to produce concentration of defaults in time if obligors in the portfolio have

different conditional default probabilities (see e.g. O’Kane 2008 in the context of valuing

credit derivatives). To understand this phenomenon better, consider two credits with ratings

AAA and BBB- and corresponding annual probabilities of default PD1(1) = 0.01% and

PD2(1) = 0.40%. Assuming conditional default probabilities of the two obligors are constant,

we can easily obtain the respective hazard rates λ1 ≈ 0.0001 and λ2 ≈ 0.0040 and then also

the two credit curves z1(t) = Φ−1(1 − exp(−λ1t)) and z2(t) = Φ−1(1 − exp(−λ2t)). In the

Gaussian latent factor model default times are simply the values of t for which A1 = z1(t) and

A2 = z2(t). Hence, realizations of correlated default times of both credits can be simulated

using the formulas:

− ln (1− Φ(A1))

λ1

= τ1

− ln (1− Φ(A2))

λ2

= τ2

(3)

with A1 and A2 being correlated standard normal random variables. Perfect asset correlation

of the two names means of course that A1 = A2 which implies a deterministic and fixed

relationship between the two defaults: τ1 = τ2(λ2/λ1), i.e. in this case τ1 = 40τ2. In other

words, despite imposing perfect asset correlation on the two obligors – which is the key

measure of dependence in the Gaussian latent factor model – we were unable to produce in

the model meaningful clustering of defaults in time, which would additionally require that

λ1 ≈ λ2 and PD1(1) ≈ PD2(1). Whether this is a problem in practice depends on the specific

application of the model and its ultimate use. However, it seems that failure to produce

defaults near in time for credits with different probabilities of default is a shortcoming not to

be taken lightly by central banks. After all, the key factors in estimating residual credit risk
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of a repo portfolio are the probability that defaults of the counterparty and the issuer are

near in time – e.g. within several weeks needed to sell the collateral – and the dependence

of that probability on portfolio concentration and correlation. If a model cannot produce

defaults that are close in time for highly dependent obligors than it may lead to erroneous

conclusions about the central bank’s credit risk exposure.

Problem 2. Unstable relation between joint default probability and asset corre-

lation

The second problem relates to the fact that the probability of joint defaults can be either

an increasing or decreasing function of asset correlation depending on the time frame under

consideration and obligors’ PDs. Under normal circumstances, the central bank is only

interested in a spot-starting probability of joint defaults, i.e. the probability of double

default events over the next year starting from now. However, in some cases it might be

necessary to calculate the relevant risk measures over a future horizon, e.g. over a year

starting from some specified future date. This might be relevant in stress testing exercises

or when the central bank is particularly concerned about the materialization of adverse

scenarios over a certain period of time in the future.12 As a simple illustration, suppose that

counterparty and issuer hazard rates are λ1 = 0.01 and λ2 = 0.20 respectively and consider

the probability that both default during a 3-year horizon starting now, P(τ1 ≤ 3, τ2 ≤ 3),

and two years from now, P(2 ≤ τ1 ≤ 5, 2 ≤ τ2 ≤ 5) (for simplicity we abstract from

the liquidation horizon). Figure 1 shows that for the spot-evaluated case, the probability

curve has an increasing shape, in line with expectations. However, the forward-starting

probability of joint defaults is monotonously decreasing in asset correlation. Indeed, we

already know from earlier discussion (see eq. (3)) that with λ1 = 0.01, λ2 = 0.20 and perfect

asset correlation, default times will be deterministically related, τ1 = 20τ2, and so intervals

2 ≤ 20τ2 ≤ 5 and 2 ≤ τ2 ≤ 5 never intersect. This reasoning also shows that by changing λ1

and λ2 we can easily guarantee that the intervals for default times do intersect and thus the

probability of joint defaults is nonzero under perfect asset correlation. For example, setting

λ1 = λ2 = 0.01 we obtain exponentially increasing probability of joint defaults as a function

of correlation (Figure 1, black dashed line). Although it is the spot-starting probability

of joint defaults that matters most in practical applications, the instability of the relation

between the key model parameter – asset correlation – and financial risk detected in forward-

12Suppose, for example, that the ECB lends money to a counterparty in a 3Y LTRO collateralized by a
sovereign bond from the eurozone periphery. Suppose also that the ECB fears that the fiscal situation of the
sovereign issuer is likely to deteriorate over time while in addition new strict capital rules, penalizing banks
for holding government bonds, will become binding in a year from now. In such a case the ECB might want
to estimate the probability of joint default at a forward date, e.g. the probability that both the counterparty
and the issuer default between 1 and 3 years from now.
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risk of a repo portfolio, this could be interpreted as a requirement that there be a clear and
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the two credit curves z1(t) = Φ−1(1 − exp(−λ1t)) and z2(t) = Φ−1(1 − exp(−λ2t)). In the

Gaussian latent factor model default times are simply the values of t for which A1 = z1(t) and
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words, despite imposing perfect asset correlation on the two obligors – which is the key

measure of dependence in the Gaussian latent factor model – we were unable to produce in

the model meaningful clustering of defaults in time, which would additionally require that

λ1 ≈ λ2 and PD1(1) ≈ PD2(1). Whether this is a problem in practice depends on the specific

application of the model and its ultimate use. However, it seems that failure to produce

defaults near in time for credits with different probabilities of default is a shortcoming not to

be taken lightly by central banks. After all, the key factors in estimating residual credit risk
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of a repo portfolio are the probability that defaults of the counterparty and the issuer are

near in time – e.g. within several weeks needed to sell the collateral – and the dependence

of that probability on portfolio concentration and correlation. If a model cannot produce

defaults that are close in time for highly dependent obligors than it may lead to erroneous

conclusions about the central bank’s credit risk exposure.
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The second problem relates to the fact that the probability of joint defaults can be either
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interested in a spot-starting probability of joint defaults, i.e. the probability of double

default events over the next year starting from now. However, in some cases it might be

necessary to calculate the relevant risk measures over a future horizon, e.g. over a year
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or when the central bank is particularly concerned about the materialization of adverse

scenarios over a certain period of time in the future.12 As a simple illustration, suppose that

counterparty and issuer hazard rates are λ1 = 0.01 and λ2 = 0.20 respectively and consider

the probability that both default during a 3-year horizon starting now, P(τ1 ≤ 3, τ2 ≤ 3),

and two years from now, P(2 ≤ τ1 ≤ 5, 2 ≤ τ2 ≤ 5) (for simplicity we abstract from

the liquidation horizon). Figure 1 shows that for the spot-evaluated case, the probability

curve has an increasing shape, in line with expectations. However, the forward-starting

probability of joint defaults is monotonously decreasing in asset correlation. Indeed, we

already know from earlier discussion (see eq. (3)) that with λ1 = 0.01, λ2 = 0.20 and perfect

asset correlation, default times will be deterministically related, τ1 = 20τ2, and so intervals
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and λ2 we can easily guarantee that the intervals for default times do intersect and thus the

probability of joint defaults is nonzero under perfect asset correlation. For example, setting

λ1 = λ2 = 0.01 we obtain exponentially increasing probability of joint defaults as a function

of correlation (Figure 1, black dashed line). Although it is the spot-starting probability

of joint defaults that matters most in practical applications, the instability of the relation

between the key model parameter – asset correlation – and financial risk detected in forward-

12Suppose, for example, that the ECB lends money to a counterparty in a 3Y LTRO collateralized by a
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Figure 1: Spot- and forward-starting probability of joint defaults as a function of asset
correlation
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“Spot 3Y” is the probability of joint defaults avaluated on a spot basis: P(τ1 ≤ 3, τ2 ≤ 3); “Fwd” is the

probability that both names default jointly over a 3-year horizon in the future P(2 ≤ τ1 ≤ 5, 2 ≤ τ2 ≤ 5).

starting calculations is also very important. At minimum, it indicates that the model used

to estimate risk can in some cases produce an unrealistic and implausible relation between

input parameters and output, and hence is associated with nontrivial model risk.

Problem 3. Probability of defaults near in time is non-monotonic with respect

to asset correlation

The third key problem with using Gaussian copula to model residual credit risk is that the

probability of defaults happening near in time and one after another – as in a repo double

default scenario – can for given conditional hazard rates be a non-monotonic, hump shaped,

function of asset correlation. Consider the follwoing example. The central bank provides cash

to a counterparty for the maturity of 12 months. The counterparty with annual PD equal 0.05

(equivalent to a constant hazard rate λ1 = − ln(0.95)) submits as collateral securities issued

by an obligor with annual PD 0.2 (think of a bank with decent credit quality submitting poor

quality ABS). Assume further that the collateral has a liquidation horizon of 1 month. In

such a simplified yet realistic example the central bank could suffer losses if the following two

events materialize: (i) the counterparty defaults at time τ1 within the next 12 months; (ii)

the issuer defaults after τ1, but not later than τ1 + 1M. Formally, the estimation of residual

credit risk for this portfolio entails quantifying the following probability:

Pρ1,2(τ1 ≤ 1 ∧ τ1 ≤ τ2 ∧ (τ2 − τ1) ≤ 0.08) (4)

11

Figure 2: Probability that the defaults of the counterparty and issuer are within 1M as a
function of Gaussian copula correlation parameter.
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Note: λ1 = 0.05, λ2 = 0.2; probability is evaluated based on formula (4).

as a function of issuer-counterparty correlation ρ1,2. As shown in Figure 2, the probability of

joint defaults – and thus central bank’s residual credit risk – first increases as a function of

ρ1,2, assumes its maximum value of 84 bp for ρ1,2 = 0.77 and then falls, reaching a minimum

for ρ1,2 = 1. The problem with such a non-monotonic pattern is not only that it is difficult to

understand from an economic point of view, but also that it makes it in general impossible

to know a priori whether – with a given set of PDs – an increase in correlation will increase

or decrease central bank risk exposure. To determine that, one would need a full simulation

of the relevant risk measures for different correlation assumptions, which would obviously be

very computationally intensive.

This unwelcome result of non-monotonic relation between probability of joint defaults

and correlation can be avoided if the timing of defaults is reflected by the scaling down of

issuers’ PDs to the liquidation period while considering counterparties’ PDs in annual terms

(instead of modeling directly the clustering of defaults in time as in (4)). In other words,

default times are evaluated on a spot-starting basis, albeit with a different horizon: annual

for counterparties and weekly, bi-weekly, monthly etc. (the equivalent of liquidation periods)

for issuers. In practice, a joint default event that is critical for a collateralized loan has a

very clear forward-starting nature, as the default of the issuer is only dangerous if it occurs

after the default of the counterparty and in the period needed to sell the collateral. It is

natural for models to simplify an otherwise complex reality, but in case of risk management

models such simplifications should in principle err on the side of caution, i.e. overstate,

not understate the risks taken. Moreover, even if the linear scaling of annual PDs and

default thresholds is a conservative approach with respect to “true” short-term PDs, it is not
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Figure 1: Spot- and forward-starting probability of joint defaults as a function of asset
correlation
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“Spot 3Y” is the probability of joint defaults avaluated on a spot basis: P(τ1 ≤ 3, τ2 ≤ 3); “Fwd” is the

probability that both names default jointly over a 3-year horizon in the future P(2 ≤ τ1 ≤ 5, 2 ≤ τ2 ≤ 5).
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Figure 2: Probability that the defaults of the counterparty and issuer are within 1M as a
function of Gaussian copula correlation parameter.
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Note: λ1 = 0.05, λ2 = 0.2; probability is evaluated based on formula (4).

as a function of issuer-counterparty correlation ρ1,2. As shown in Figure 2, the probability of
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for counterparties and weekly, bi-weekly, monthly etc. (the equivalent of liquidation periods)

for issuers. In practice, a joint default event that is critical for a collateralized loan has a

very clear forward-starting nature, as the default of the issuer is only dangerous if it occurs

after the default of the counterparty and in the period needed to sell the collateral. It is

natural for models to simplify an otherwise complex reality, but in case of risk management

models such simplifications should in principle err on the side of caution, i.e. overstate,

not understate the risks taken. Moreover, even if the linear scaling of annual PDs and

default thresholds is a conservative approach with respect to “true” short-term PDs, it is not
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consistently conservative in modeling the clustering of defaults in time. To see this, consider

once again the previous example. In the benchmark case the hazard rate of the counterparty

is as before λ1 = 0.05 and that of the issuer λ2 = 0.2. But we consider also a reversed

situation where the counterparty has lower credit quality than the collateral it pledges, i.e.

PD1(1) = 0.2 and PD2(1) = 0.05. The remaining assumptions on the maturity of the

collateralized loan and the liquidation period are unchanged. In both cases we estimate the

probability of joint defaults using two methods – first as in (4), and then using the approach

of scaling the default probabilities down to the liquidation horizon:

Pscaled
ρ1,2

(
A1 ≤ Φ−1(PD1(1))), A2 ≤ Φ−1(PD2(1)× LH2)

)
(5)

where A1, A2 are correlated standard normal variables and LH2 is the liquidation horizon

corresponding to 1 month (22 business days). Figure 3 shows that in the benchmark case the

model based on scaling the default threshold down to the liquidation horizon gives indeed

a more conservative assessment of the risk that both the counterparty and issuer default at

the same time. However, when the counterparty is less risky than the issuer, the method

of directly modeling default clustering in time yields a conservative assessments for higher

values of counterparty-issuer correlation. Unfortunately, even in the highly simplified case of

just one issuer-counterparty pair it is impossible to know ex ante which method of estimating

double defaults yields a more conservative assessment. Although in some cases it would be

more prudent to estimate residual risk based on (4) rather than (5), the former approach is,

as we have already explained, non-monotonic with respect to correlation and hence also not

very practical.

13

Figure 3: Probabilities of joint default as functions of copula correlation parameter: a com-
parison of calculation methods
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Note: Parameterization for Case 1 assumes PD1(1) = 0.05 and PD2(1) = 0.2 and vice versa for Case 2.
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Note: Parameterization for Case 1 assumes PD1(1) = 0.05 and PD2(1) = 0.2 and vice versa for Case 2.
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Chapter 3

3 A simple factor model of joint defaults

In this section we propose our own model for correlated defaults that is free from the short-

comings inherent in the use of Gaussian copula approach. To facilitate exposition, we in-

troduce the model in the simplest single factor and constant hazard rate setting and discuss

the similarities of our approach to the Marshall-Olkin model as advocated recently e.g. by

Morini (2011), and earlier also by Elouerkhaoui (2006) and Giesecke (2003). We also discuss

a method of calibrating the model to empirical data and finally also explain how the model

can be extended to a multifactor stochastic hazard rate setting.

3.1 Single factor case

Consider d obligors with default times τ1, ..., τd. Assume for now (we relax this assumption in

section 3.3) that default times are exponentially distributed with parameters λ1, ..., λd, which

admit natural interpretation as hazard rates or conditional default probabilities. As before,

we introduce dependence between default times by stating that each default can result from

the materialization of either an idiosyncratic factor or a systematic factor – whichever hits

sooner. Being hit by either factor has the mathematical interpretation of the first jump

of a specific Poisson process. Hence, for each obligor i the time until the arrival of the

idiosyncratic factor is represented simply by an exponential variable Yi with parameter λidio
i .

Where we differ from previous approaches is that, unlike in (2) where the systematic factor

was a single random variable, we think of a systematic factor as an increasing sequence of

exponential variables Z1 ≤ ... ≤ Zd with parameters λsys
1 , ..., λsys

d . This should be intuitive

as the most natural interpretation of dependence for random variables expressing time is

an ordering relation.13 Under such assumptions, individual obligors’ default times can be

represented as:

τi = min {Yi, Zi} , (6)

where Y1, ..., Yd and Z1, ..., Zd are independent exponential variables. Obviously, default times

of all obligors, τi, are also exponentially distributed with parameters λi = λidio
i + λsys

i and

survival probabilities

P(τi > T ) = e−λiT . (7)

Consider now two useful properties of the proposed model.

13We show below that defining a systematic factor as an increasing family of random variables rather than
a single random variable allows to preserve a useful formal property that default times are also stopping
times. Such redefinition also formalizes an important practical intuition that a systematic factor need not
cause the default of the whole economy at once. It is much more natural to expect that some credits will
default sooner and some later, depending on their sensitivity to the given systematic factor.

15

Remark 1. Idiosyncratic defaults tend to be more frequent than systematic defaults.

Denote the first default of an idiosyncratic type by Yfirst = min{Yi : 1 ≤ i ≤ d} and the

first default of a systematic type by Z1. Then

P (Yfirst ≥ t) = P (min{Yi : 1 ≤ i ≤ d} ≥ t) = exp

(
−t

d∑
i=1

λidio
i

)
(8)

Since systematic defaults are by definition ordered, we know which obligor defaults first

(although we do not now exactly when):

P (Z1 ≥ t) = exp (−tλsys
1 ) . (9)

Hence,
P(t ≤ Zt < t+ dt|Z1 > t)

P(t ≤ Yfirst < t+ dt|Yfirst > t)
=

λsys
1∑d

i=1 λ
idio
i

(10)

and – under normal conditions – the chance that the first default is of an idiosyncratic

character should be considerably greater.

Remark 2. The definition of a systematic factor as an increasing sequence of random variables

allows to capture the phenomenon of default clustering.

In fact in our model only systematic defaults can be multiple. To see this define the

following point processes counting the defaults triggered by the respective factors: N(t) =

card(τi < t), M(t) = card(Zi < t) and Nj(t) = card(i > j : Yi < t). Using the property that

Zi are ordered we easily get

P(M(t) = j) = P(Zj < t < Zj+1) =
(
1− e−tλj

)
−

(
1− e−tλj+1

)
= e−tλj+1 − e−tλj . (11)

Consequently,

P(N(t) = m) =
m∑
j=0

P(M(t) = j)P(Nj(t) = m− j) =
m∑
j=0

(
e−tλj+1 − e−tλj

)
P(Nj(t) = m− j).

(12)

If we assume that defaults of individual obligors can repeat themselves,14 then the point

process Nj(t) is a Poisson process with intensity
∑d

i=j+1 λ
idio
i . Hence,

14Since in practice defaults of individual obligors cannot repeat themselves – which is equivalent to ran-
domly drawing defaulting names without replacement – this assumption slightly overstates the total number
of defaults. A more rigorous approach to estimating such probabilities is based on the Bernoulli triangle as
suggested originally by Hull and White (2004).
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Figure 4: Default distribution for a portfolio of 100 credits assuming: (i) idiosyncratic; and
(ii) systematic defaults.
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Note: The same set of 100 hazard rates is used to generate both plots, but in one case the shocks are treated

as idiosyncratic and in the other as systematic.
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P(Nj(t) = m) ≈ 1

m!

(
t

d∑
i=j+1

λidio
i

)m

exp

(
−t

d∑
i=j+1

λidio
i

)
. (13)

Figure 4 shows how the ordering of random variables comprising a systematic factor

affects the aggregate default distribution. The same set of 100 hazard rates (ranging from

10% to 0.6%) and equations (11)-(13) are used to produce default distributions in one case

assuming default times are idiosyncratic and in the other that they are ordered. The ordering

of default times clearly increases the chance of having multiple defaults within a given time

horizon.

Example 1. Marshall-Olkin fatal shock model

Our model can be considered a generalization of the approach originated by Marshall and

Olkin (1967) and initially used in reliability theory to model the failure of multi-component

systems. In the model each “system component” (i.e. each obligor) is subject to a shock Y

that is fatal to itself (i.e. idiosyncratic) as well as a common shock Z affecting also all other

components (i.e. systematic). Thus, similarly as above, the time until failure (default) of

each obligor is given by

τi = min{Yi, Z}. (14)

Figure 5 presents a stylized decomposition of hazard rates of 10 obligors into idiosyncratic

and systematic components. Because Marshall and Olkin devised their model largely with

engineering applications in mind, a common shock in their setup is represented by a single

random variable. Such an approach seems natural in situations when common cause failures

occur at the same time (or very near in time) – as e.g. due to some mechanical or electrical

malfunction.15 There is, however, much less automatism in economic phenomena which calls

for a more nuanced treatment of a systematic shock. Moreover, the Marshall-Olkin model

has a number of shortcomings that limit its practical applications in modeling portfolio credit

riks. First, note that by construction, the systematic part of the credit spread cannot exceed

the lowest spread itself, i.e.

15For a typical engineering application of the Marshall-Olkin approach see e.g. Vesely (1977) who uses it
to test the reliability of a nuclear reactor emergency shutdown system, so called scram. Scram reliability
depends on timely insertion of control rods into the core of a reactor which increases neutron absorption
and decreases reactor power. Testing scram reliability consists i.a. in evaluating the risk of a failure to
insert control rods due to some common cause, typically mechanical in nature, such as filter plugging, rod
drive blockage etc. For example, a Dresden 2 reactor malfunction, revealed in June 1975, had the following
description “rods inserted [too] slowly due to high regulated pressure in the scram valve air header.” Since
mechanical failures tend to cause the malfunction of some or all rods virtually simultaneously, it is natural
to model the arrival time of such a common shock using a single random variable.
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Figure 4: Default distribution for a portfolio of 100 credits assuming: (i) idiosyncratic; and
(ii) systematic defaults.
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occur at the same time (or very near in time) – as e.g. due to some mechanical or electrical

malfunction.15 There is, however, much less automatism in economic phenomena which calls

for a more nuanced treatment of a systematic shock. Moreover, the Marshall-Olkin model

has a number of shortcomings that limit its practical applications in modeling portfolio credit

riks. First, note that by construction, the systematic part of the credit spread cannot exceed

the lowest spread itself, i.e.

15For a typical engineering application of the Marshall-Olkin approach see e.g. Vesely (1977) who uses it
to test the reliability of a nuclear reactor emergency shutdown system, so called scram. Scram reliability
depends on timely insertion of control rods into the core of a reactor which increases neutron absorption
and decreases reactor power. Testing scram reliability consists i.a. in evaluating the risk of a failure to
insert control rods due to some common cause, typically mechanical in nature, such as filter plugging, rod
drive blockage etc. For example, a Dresden 2 reactor malfunction, revealed in June 1975, had the following
description “rods inserted [too] slowly due to high regulated pressure in the scram valve air header.” Since
mechanical failures tend to cause the malfunction of some or all rods virtually simultaneously, it is natural
to model the arrival time of such a common shock using a single random variable.
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Figure 5: Marshall-Olkin model: a decomposition of hazard rates into idiosyncratic and
systematic components
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Note: Here λsys = 0.40% while λidio
i = λi − λsys.

∀i λsys ≤ min {λi : i = 1, ...d} (15)

Equally important, in the Marshall-Olkin model more risky obligors must always be more

idiosyncratic than the less risky ones, which does not seem to be an accurate description of

reality and might prove to be a limitation in practical applications. Yet another problem

relates to the fact that, except in the trivial case when all the spreads are equal, it is in general

impossible to have a common meaningful measure of credit correlation for the whole portfolio

– a useful property that has cemented the widespread use of the Gaussian copula correlation

parameter. Finally, the multivariate extension of the one factor case is computationally

challenging, since if each nonempty subset of obligors {1, ..., d} is assigned a shock which is

fatal to all names in that subset, we get effectively 2d−1 factor loadings – considerably more

than the N × d parameters needed to calibrate an N -factor Gaussian copula model.16

16Thus, Andersen and Sidenius (2004) note: “(...) exact parameterization of the [multivariate] Marshall-
Olkin copula is a rather formidable problem, given the abstract nature (and sheer number) of its parameters.
We note that to make the model consistent across different CDOs. one really must calibrate a single matrix
and a single set of intensities for all credits in the universe of traded credit default swaps. Such a calibration
would likely be difficult to make robust, and strong assumptions will be needed to make it feasible. We also
point out that even if a calibration method could be constructed. the model remains quite unwieldy and
involve a number of non-trivial operational and computational issues...”.
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3.2 Calibration and application to residual credit risk estimation

Calibration of the proposed model entails distributing the market-implied (or otherwise ob-

tained) hazard rates of individual obligors across the idiosyncratic and systematic shock

components. The first step in the process is the construction of a systematic factor which

can be done e.g. in the following way. Start by sorting obligors in the order reflecting their

overall exposure to the systematic factor in question. Suppose, for example, that credit “1” is

the most sensitive to the systematic factor, credit “2” is less so but still highly sensitive, and

so on, while credit d is the least exposed. Hence, the systematic factor should first trigger the

default of name “1”, then “2” etc. before ultimately hitting d. To reflect this, assign to each

name i a Poisson process Z̃i, with intensity λsys
i , whose arrival triggers the default of credit

i, but also – due to the ordering relation – also the default of all the more systematically

risky names i− 1, i− 2, ..., 1 (we assume that Poisson processes Z̃i are independent). Thus,

the systematic intensity of each obligor i will be a sum of its own intensity λsys
i and the

intensities of the Poisson processes triggering defaults of more senior names, i.e.
∑d

j=i λ
sys
j .

This can be formalized by setting

Zi = min
{
Z̃i : i ≥ j

}
, (16)

where Zi is the Poisson process representing the total systematic exposure of obligor i. Note

that Zi ≤ Zi+1 for i = 1, ..., d − 1, so indeed the family Z1, ..., Zd is a systematic factor.

Since each obligor is also affected by an idiosyncratic shock Yi with intensity λidio
i , default

times τi are exponentially distributed with parameters λi = λidio
i +

∑d
j=i λ

sys
j and survival

probabilities

P(τi > T ) = P
(
min

{
Yi,min

{
Z̃i, Z̃i+1, ..., Z̃d

}}
> T

)
= P

(
min

{
Yi, Z̃i, Z̃i+1, ..., Z̃d

}
> T

)
=

= P(Yi > T )P(Z̃i > T )P(Z̃i+1 > T )...P(Z̃d > T ) = e−λiT .

(17)

The second step of the calibration process consists in allocating the total hazard rate of

each obligor (obtained e.g. from rating agencies, market spreads or in house credit models)

to the idiosyncratic and the systematic component. The approach typically followed with

respect to the Marshall-Olkin approach is to assume that factor loadings are set as a fixed

percentage of the total intensity of a given name (see e.g. Lindskog and McNeil, 2003; Duffie

and Pan, 2001). We modify this convention slightly and introduce a parameter ρ ∈ [0, 1]

which determines the extent to which default times in the economy are independent or

ordered – i.e. triggered by idiosyncratic or systematic factors. Specifically, given a portfolio

of d obligors with conditional default probabilities λ1, ..., λd and a parameter ρ, we set the

systematic exposure of each credit as follows:
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Figure 5: Marshall-Olkin model: a decomposition of hazard rates into idiosyncratic and
systematic components
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i = λi − λsys.

∀i λsys ≤ min {λi : i = 1, ...d} (15)
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=
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The second step of the calibration process consists in allocating the total hazard rate of

each obligor (obtained e.g. from rating agencies, market spreads or in house credit models)

to the idiosyncratic and the systematic component. The approach typically followed with

respect to the Marshall-Olkin approach is to assume that factor loadings are set as a fixed

percentage of the total intensity of a given name (see e.g. Lindskog and McNeil, 2003; Duffie

and Pan, 2001). We modify this convention slightly and introduce a parameter ρ ∈ [0, 1]

which determines the extent to which default times in the economy are independent or

ordered – i.e. triggered by idiosyncratic or systematic factors. Specifically, given a portfolio

of d obligors with conditional default probabilities λ1, ..., λd and a parameter ρ, we set the

systematic exposure of each credit as follows:
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λsys
d :=ρλd

λsys
d−1 :=ρλd−1 − λsys

d = ρ(λd−1 − λd)

λsys
d−2 :=ρλd−2 − λsys

d−1 − λsys
d = ρ(λd−2 − λd−1)

...
...

λsys
1 :=ρλ1 − λsys

2 − ...− λsys
d = ρ(λ1 − λ2)

(18)

The set of identities (18) determines the individual systematic exposure of each name. The

corresponding total systematic exposure, taking into account the cascading nature of the

systematic shock, is determined according to (16). Thus, obligor d has the lowest systematic

riskiness and systematic shock intensity given simply by ρλd.
17 Obligor d−1 is slightly more

risky with a total intensity comprising both the individual systematic sensitivity λsys
d−1 and

the default intensity of the less risky obligor λsys
d . Finally, the most systematically risky

obligor has total intensity equal to the sum of its individual systematic sensitivity and the

intensities of all better credits, which reduces to ρ(λ1 − λ2). On top of that, each obligor is

also hit by an independent idiosyncratic shock whose intensity is determined by subtracting

the total systematic intensity from that name’s hazard rate, i.e.:

λidio
i := λi −

d∑
j=i

λsys
j = (1− ρ)λi (19)

The proposed decomposition (18) allows then to characterize and analyze a portfolio of

credits in terms of a uniform measure of co-dependency ρ which determines the extent to

which default times of obligors in that portfolio are systematic, i.e. ordered. Notice that

although parameter ρ can be interpreted as a natural counterpart of the correlation parameter

in the Gaussian copula (as it characterizes dependence within the portfolio), the logic in our

method is reversed as true default correlation will be an output rather than an input of the

modeling procedure.

The final step of the calibration process entails determining the parameter ρ, and hence

by (18), also the breakdown of hazard rates into systematic and idiosyncratic components.

The true ρ is obviously not observable, but a proxy can be established for example by running

a principal components analysis on CDS spreads of a representative group of obligors, e.g.

names included in some credit derivatives index (such as Itraxx or CDX).18 Once principal

components have been determined, the signs of the respective factor loadings can be used

17For ease of presentation we omit time subscripts and assume constant and deterministic hazard rates.
In practice, a non-trivial term structure of hazard rates should be calibrated.

18For practical considerations, the dimension of the problem might have to be reduced. This can be done for
example by breaking down the portfolio of obligors {1, ..., d} into rating classes C1, C2,, ..., Ck ⊆ {1, 2, ..., d}
and assuming that each rating class Cj is characterized by its own hazard rate λj .
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to distinguish between idiosyncratic and systematic factors, since loadings on the systematic

factor – as opposed to idiosyncratic factors – should generally have the same sign. The

approach is explained in greater detail in the example below.

Example 2. Calibrating ρ to the Itraxx Europe index

The Itraxx Europe index (compiled by Markit) comprises 125 equally weighted credit default

swaps on investment grade European corporate entities. To calibrate ρ and thus determine

the extent to which credits spreads (hazard rates) are driven by idiosyncratic or systematic

factors we run a princiapl components analysis on the 125 spreads over the period 2007-2014.

The estimation reveals that the first principal component accounts for roughly 64% of total

variation in spreads, the second for roughly 32% of total variation in spreads, and the first

three components together account for over 97% of total variance. A look at the signs of

the coefficients reveals that loadings on the second factor are more consistently positive so

it seems reasonable to interpret the second principal component as systematic. Since our

systematic factor explains about 30% of the total index variance then this can suggest that

the systematic component of hazard rates amounts to roughly 30%. Hence, given ρ = 0.3

we use (18) and set:

λsys
125 :=0.2λ125

λsys
124 :=0.2λ124 − λsys

125 = 0.2(λ124 − λ125)

...
...

λsys
1 :=0.2λ1 − λsys

2 − ...− λsys
125 = 0.2(λ1 − λ2)

(20)

whereby the names 1, 2, ..., 125 have been ordered with respect to their exposure to the

systematic factor. Given the λi and the breakdown into idiosyncratic and systematic com-

ponents, one can simulate default times and default times correlation. Note that in this

approach correlation will be model output rather than input.

Having explained the key ideas behind calibration, we now present a simple example

that shows how the model can be applied to estimate residual credit risk exposure on a

collateralized lending portfolio. The analysis focuses in particular on how the probability of

double defaults changes with parameter ρ.

Example 3. Estimating probability of credit losses on a collateralized lending

portfolio

Assume the central bank offers its 5 counterparties N1, ..., N5 a 3-year refinancing operation,

allowing them to submit as collateral securities issued by 5 issuers N6, ..., N10. As a result, the
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λsys
d :=ρλd

λsys
d−1 :=ρλd−1 − λsys
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Figure 6: The probability of joint defaults in central bank’s repo portfolio as a function of
portfolio correlation
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central bank’s repo portfolio is made up of 5 counterparty-issuer pairs of the form (Ni, Ni+5),

for i = 1, ..., 5, with credit spreads (hazard rates) of the respective obligors given in the table

below. Asssume the liquidation time for all assets is 1 month.

N1 N2 N3 N4 N5 N6 N7 N8 N9 N10

2.10% 1.90% 1.80% 1.50% 1.42% 1.22% 1.10% 0.80% 0.55% 0.45%

The central bank’s residual credit risk is driven by the probability that the counterparties

default within the next three years and that – when they do so – the respective collateral

issuers default within the next 1 month of each default:

P ({τ1 ≤ 3 ∧ |τ1 − τ6| ≤ 0.08} ∨ ... ∨ {τ5 ≤ 3 ∧ |τ5 − τ10| ≤ 0.08}) (21)

Such probability, in turn, will be driven by the level of portfolio correlation, or in other

words by the degree to which portfolio defaults are determined by systematic and idiosyn-

cratic factors. Given ρ we can use (18) to decompose the hazard rates into systematic and

idiosyncratic components and then evaluate (21) using Monte Carlo simulation. Figure 6

shows that the probability of joint defaults in central bank’s repo portfolio is an increasing

function of the level of portfolio correlation. Figure 7 shows in addition a decomposition of

hazard rates and simulated default times in one pseudo random scenario for two levels of

portfolio correlation: 0.1 and 0.9.

23

Figure 7: A decomposition of hazard rates and simulated default times in one pseudo random
scenario for two levels of portfolio correlation: 0.01 and 0.99
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3.3 A general model for dependent defaults

In this section we show how to generalize the simple model proposed above to cater for a

greater number of factors, larger class of factor distributions and stochastic hazard rates.

For modeling purposes, we assume that all processes and variables are defined on a filtered

probability space (Ω,F ,P), under usual conditions, with (Ft)t≥0 modeling the information

flow and P being the risk-neutral (martingale) measure relative to which all security prices

discounted by the risk-free interest rate are martingales. A stopping, or default, time with

respect to Ft is a random variable τ such that {τ ≤ t} ∈ Ft for all t ≥ 0. We say that a

non-negative, Ft-predictable process λ(t) is the hazard rate, equivalently default intensity, of

τ if {τ>t} +
´ t
0
λ(s)ds is a martingale (see Brémaud, 1981 or Schönbucher, 2003 for details).
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Figure 6: The probability of joint defaults in central bank’s repo portfolio as a function of
portfolio correlation
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central bank’s repo portfolio is made up of 5 counterparty-issuer pairs of the form (Ni, Ni+5),

for i = 1, ..., 5, with credit spreads (hazard rates) of the respective obligors given in the table

below. Asssume the liquidation time for all assets is 1 month.

N1 N2 N3 N4 N5 N6 N7 N8 N9 N10

2.10% 1.90% 1.80% 1.50% 1.42% 1.22% 1.10% 0.80% 0.55% 0.45%

The central bank’s residual credit risk is driven by the probability that the counterparties

default within the next three years and that – when they do so – the respective collateral

issuers default within the next 1 month of each default:

P ({τ1 ≤ 3 ∧ |τ1 − τ6| ≤ 0.08} ∨ ... ∨ {τ5 ≤ 3 ∧ |τ5 − τ10| ≤ 0.08}) (21)

Such probability, in turn, will be driven by the level of portfolio correlation, or in other

words by the degree to which portfolio defaults are determined by systematic and idiosyn-

cratic factors. Given ρ we can use (18) to decompose the hazard rates into systematic and

idiosyncratic components and then evaluate (21) using Monte Carlo simulation. Figure 6

shows that the probability of joint defaults in central bank’s repo portfolio is an increasing

function of the level of portfolio correlation. Figure 7 shows in addition a decomposition of

hazard rates and simulated default times in one pseudo random scenario for two levels of

portfolio correlation: 0.1 and 0.9.
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3.3 A general model for dependent defaults

In this section we show how to generalize the simple model proposed above to cater for a

greater number of factors, larger class of factor distributions and stochastic hazard rates.

For modeling purposes, we assume that all processes and variables are defined on a filtered

probability space (Ω,F ,P), under usual conditions, with (Ft)t≥0 modeling the information

flow and P being the risk-neutral (martingale) measure relative to which all security prices

discounted by the risk-free interest rate are martingales. A stopping, or default, time with

respect to Ft is a random variable τ such that {τ ≤ t} ∈ Ft for all t ≥ 0. We say that a

non-negative, Ft-predictable process λ(t) is the hazard rate, equivalently default intensity, of

τ if {τ>t} +
´ t
0
λ(s)ds is a martingale (see Brémaud, 1981 or Schönbucher, 2003 for details).
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We begin with a general definition of a factor.

Definition 1. By a systematic factor we mean a pair
(
{Zi}di=1 ,Φ

)
, where {Zi}di=1 is a

family of positive random variables with given distributions, and Φ is a permutation of the

set {1, 2, . . . , d} such that the sequence ZΦ(i) is increasing i.e. ZΦ(i) ≤ ZΦ(i+1) for i = 1, ..., d.

Definition 1 extends the concept of a factor as an ordered family of random variables

to a multifactor setting where each factor is characterized by the order in which it triggers

the default of a sequence of risky names. The ordering of defaults – reflecting different

sensitivities to different factors – is modeled by associating each factor (i.e. ordering) with

a permutation of the set of names {1, 2, ..., d}. Since each factor is given by a different

permutation of {1, . . . , d}, there are d! possible systematic factors for a given set of obligors.

The intuition for why the Marshall-Olkin “fatal shocks” approach has important practical

limitations has already been given above. Here we stress the mathematical advantage of

our definition which is that it allows different obligors to have different correlation with

the systematic factors (i.e. different factor loadings), while preserving the “stopping time”

character of credit events.19 The latter, in turn, ensures the mathematical flexibility of

martingale pricing and consistency with models developed for other asset classes, thus in

principle allowing the central bank to use a consistent model for both policy and investment

operations.

The construction of systematic factors in a multifactor setting is analogous to the con-

struction presented in section 3.2. Specifically, let Z = {Z̃i : i = 1, ..., d} be a set of Ft

measurable stopping times with conditionally independent respective hazard rates λ(t), i.e.

such that

{minξ∈V ξ>t} +

ˆ t

0
{minξ∈V ξ>s}

∑
ξ∈V

λξ(s)ds (22)

is a martingale for any V ⊆ Z. Let Φ(·) be a permutation of the set {1, ..., d}. Then, the

family Zi = min{Z̃j : Φ
−1(i) ≤ j ≤ d} is a systematic factor. The sequence ZΦ(i) = min{Z̃j :

i ≤ j ≤ d} is increasing and by assumption (22)

Ni(t) +

ˆ t

0

Ni(s)
d∑

j=Φ−1(i)

λj(s)ds (23)

is a martingale, and
∑d

j=Φ−1(i) λj(t) is the hazard rate of Zi. To construct another factor

19Note that this is not true in the fatal shock Marshall-Olkin model, i.e. all factors have by definition the
same sensitivity to the systematic factor. Our construction is the only way to ensure stopping time property
while allowing different systematic factor loadings. To see this, suppose a contrario that we represent
default times in the following way τi = min{Yi, kiZ}, where the variables ki represent the sensitivity of name
i to factor Z, which is here a standard exponential variable. Then if ki < 1, we have that t/ki > t and
{kiZ ≤ t} = {Z ≤ t/ki} /∈ Ft. Hence, kiZ is not a stopping time, and by implication 1/ki is not a hazard
rate.

25

we start again with a sequence of d positive random variables, choose a new permutation Ψ

of the set {1, ..., d}, such that Ψ �= Φ, and proceed with the construction exactly as before.

Once again, note that such representation ensures in a clear and mathematically tractable

way that each of the {1, . . . , d} names in the economy can have a different dependence on one

of the d! systematic factors. This allows for an almost arbitrarily rich correlation structure,

certainly beyond what used to be implied out of market data before the crisis.

We can now present the definition of correlated default times.

Definition 2. Let U =
{
Yi, Z

1
i , . . . , Z

N
i : 1 ≤ i ≤ d

}
be the set of default times of all risk

factors, both idiosyncratic, Yi, and systematic Z1
i , . . . , Z

N
i , conditionally independent of their

hazard rates. We write U(i) = {Yi, Z
j
k : Φ−1

j (i) ≤ k ≤ d, 1 ≤ j ≤ N} ⊆ U , where Φj(·) are
the permutations ordering (Zj

i.)
d
i=1, j = 1, ..., N and we define dependent default times as

τi = min
{
Yi, Z

1
i , . . . , Z

N
i

}
= min

ξ∈U(i)
ξ. (24)

The assumptions now guarantee that for all t < T conditional survival probabilities under

the natural filtration Ft are given by

P(ξ > T | Ft) = E
{
exp

(
−
ˆ T

t

λξ(s)ds

)
| Ft

}
{ξ>t} (25)

and

P(τi > T | Ft) = E


exp


−
ˆ T

t

∑
ξ∈U(i)

λξ(s)ds


 | Ft


 {τi>t}. (26)
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A simple factor model of joint defaults
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Chapter 4

4 Conclusions

The unprecedented lengthening of global central bank balance sheets during the recent crisis,

accompanied by the deterioration of average credit quality of collateral issuers and central

bank counterparties, has raised the issue of central bank finances, and in particular the

extent of credit risk accumulated on those balance sheets. Central banks are not normally

subject to capital requirements – and rightly so – as their losses, at least up to a point, do

not compromise their ability to deliver on their obligations and to conduct monetary policy.

Nevertheless, since the taking of credit risk necessarily entails an allocation of capital, it falls

more appropriately under the scope of fiscal policy executed with a democratic mandate. This

implies that in cases when a central bank must stand ready to take on credit exposure – e.g. to

contain a financial crisis – the natue and scope of this exposure should be well understood,

properly measured and managed. Over and above the requirements of transparency and

democratic accountability, central banks have a highly developed sensitivity for reputation

risk which is crucial for their ability to achieve policy goals and to “preach” credibly to the

rest of the world what is right and wrong. Mismanaging credit risk and suffering losses –

even small relative to balance sheet size – could be perceived as irresponsible or amateurish

and would thus weaken credibility.

In this paper we have argued that the conceptual framework underlying the risk manage-

ment solutions adopted (explicitly or implicitly) by central banks – i.e. the Gaussian latent

factor model – is inadequate to the study of default clustering in time. This is unfortunate,

since to the extent that a central bank conducts its policy operations through collateralized

lending, its residual credit risk is limited exactly to default clustering: when default of the

counterparty and the collateral issuer are very near in time (within collateral liquidation

horizon). We show that using the Gaussian latent factor model in the time domain to study

default times often produces unintuitive results. Moreover, in many practically relevant cases

there is no clear and stable link between the main model parameter – i.e. asset correlation –

and model outcomes (risk parameters), which is the main source of model risk. Obviously, no

model is ever correct in the sense of being a perfect description of reality – and nor should it

be – but given the special role played by central banks and their sensitivity to reputation risk,

it appears that exposure to credit risk should be well understood and exposure to model risk

minimized. We believe the Gaussian latent factor model, as applied to the measurement of

residual credit risk, is not compatible with these goals and propose a more intuitive solution.

Our model can be considered an extension of the Marshall and Olkin (1967) approach

in that it assumes that the default of each obligor in the portfolio can be triggered either

by an idiosyncratic factor or by any of the systematic factors – whichever hits first. To

intuitively capture dependence in the time domain, we redefine a systematic factor as a

27

sequence of increasing random variables, rather than a single random variable as per Marshall

and Olkin. The redefinition allows to capture the practically relevent feature of obligors’

different dependence on systematic factors without sacrificing the stopping time property of

default times (which in turn is a mathematical condition allowing us to use the powerhorse of

martingale methods). The model produces default clustering in time and features an intuitive

relation between a portfolio correlation parameter and the probability of joint defaults near in

time. The model is also straightforward to calibrate and implement. Finally, since the model

is cast in the martingale framework, it is consistent with approaches used for other asset

classes, and hence can potentially be used for integrated credit and market risk management

– both by central banks and more broadly within the private sector.
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