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Abstract

Abstract

The study considers a stochastic R&D process where the invented production tech-

nologies consist of a large number n of complementary components. The degree of

complementarity is captured by the elasticity of substitution of the CES aggregator

function. Drawing from the Central Limit Theorem and the Extreme Value Theory

we find, under very general assumptions, that the cross-sectional distributions of

technological productivity are well-approximated either by the lognormal, Weibull,

or a novel “CES/Normal” distribution, depending on the underlying elasticity of

substitution between technology components. We find the tail of the “CES/Normal”

distribution to be fatter than the Weibull tail but thinner than the Pareto (power

law) one. We numerically assess the rate of convergence of the true technological

productivity distribution to the theoretical limit with n.

Keywords: technological productivity distribution, stochastic R&D, CES, Weibull

distribution, lognormal distribution, limiting distribution

JEL Classification Numbers: E23, L11, O47
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1 Introduction

Most technologies used nowadays are complex in the sense that the production pro-

cesses (and products themselves) consist of a large number of components which

might interact with each other in complementary ways (e.g., Kremer, 1993; Blan-

chard and Kremer, 1997; Jones, 2011). Based on this insight, the current paper

assumes that the total productivity of any given technology is functionally depen-

dent on the individual productivities of its n components as well as the elasticity of

substitution between them, σ. This functional relationship is captured by the CES

aggregator function. The stochastic R&D process which invents new complex tech-

nologies is in turn assumed to consist in drawing productivities of the components

from certain predefined probability distributions (Jones, 2005; Growiec, 2008a,b,

2013).

Based on this set of assumptions, we obtain surprisingly general results regard-

ing the implied cross-sectional distributions of technological productivity. Namely,

drawing from the Central Limit Theorem and the Extreme Value Theory, we find

that if the number of components of a technology, n, is sufficiently large, these

distributions should be well approximated either by:

(i) the lognormal distribution – in the case of unitary elasticity of substitution

between the components (σ = 1);

(ii) the Weibull distribution – in the case of perfect complementarity between the

components (the “weakest link” assumption, σ = 0),

(iii) the Gaussian distribution – in the (empirically very unlikely) case of perfect

substitutability between the components (σ → ∞),

(iv) a novel “CES/Normal” distribution – in any intermediate CES case, paramet-

rized by the elasticity of substitution between the components (σ > 0, σ ̸= 1).

We then proceed to investigate the properties of the right tail of the“CES/Normal”

distribution. Computing its Pareto as well as Weibull tail index confirms that, if

3
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technology components are gross complements but are not perfectly complementary

(σ ∈ (0, 1)), the tail of this distribution decays faster than the tail of any Pareto

distribution (i.e., it does not follow a power law) but slower than the tail of any

Weibull distribution.

This theoretical contribution to the literature is supplemented with a series of

numerical simulations, allowing us to approximate the rate of convergence of the true

distribution to the theoretical limit with n. We also numerically assess the depen-

dence of the limiting “CES/Normal” distribution on the degree of complementarity

between the technology components, σ.

Potential empirical applications of the theoretical result, reaching beyond the

scope of the current paper, include providing answers to the following research ques-

tions:

• Does the “CES/Normal” distribution derived here (eq. (15)) fit the data on

firm sizes, sales, R&D spending, etc.? What is the implied value of σ?

• Do industries differ in terms of their technology complexity as captured by n?

• Do industries differ in terms of the complementarity of technology components

as captured by σ?

• How do firms’ optimal technology choices and production function aggregation

(Growiec, 2013) enter the picture?

The remainder of the paper is structured as follows. Section 2 sets up the model

and provides the principal analytical results. Section 3 presents the numerical re-

sults. Section 4 concludes.

4

2 The model

2.1 Distributions of complex technologies

The point of departure of the current model is the assumption that technologies,

invented within the R&D process, are inherently complex and consist of a large

number of complementary components. Formally, this can be written down in the

following way.

Assumption 1 The R&D process determines the productivity of any newly invented

technology Y as a constant elasticity of substitution (CES) aggregate over n ∈ N

independent draws Xi, i = 1, ..., n, from the elementary idea distribution F :

Y =




min{Xi}ni=1, θ = −∞,

(
1
n

∑n
i=1 X

θ
i

)1/θ
, θ ∈ (−∞, 0) ∪ (0, 1],

∏n
i=1 X

1/n
i , θ = 0.

(1)

The elementary distribution F is assumed to have a positive density on [w, v] and

zero density otherwise (where w ≥ 0 and v > w can be infinite). For the case

θ = −∞, it is also assumed to satisfy the condition of a regularly varying lower tail

(Leadbetter et al., 1983):

lim
p→0+

F(w + px)

F(w + p)
= xα (2)

for all x > 0 and a certain α > 0. For the cases θ ∈ (−∞, 0) ∪ (0, 1], it is

assumed that EXθ
i < ∞ and D2(Xθ

i ) < ∞. For the case θ = 0, it is assumed that

E lnXi < ∞ and D2(lnXi) < ∞.

The parameter n in the above assumption captures the number of constituent

components of any given (composite) technology, and thus measures the complexity

of any state-of-the-art technology. The substitutability parameter θ is related to

the elasticity of substitution σ via θ = σ−1
σ
, or σ = 1

1−θ
. The case θ < 0 captures

the case where the components of technologies are gross complements (σ ∈ [0, 1)),

whereas θ ∈ (0, 1] implies that they are gross substitutes (σ > 1).

5



7NBP Working Paper No. 195

Chapter 2

technology components are gross complements but are not perfectly complementary

(σ ∈ (0, 1)), the tail of this distribution decays faster than the tail of any Pareto

distribution (i.e., it does not follow a power law) but slower than the tail of any

Weibull distribution.

This theoretical contribution to the literature is supplemented with a series of

numerical simulations, allowing us to approximate the rate of convergence of the true

distribution to the theoretical limit with n. We also numerically assess the depen-

dence of the limiting “CES/Normal” distribution on the degree of complementarity

between the technology components, σ.

Potential empirical applications of the theoretical result, reaching beyond the

scope of the current paper, include providing answers to the following research ques-

tions:

• Does the “CES/Normal” distribution derived here (eq. (15)) fit the data on

firm sizes, sales, R&D spending, etc.? What is the implied value of σ?

• Do industries differ in terms of their technology complexity as captured by n?

• Do industries differ in terms of the complementarity of technology components

as captured by σ?

• How do firms’ optimal technology choices and production function aggregation

(Growiec, 2013) enter the picture?

The remainder of the paper is structured as follows. Section 2 sets up the model

and provides the principal analytical results. Section 3 presents the numerical re-

sults. Section 4 concludes.

4

2 The model

2.1 Distributions of complex technologies

The point of departure of the current model is the assumption that technologies,

invented within the R&D process, are inherently complex and consist of a large

number of complementary components. Formally, this can be written down in the

following way.

Assumption 1 The R&D process determines the productivity of any newly invented

technology Y as a constant elasticity of substitution (CES) aggregate over n ∈ N

independent draws Xi, i = 1, ..., n, from the elementary idea distribution F :

Y =




min{Xi}ni=1, θ = −∞,

(
1
n

∑n
i=1 X

θ
i

)1/θ
, θ ∈ (−∞, 0) ∪ (0, 1],

∏n
i=1 X

1/n
i , θ = 0.

(1)

The elementary distribution F is assumed to have a positive density on [w, v] and

zero density otherwise (where w ≥ 0 and v > w can be infinite). For the case

θ = −∞, it is also assumed to satisfy the condition of a regularly varying lower tail

(Leadbetter et al., 1983):

lim
p→0+

F(w + px)

F(w + p)
= xα (2)

for all x > 0 and a certain α > 0. For the cases θ ∈ (−∞, 0) ∪ (0, 1], it is

assumed that EXθ
i < ∞ and D2(Xθ

i ) < ∞. For the case θ = 0, it is assumed that

E lnXi < ∞ and D2(lnXi) < ∞.

The parameter n in the above assumption captures the number of constituent

components of any given (composite) technology, and thus measures the complexity

of any state-of-the-art technology. The substitutability parameter θ is related to

the elasticity of substitution σ via θ = σ−1
σ
, or σ = 1

1−θ
. The case θ < 0 captures

the case where the components of technologies are gross complements (σ ∈ [0, 1)),

whereas θ ∈ (0, 1] implies that they are gross substitutes (σ > 1).

5



Narodowy Bank Polski8

It should be noted at this point that, as argued repeatedly by Kremer (1993),

Jones (2011) and Growiec (2013), the gross complementarity case is much more

likely to provide an adequate description of real-world production processes than

the gross subsitutability case. The example of the explosion of the space shuttle

Challenger due to a failure of an inexpensive O-ring, put forward by Kremer (1993),

is perhaps the best possible illustration of the potentially complementary character

of components of complex technologies.

More precisely, the minimum case (a Leontief function) reflects the extreme case

where technology components are perfectly complementary, and thus the actual

productivity of a complex idea is determined by the productivity of its “weakest

link” (or “bottleneck”). This case was assumed in the earlier related contribution

by Growiec (2013). Although likely, this case need not hold exactly in reality, since

certain deficiencies of design can often be covered by advantages in different respects.

The more general CES case captures exactly this possibility (see also Klump et al.,

2012).

The limiting Cobb-Douglas case (θ = 0) is the threshold case delineating gross

complementarity from gross substitutability. As shown by Kremer (1993), this case

is already quite illustrative of effects of complementarity between components of

technologies.

Although technical in nature, restriction (2) imposed on elementary probability

distributions F can also be intepreted in economic terms. First, the support of the

distribution must be bounded from below by w, which means researchers are not

allowed to draw infinitely “bad” technologies (zero is a natural lower bound). This

rules out distributions defined on the whole R such as the Gaussian. Second, the

pdf of the distribution F cannot increase smoothly from zero at w; there must be a

jump. This means that the probability of getting a draw which is “as bad as it gets”

cannot be negligible, and this rules out a few more candidate distributions such as

the lognormal or the Fréchet. Third, the lowest possible value of the random variable

cannot be an isolated atom, which rules out all discrete distributions such as the

6

two-point distribution, the binomial, negative binomial, Poisson, etc. Yet, the set of

distributions satisfying (2) is still reasonably large. It includes, among others, the

frequently assumed Pareto, uniform, truncated Gaussian, and Weibull distributions

(cf. Growiec, 2013).

2.2 Normalized productivity

Based on the aforementioned setup, our objective is to derive the limiting distri-

bution of Y when the number of technology components n → ∞. For analytical

convenience, we denote µθ = EXθ
i and σθ =

√
D2(Xθ

i ) =
√

EX2θ
i − (EXθ

i )
2, for

any θ ∈ (−∞, 0) ∪ (0, 1]. For the limiting case of θ = 0, we define µ0 = E(lnXi)

and σ0 = E(lnXi)
2 − (E lnXi)

2.

The first observation is that by the Law of Large Numbers, Y itself will almost

surely converge to a degenerate distribution with n → ∞. Indeed, it is straightfor-

ward to see that in the perfect complementarity case (θ = −∞), min{Xi}ni=1
a.s.−→ w

where w is the lower bound of the underlying distribution F . Accordingly, in the

CES case (θ ∈ (−∞, 0)∪ (0, 1]),
(
1
n

∑n
i=1 X

θ
i

)1/θ a.s.−→ µ
1/θ
θ . Finally, in the multiplica-

tive case (θ = 0),
∏n

i=1 X
1/n
i

a.s.−→ eµ0 .

Hence, to obtain meaningful results related to productivity distributions, more

subtlety is needed. One ought to normalize the distributions with finite n appro-

priately in order to make use of the Central Limit Theorem as well as Extreme

Value Theory. In this regard, we shall base our considerations upon the following

definition:

Definition 1 The normalized productivity of any technology Y of complexity n ∈ N

and component complementarity θ = −∞ or θ = 0 is given by Ỹ (n):

Ỹ (n) =



min

{
Xi−w

F−1( 1
n)−w

}n

i=1

, θ = −∞,

(∏n
i=1

Xi

eµ0

) 1
σ0

√
n , θ = 0.

(3)

7
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In the case θ ∈ (−∞, 0) ∪ (0, 1] we define the shifted normalized productivity as

Ỹ (n, ω) =

(
1√
n

n∑
i=1

(
Xθ

i − µθ

σθ

)
+ ω

)1/θ

, (4)

where ω > 0 is a shift parameter. The normalized productivity Ỹ (n) is defined as

Ỹ (n) = lim
ω→∞

Ỹ (n, ω)− EỸ (n, ω)

DỸ (n, ω)
. (5)

The shift parameter ω > 0 does not play any role in the economic interpretation of

our results, but considering it “sufficiently large” will be a useful tool in the proofs

of our propositions.

Note that this normalization procedure, while necessary in the subsequent deriva-

tions, does not have a direct economic interpretation because the underlying stochas-

tic R&D process is assumed to consist in inventing technologies with a fixed number

of components n.

2.3 Limiting productivity distributions

Letting the technology complexity n be arbitrarily large, we obtain the following

results:

Proposition 1 If Assumption 1 holds with θ = −∞ (σ = 0), then as n → ∞,

Ỹ (n) converges in distribution to the standard Weibull distribution with the shape

parameter α:

P (Ỹ (n) ≥ x) = [1−F (xpn + w)]n
d−→ e−xα

, (6)

where w = inf{x ∈ R : F(x) > 0} and pn = F−1
(
1
n

)
− w.

Proposition 2 If Assumption 1 holds with θ = 0 (σ = 1), then as n → ∞, Ỹ (n)

converges in distribution to the standard lognormal distribution:

P (Ỹ (n) ≥ x)
d−→ 1− Φ(ln x). (7)

8

Proposition 3 If Assumption 1 holds with θ ∈ (−∞, 0) ∪ (0, 1] (σ ∈ (0, 1) ∪

(1,+∞]), then as n → ∞, Ỹ (n, ω) converges in distribution to the “CES/Normal”

distribution with complementary cdf:

P (Ỹ (n, ω) ≥ x)
d−→ Φ(xθ − ω), θ ∈ (−∞, 0), (8)

P (Ỹ (n, ω) ≥ x)
d−→ 1− Φ(xθ − ω), θ ∈ (0, 1], (9)

and thus the following pdf:

g(x;ω) =
|θ|√
2π

xθ−1e−
(xθ−ω)2

2 , x > 0. (10)

Hence, the class of “CES/Normal” distributions encompasses the Gaussian distri-

bution for the limiting case θ = 1 where the technology components are perfectly

substitutable.

Proof of Propositions 1–3. For the case θ = −∞ the proposition follows directly

from the Fisher–Tippett–Gnedenko extreme value theorem applied to the distribu-

tion F (Theorem 1.1.3 in de Haan and Ferreira, 2006, rephrased so that it captures

the minimum instead of maximum). From the theorem specifying the domain of at-

traction of the Weibull distribution (Theorem 1.2.1 in de Haan and Ferreira, 2006;

Section 1.3 in Kotz and Nadarajah, 2000), we obtain the necessary and sufficient

conditions for the complementarity mechanism to work. The implied parameter α

is found to be unitary for a wide range of distributions F (Growiec, 2013), including

the Pareto, uniform, and truncated Gaussian distribution.

With θ = 0, by the Central Limit Theorem the distribution of Ỹ (n) converges

in distribution with n → ∞ to the lognormal distribution:

ln Ỹ (n) =
√
n

( 1
n

∑n
i=1 lnXi − µ0

σ0

)
d−→ N(0, 1) (11)

and hence

Ỹ (n) =

(
n∏

i=1

Xi

eµ0

) 1
σ0

√
n

d−→ logN(0, 1). (12)

9
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n
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σ0
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and hence
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n∏

i=1

Xi

eµ0

) 1
σ0

√
n

d−→ logN(0, 1). (12)
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For the case θ ∈ (−∞, 0)∪ (0, 1], we may use the Central Limit Theorem again,

obtaining: (
1√
n

n∑
i=1

(
Xθ

i − µθ

σθ

)
+ ω

)
→ N(ω, 1). (13)

Note that by assumption, all Xi ≥ 0 and thus 1√
n

∑n
i=1

(
Xθ

i −µθ

σθ

)
≥ −

√
nµθ

σθ
for

every finite n. There does not exist any ω > 0 such that 1√
n

∑n
i=1

(
Xθ

i −µθ

σθ

)
≥ −ω

uniformly for all n ∈ N, though.1

The limiting distribution takes the following form. For y > 0 and with θ < 0,

Ỹ (n, ω) converges in distribution to Ȳ (ω) with cdf:

G(y;ω) = lim
n→∞

P (Ỹ (n, ω) ≤ y) = 1− Φ̄(yθ − ω), (14)

where the cdf of the truncated normal distribution Φ̄(yθ − ω) = Φ(yθ−ω)−Φ(−ω)
1−Φ(−ω)

≈

Φ(yθ − ω) if ω is sufficiently large and thus the truncation hurts a negligible part of

the distribution.

Upon differentiation, we obtain the following pdf of the limiting “CES/Normal”

distribution, parametrized by θ < 0, µθ > 0 and σθ > 0:

g(y;ω) =
−θ√
2π

yθ−1

1− Φ(−ω)
e−

(yθ−ω)2

2 ≈ −θ√
2π

yθ−1e−
(yθ−ω)2

2 . (15)

The final approximation becomes arbitrarily good for sufficiently large ω.

Conversely, for y > 0 and with θ ∈ (0, 1], Ỹ (n, ω) converges in distribution to

Ȳ (ω) with cdf:

G(y;ω) = lim
n→∞

P (Ỹ (n, ω) ≤ y) = Φ̄(yθ − ω) ≈ Φ(yθ − ω). (16)

1In the unlikely case where the latter inequality fails, we replace 1√
n

∑n
i=1

(
Xθ

i −µθ

σθ

)
= 1 to

keep our results in the space of real numbers. Observe, however, that if ω is sufficiently large, (a)

the probability of such failure is very low for all n because Xi ≥ 0 are independently drawn from

a distribution which has positive density over a non-degenerate interval, and (b) for any n ∈ N,

this probability tends to 0 as ω → ∞. Hence such a replacement does not affect the subsequently

derived shape of the limiting distribution.
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Taking the limit of ω → ∞, we obtain the “CES/Normal distribution” of normalized

technological productivity:

Ỹ = lim
ω→∞

Ȳ (ω)− EȲ (ω)

DȲ (ω)
.� (18)

2.4 Tail properties

To assess the right tail properties of the distributions obtained above, we shall com-

pare their tail decay to the Pareto and Weibull distributions. Such comparisons will

allow us to understand if, under any parameterization, the “CES/Normal” distri-

bution allows for approximately power-law decay (Pareto distribution; fat tails), or

Weibull-type exponential decay (thin tails). This is interesting because although the

prevalence of fat-tailed distributions has been documented, most notably, for firm

sizes, as well as for a wide array of other phenomena in economics and finance (e.g.,

firm sales, R&D spending, asset returns, etc.; see Fu et al., 2005; Gabaix, 2009),

clearly most economic variables don’t have this property.2 The distribution of tech-

nological productivity, with which we deal here and which has not been studied in

the earlier literature, is in turn one of the important primitives for the firm size dis-

tribution. Hence, if we obtain that, from the theoretical point of view, technological

productivity distributions should be expected to be fat-tailed as well, that would

constitute an important partial explanation of this regularity. If not, on the other

hand, then the emergence of power law tails in firm size distributions must be driven

by other phenomena.

In line with the latter possibility, we find that for θ ∈ (0, 1] (when components

of technologies are gross substitutes) the “CES/Normal” distribution decays asymp-

totically to the thin-tailed Weibull distribution, whereas for θ < 0 (when these

2In line with, i.a., the ubiquitous assumption of Gaussian error terms in econometrics.
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Ỹ = lim
ω→∞
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components are gross complements), it decays faster than the Weibull distribution

but slower than a power law (see Table 1).3

Formally, the Pareto tail index ξ (capturing power law decay) is defined according

to the following formula:

lim
x→+∞

1−F(λx)

1−F(x)
= λ− 1

ξ , λ > 0. (19)

By construction, for any Pareto(ϕ) distribution, the tail index is equal to ξ = 1/ϕ.

In particular, for the celebrated Zipf’s law (e.g., Gabaix, 1999, 2009), ϕ = 1 and

thus ξ = 1.

The Weibull tail index ψ (capturing exponential decay), on the other hand, is

obtained as follows:

lim
x→+∞

ln(1−F(λx))

ln(1−F(x))
= λ

1
ψ , λ > 0. (20)

Again by construction, for any Weibull(α) distribution, this tail index is equal to

ψ = 1/α. In particular, the exponential distribution has α = 1 and thus ψ = 1.

Table 1: Tail index of the technological productivity distribution.

Case Pareto ξ Weibull ψ

Weibull (θ = −∞) 0 1/α

CES/Normal (gross complements, θ < 0) 0 +∞

Lognormal (θ = 0) 0 +∞

CES/Normal (gross substitutes, θ ∈ (0, 1]) 0 1/2θ

Pareto(ϕ) 1/ϕ +∞
Source: own computations.

3Curiously, for any finite truncation point ω with θ < 0, the sheer presence of truncation

generates power law decay of the limiting distribution, with an exponent −1/θ. The mechanism

driving this result is akin to the “reflective lower bound” model of power laws, cf. Gabaix (1999).

Since the truncation is an artifact of the method of proof and not the underlying economic model,

we set this case aside. Details are available upon request.

12

Please note that, regarding both tail indexes, a zero result indicates that a given

distribution decays faster (has a thinner tail) than any Pareto or Weibull distri-

bution, respectively. Conversely, an infinite limit implies that a given distribution

decays slower. For example, since the Pareto(ϕ) decays slower than the Weibull, the

Weibull distribution has a zero Pareto tail index and the Pareto distribution has an

infinite Weibull tail index. The lognormal distribution decays faster than the Pareto

but slower than the Weibull.

For the novel “CES/Normal” distribution we find that gross complementarity

of components of technologies gives rise to relatively fatter tails than gross substi-

tutability, but these tails are nevertheless never sufficiently fat to generate a power

law. Moreover, in the empirically less likely case of gross substitutability of tech-

nological components, the tail of the resulting distribution is just as thin as in the

Weibull case.

13
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Chapter 3

3 Numerical results

The most important advantage of above analytical results is that they provide the-

oretical limits for the distributions of complex technologies, regardless of the un-

derlying distribution of technology components F . Unfortunately, these limits are

exactly correct only if the technologies are infinitely complex, though. It is therefore

of great importance to assess the pace of convergence of true distributions of tech-

nological productivity to the limiting ones with the number of components, n, and

to estimate the magnitude of departures from the theoretical limit which could be

expected if n is in fact finite. To this end, we have carried out a series of numerical

computations.

At this point, observe that not only the number of components n but also the

assumed shape of the sampling distribution F has an impact of the shape of the

resultant aggregate technological productivity. Moreover, assumptions on F can

also affect the pace of convergence of the resulting distribution to its theoretical

limit with n. Assessing these impacts quantitatively is left for further research.

Another interesting issue to be handled here is the dependence of the limiting

“CES/Normal” distribution on the complementarity parameter θ (or equivalently,

the elasticity of substitution, σ). This will be assessed numerically as well. The

current section will first describe our numerical framework and then move on to an

outline of the results.

3.1 Generating the distribution of Y

The preliminary step of our numerical exercises consists in generating a sample of n

units, randomly and independently drawn from the sampling distribution F . For the

sake of simplicity, we assume it to be a uniform distribution defined on an interval

in the positive domain (which is a particular instance of a distribution satisfying

Assumption 1):

Xi ∼ U [a, b], b > a > 0, i = 1, 2, ..., n. (21)

14

Next, we compute the normalized CES aggregate of these random draws according

to equation (3) if θ = 0 or θ = −∞, and equation (5) otherwise. Apart from the two

aforementioned limiting cases, we consider four arbitrary values of the complemen-

tarity parameter θ. For a fixed sample size of n, we repeat this procedure m = 10000

times and plot the empirical histogram of Ỹ (n). The histograms of the generated

variables are presented in Figure 1. These histograms (with B = 100 bins) are then

transformed into empirical pdfs.

Figure 1: Histograms of simulated Ỹ (n).
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Notes. Parameter values used to produce this figure: n = 1000, a = 0.5, b = 2.

When computing equation (5), the shift parameter ω was set at ω = 8 · µθ.

Source: own computations.

Figure 1 does not yet confirm the trend of increasing skewness of the empirical

distribution when θ declines towards−∞, a result which can be inferred from looking

at the pdf of the limiting “CES/Normal” distribution. This is because the pace of

convergence of the tail of the distribution with n to the asymptotical limit tends to

fall as θ declines towards −∞.
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3.2 The lognormal and Weibull limits

The second step of our numerical exercise consists in assessing the convergence to

the theoretical lognormal limit for the case θ = 0 as well as the theoretical Weibull

limit obtained when θ = −∞. We see that the theoretical distributions indeed

align with the simulated data almost perfectly when n = 1000.4 These results are

contained in Figures 2–3.

Figure 2: Simulated pdf of Ỹ (n) vs. the lognormal limit for n → ∞. The right

panel zooms on the right tail in log-log coordinates.
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Note. Parameter values used to produce this figure: n = 1000, a = 0.5, b = 2.

Source: own computations.

4Nonlinear least squares fit of the Generalized Gamma distribution (a three-parameter class

of distributions whose parametric form is somewhat similar to the “CES/Normal” distribution) is

included for comparison. Clearly, the fit of this distribution to our simulated data is quite good,

but not as good as of the theoretically derived “CES/Normal distribution”.

16

Figure 3: Simulated pdf of Ỹ (n) vs. the Weibull limit for n → ∞. The right panel

zooms on the right tail in log-log coordinates.
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Source: own computations.

3.3 The “CES/Normal” limit

Having sorted out the two limiting cases, we shall now address the pace of conver-

gence to the theoretical formula for the limiting “CES/Normal” distribution under

intermediate values of the complementarity parameter, θ ∈ (−∞, 0) ∪ (0, 1]. As

it can be seen on Figure 4, the theoretical “CES/Normal” limit is almost entirely

converged upon if n = 1000; it is clear that none of the seemingly similar (and more

generously parametrized) distributions can be fitted to the simulated data equally

well.

This numerical exercise confirms that (a) the Weibull distribution misses the

shape of the pdf completely when θ is finite, and (b) all other considered distributions

tend to underestimate the probabilities of tail events. In fact, the actual limiting

distribution is much more skewed than the estimated pdfs.

Regarding Figure 4, please note the following difference between the “CES/Nor-
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Having sorted out the two limiting cases, we shall now address the pace of conver-

gence to the theoretical formula for the limiting “CES/Normal” distribution under

intermediate values of the complementarity parameter, θ ∈ (−∞, 0) ∪ (0, 1]. As

it can be seen on Figure 4, the theoretical “CES/Normal” limit is almost entirely

converged upon if n = 1000; it is clear that none of the seemingly similar (and more

generously parametrized) distributions can be fitted to the simulated data equally

well.

This numerical exercise confirms that (a) the Weibull distribution misses the

shape of the pdf completely when θ is finite, and (b) all other considered distributions

tend to underestimate the probabilities of tail events. In fact, the actual limiting

distribution is much more skewed than the estimated pdfs.

Regarding Figure 4, please note the following difference between the “CES/Nor-
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Figure 4: Simulated pdf of Ỹ (n) vs. the “CES/Normal” limit (eq. (15)) for n → ∞.

The right panel zooms on the right tail in log-log coordinates.
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Note. Parameter values used to produce this figure:

n = 1000, a = 0.5, b = 2, θ = −4.

Source: own computations.

mal” distribution and the “CES/Normal Free” case. The first one takes the (known)

theoretical values of mean and variance (µθ, σθ) as well as θ itself as given, whereas

the latter takes them as free parameters to be estimated from the (simulated) data by

nonlinear least squares. We see that improving the fit in the body of the distribution

of the finite CES aggregate (n = 1000 < ∞) heavily compromises the quality of fit

in the right tail.

3.4 Pace of convergence as n → ∞

The next step consists in repeating the numerical experiment for a fixed value of

θ ∈ (−∞, 0) ∪ (0, 1] but various sample sizes n to assess the pace of convergence

of the resultant distribution to the theoretical “CES/Normal” limiting distribution

(eq. (15)).
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Figure 5: Convergence of Ỹ (n) to the CES/Normal limit (eq. (15)) for different

values of n. Assumed parameter values: a = 0.5, b = 2, θ = −4.
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In Figure 5 we observe that as n increases, the resulting distribution gradually

evolves from the assumed uniform distribution of Xi to the limiting “CES/Normal”

distribution, derived in the previous section of the current study. In the body of the

distribution, convergence is rather fast and is largely done already for n = 16. The

tails of the distribution are however much thinner for small n than in the limiting

distribution. This mirrors the known fact that tails of a distribution need much more

time to take their final shape, because they are by definition capturing rare events.

Even for n = 2000, although the fit in the body is already perfect, no observations
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have been found for tail events exceeding 6.5

3.5 Dependence of the “CES/Normal” distribution on θ

The final step of the numerical exercise is to illustrate the dependence of the limiting

“CES/Normal” distribution on the complementarity parameter θ, with special refer-

ence to the tail. As illustrated by Figure 6, we find that the larger is complementarity

between technology components, the fatter the tail of the limiting distribution.6

Figure 6: Convergence of Ỹ (n) to the CES/Normal limit (eq. (15)) for different

values of θ. The right panel zooms on the right tail in log-log coordinates.
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Source: own computations.

5Note that the support of the underlying distribution F is bounded in this numerical exercise.
6Please note that the tail of the distribution with greatest complementarity is probably misspec-

ified due to numerical error, likely to bias the results particularly strongly when we take numbers

to so large negative powers as -100.
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4 Conclusion

The objective of the current paper has been to identify the shape of cross-sectional

distributions of technological productivity in a world where technologies are complex

and consist of a large number of complementary components. Drawing from the

Central Limit Theorem and Extreme Value Theory, we find that if the number of

components of a technology, n, is sufficiently large, these distributions should be

well approximated either by:

(i) the lognormal distribution – in the case of unitary elasticity of substitution

between the components (σ = 1, θ = 0);

(ii) the Weibull distribution – in the case of perfect complementarity between the

components (the “weakest link” assumption, σ = 0, θ = −∞),

(iii) the Gaussian distribution – in the (empirically very unlikely) case of perfect

substitutability between the components (σ = +∞, θ = 1),

(iv) a novel “CES/Normal” distribution – in any intermediate CES case, paramet-

rized by the elasticity of substitution between the components (σ > 0, σ ̸= 1

or equivalently θ < 1, θ ̸= 0).

We find that, as long as technology components are gross complements, the

“CES/Normal” distribution has a tail which is fatter than the Weibull one but is

still not a fat tail: it decays unambiguously faster than the power law.

Our theoretical contribution to the literature has been supplemented with a

series of numerical simulations, allowing us to approximate the rate of convergence

of the true distribution to the theoretical limit with n. We have also numerically

assessed the dependence of the limiting “CES/Normal” distribution on the degree of

complementarity between the technology components, σ (or equivalently, θ).

What could still be done as an extension to the current study, is to:

• discuss the implied moments of the limiting distributions and check if there is

convergence in distribution when θ → 0 or θ → −∞,
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• provide approximate theoretical results on the pace of convergence of n-unit

technologies to the “CES/Normal”, Weibull or lognormal limit, and most im-

portantly to

• verify the empirical relevance of “CES/Normal” distributions. Do we find it in

data on firm sizes, sales, R&D spending, etc.? What is the implied degree of

complementarity between the technology components, σ?

We leave these interesting questions for further research.
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