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Abstract

1 Introduction

The rise in wealth and income inequality worldwide has been one of the most

hotly discussed topics in academic and policy circles.1 A significant step towards

understanding the patterns in the data is the vast literature on wage inequality

and the polarization of the U.S. labor market.2 Less understood thus far has been

inequality in capital income generated in financial markets. An important com-

ponent of total income, capital income is by far the most unequally distributed

part of household income in the United States, and it exhibits a strong upward

trend in polarization.3

A growing literature in economics and finance analyzes household behavior in

financial markets and especially its impact on capital income.4 Some of the robust

general trends are a growing non-participation in risky investments and a decline

in trading activity. Anecdotal evidence suggests that an ever present and growing

disparity in investor sophistication, or access to investment technologies, might

be partly responsible for these trends. An early articulation of this argument is

Arrow (1987) and recently Piketty (2014). However, micro-founded, quantitative

treatments of such mechanisms are missing.

We propose such a micro-founded, general equilibrium theory of portfolio

choice that can go a long way in explaining the recent growth in capital income

inequality, qualitatively and quantitatively. The friction in our model is het-

erogeneity in investor sophistication modeled as investors’ ability to obtain and

process information about their investments.

1For a summary, see Piketty and Saez (2003); Atkinson, Piketty, and Saez (2011). A
comprehensive discussion is also in the 2013 Summer issue of the Journal Economic Perspectives
and Piketty (2014).

2Representative contributions to this line of research include Katz and Autor (1999); Ace-
moglu (1999); Autor, Katz, and Kearney (2006, 2008); and Autor and Dorn (2013).

3In the U.S. Survey of Consumer Finances, approximately 34% of households participate in
financial markets. Capital income accounts for approximately 14% of this group’s total income,
ranging from 35% to less than 1%. Between 1989 and 2013, the ratio of capital incomes for
the top 10% of the financial wealth distribution relative to the bottom 50% increased from 61
to 129.

4Most recently represented by Calvet, Campbell, and Sodini (2007) and Chien, Cole, and
Lustig (2011).

1

Abstract

We study the determinants of capital income inequality in a general equi-
librium portfolio choice model with endogenous information acquisition.
The key elements of the model are heterogeneity in investor sophistication
and in asset riskiness. The model implies capital income inequality that
increases with aggregate information technology, given initial heterogene-
ity in sophistication. The main mechanism in the model works through
endogenous investor participation in assets with different risk. Across as-
sets, the pattern of expansion of sophisticated investors and retrenchment
of unsophisticated investors, unique to our model, is consistent with as-
set ownership dynamics for the U.S. Quantitatively, the model generates a
path for capital income inequality that matches the evolution of inequality
in U.S. data.
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ity in sophistication. The main mechanism in the model works through
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To explore the consequences of this friction for the dynamics of capital income

inequality, we link initial sophistication to initial wealth. Intuitively, when infor-

mation about financial assets is costly to process, individuals with different access

to financial resources also differ in terms of their access to information about their

financial investments. We take this point as a guiding principle in mapping in-

vestors in our model into two different wealth groups in the Survey of Consumer

Finances. Specifically, in the population of households who participate in finan-

cial markets, we use the average financial wealth of the 10% wealthiest investors

relative to that of the 50% poorest investors in 1989 as a proxy for initial rela-

tive investor sophistication. In the presence of this initial inequality, subsequent

symmetric growth in the capacity to process information for both investor types

disproportionately benefits the wealthy, more sophisticated investors. As a re-

sult, their wealth diverges from that of less wealthy investors, who have relatively

less information. General equilibrium forces amplify this effect, as asset prices

push the unsophisticated investors to allocate their investments away from the

allocations of sophisticated investors, which results in further divergence. This

process generates a path for capital income inequality that can quantitatively

match the evolution of inequality in the data. A feedback mechanism, through

which changes in financial wealth feed into subsequent investor sophistication,

generates an endogenous evolution of capacity for each investor type that yields

an even larger increase in inequality.

Formally, we build a noisy rational expectations equilibrium portfolio choice

model with endogenous information acquisition and capacity constraints, in the

spirit of Van Nieuwerburgh and Veldkamp (2009, 2010), and Kacperczyk, Van

Nieuwerburgh, and Veldkamp (2013). We generalize this theory by allowing for

meaningful heterogeneity across both assets and investors. Our economy is pop-

ulated with one riskless asset and many risky assets that differ in the volatilities

of their fundamental payoffs. A continuum of investors have mean-variance pref-

erences with a common risk aversion coefficient. Investors learn about assets

payoffs from optimal private signals subject to an entropy constraint on informa-

2

tion (Sims (2003)). Based on the observed asset characteristics, investors decide

which assets to learn about, how much information about them to process, and

how much wealth to invest. A fraction of investors are endowed with high capac-

ity for processing information and the remaining ones have lower, yet positive

capacity. Thus, everyone in the economy has the ability to learn about assets

payoffs, but to different degrees.

Our methodological contribution is to solve for the equilibrium allocation of

information capacity across assets and investors. In our solution, both the num-

ber of assets that are being learned about and the mass of investors learning

about each asset are determined endogenously. In contrast, previous work as-

sumes that all investors with positive capacity learn about the same asset(s).

Since learning about an asset affects the holdings of that asset, the endogenous

allocation of investor learning allows us derive rich asset-level predictions, and

it is critical to our test of the information mechanism. In equilibrium, learning

at the investor level exhibits specialization, preference for volatility, and strategic

substitutability. However, learning at the aggregate level exhibits diversification.

In particular, we derive a threshold for the aggregate capacity in the economy

below which all investors learn only about the most volatile asset. Above this

threshold, investors expand their learning towards lower and lower volatility as-

sets.

We provide an analytical characterization of the model’s predictions, which we

then quantify in the parameterized model. First, in the cross-section of investors,

sophisticated investors generate relatively higher capital income due to three

forces: (i) they hold larger portfolios of risky assets on average; (ii) they tilt their

portfolios towards assets with higher average excess returns; and (iii) they better

adjust their portfolios, state by state, towards assets with higher realized excess

returns. Of the three forces, the last effect is by far the most important factor

in generating capital income differences. Moreover, these forces are amplified by

the general equilibrium effect, which pushes unsophisticated investors to reduce

their exposure to assets with large sophisticated ownership, due to the impact of

3
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3
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sophisticated ownership on prices.

Second, symmetric growth in capacity, interpreted as a general progress in

information-processing technologies, disproportionately benefits sophisticated in-

vestors. It results in a relative increase in asset ownership by sophisticated in-

vestors and an increase in the polarization of capital income. It also generates a

robust, unique way in which investors change the composition of their portfolios.

Sophisticated investors start with large shares in the most volatile assets, and

subsequently continue to expand to lower-volatility assets. At the same time, un-

sophisticated investors retrench from risky assets and hold safer assets. Growth

in aggregate capacity also leads to lower average market returns and higher asset

turnover. Overall, these results play an important role in that they cut against

plausible alternative explanations for the observed growth in inequality, such as

models with heterogeneous risk aversion or differences in trading costs.

To evaluate the quantitative fit of our theoretical predictions to the data,

we parameterize the model using U.S. data spanning the period from 1989 to

2012. We use micro-level data on stocks and aggregate retail and institutional

portfolios, which allows us to pin down details of the stochastic structure of

assets payoffs and information environment. In our parametrization, we set the

parameters based on the first half of our sample period, and treat the second

sub-period data moments as a testing ground for the dynamic effect coming

from general (rather than investor-specific) progress in information technology.

We show that the analytical predictions from the model are qualitatively and

quantitatively borne out in the data. First, sophisticated investors, on average,

exhibit higher rates of return that are approximately 2.8 percentage points per

year higher in the model, compared to a 3 percentage point difference in the

data. Second, we show that in response to symmetric growth in technology,

sophisticated investors increase their ownership of equities by first entering the

most volatile stocks and subsequently moving into stocks with medium and low

volatility–a pattern we also document in the data. At the same time, sophisti-

cated investors’ entry into equity induces higher asset turnover, in magnitudes

4

consistent with the data, both in the time series and in the cross-section of stocks.

More broadly, our mechanism provides an explanation for the growing pres-

ence of sophisticated, institutional investors in risky asset classes, over the last

20-30 years (Gompers and Metrick (2001)). Our mechanism also fits well with

a puzzling phenomenon of the last two decades of a growing retrenchment of

retail investors from trading and stock market ownership in general (Stambaugh

(2014)),5 even though direct transaction costs, if anything, have fallen signifi-

cantly. We document such avoidance of risky assets both for direct stock owner-

ship and ownership of intermediated products, such as actively managed equity

mutual funds: Direct equity ownership has been falling steadily over the last 30

years, while flows into equity mutual funds coming from less sophisticated, retail

investors began their decline and turned negative starting from the early 2000s.

Our paper spans three strands of literature: household finance, rational inat-

tention, and income inequality. While some of our contributions are specific to

each individual stream, a unique feature of our work is that we integrate the

streams into one unified framework.

Within the household finance literature, the main ideas that we develop build

upon an empirical literature on limited capital market participation, growing in-

stitutional ownership, household trading decisions, and investor sophistication6.

While the majority of the studies attribute limited participation rates to differ-

ences in market participation costs7 or preferences, we relate investment decisions

to differential access to information across investors.

With respect to the literature on endogenous information choice, our work is

broadly related to Sims (1998, 2003). More germane to our application are the

5We view the Stambaugh (2014) study as complementary to ours. It aims to explain
the decreasing profit margins and activeness of active equity mutual funds using exogenously
specified decline in individual investors’ stock market participation. In contrast, our study
endogenizes such decreasing participation as part of the mechanism which explains income
inequality.

6For studies on participation, see Mankiw and Zeldes (1991); Ameriks and Zeldes (2001);
Gompers and Metrick (2001) illustrate trends in ownership; Barber and Odean (2001), Camp-
bell (2006), Calvet, Campbell, and Sodini (2009b, 2009a), Guiso and Sodini (2012) analyze
household trading decisions; Barber and Odean (2000, 2009), Calvet, Campbell, and Sodini
(2007), Grinblatt, Keloharju, and Linnainmaa (2012) examine investor sophistication.

7See Gomes and Michaelides (2005), Favilukis (2013)
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models of costly information of Van Nieuwerburgh and Veldkamp (2009, 2010),

Mondria (2010), and Kacperczyk, Van Nieuwerburgh, and Veldkamp (2013),

from which we depart by exploring the role of asset and investor heterogeneity

both analytically and quantitatively. Allowing for such non-trivial heterogeneity

produces very different implications for portfolio decisions, asset prices, and the

evolution of inequality over time.

The literature on income inequality dates back to the seminal work by

Kuznets (1953) and has been subsequently advanced by the work of Piketty

(2003), Piketty and Saez (2003), Alvaredo, Atkinson, Piketty, and Saez (2013),

Autor, Katz, and Kearney (2006), and Atkinson, Piketty, and Saez (2011). In

contrast to our paper, a vast majority of that literature focuses on income earned

in labor market, and does not relate inequality to heterogeneity in the informa-

tional sophistication of investors.

The closest paper in spirit to ours is Arrow (1987), who also considers infor-

mation differences as an explanation of the income gap. However, his work does

not consider endogenous information acquisition and is not a general equilibrium

analysis of the economy with heterogeneously informed agents and many assets.

Both of these elements are crucial for our results, especially to establish the va-

lidity of our mechanism. Another related paper is that of Peress (2004), who

examines the role of wealth and decreasing absolute risk aversion in investors’

acquisition of information and participation in one risky asset. While some el-

ements of his model are common, his focus is not on capital income inequality.

Moreover, we show that heterogeneity across assets and investors is a crucial

component to quantitatively capture the evolution of capital income inequality

and its underlying economic mechanism.

The rest of the paper proceeds as follows. Section 2 presents the theoretical

framework. Section 3 derives analytic predictions, which we subsequently take to

the data. Section 4 presents the parametrization of the model and quantifies the

information friction. Section 5 establishes our main results about the evolution

of capital income inequality, and Section 6 concludes. All proofs and derivations

6

are in the Appendix.

7

2 Theoretical Framework

A continuum of atomless investors of mass one, indexed by j, solve a sequence

of static portfolio choice problems, so as to maximize mean-variance utility over

wealth Wj in each period, given common risk aversion coefficient ρ > 0. The

financial market consists of one risk-free asset, with price normalized to 1 and

payoff r, and n > 1 risky assets, indexed by i, with prices pi, and independent

payoffs zi = z + εi, with εi ∼ N (0, σ2
i ). The risk-free asset has unlimited

supply, and each risky asset has fixed supply, x. For each risky asset, non-

optimizing “noise traders” trade for reasons orthogonal to prices and payoffs

(e.g., liquidity, hedging, or life-cycle reasons), such that the net supply available

to the (optimizing) investors is xi = x + νi, with νi ∼ N (0, σ2
x), independent of

payoffs and across assets.8

Prior to making the portfolio decision in each period, investors can choose

to obtain information about some or all of the risky assets. Mass λ ∈ (0, 1) of

investors have high capacity for obtaining information, K1, and are labeled so-

phisticated, and mass 1−λ have low capacity, K2, and are labeled unsophisticated,

with 0 < K2 < K1 < ∞. Information is obtained in the form of endogenously de-

signed signals on asset payoffs subject to this capacity limit. The signal choice is

modeled following the rational inattention literature (Sims (2003)), using entropy

reduction as a measure of the amount of information acquired.

2.1 Investor Optimization

Optimization occurs in two stages. In the first stage, investors solve their

information acquisition problem: they choose the distribution of signals to receive

in order to maximize expected utility, subject to their information capacity. In

the second stage, given the signals they receive, investors update their beliefs

about the payoffs and choose their portfolio holdings to maximize utility. We

8For simplicity, we introduce heterogeneity only in the volatility of payoffs, although the
model can easily accommodate heterogeneity in supply and in mean payoffs.
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first describe the optimal portfolio choice in the second stage, for a given signal

choice. We then solve for the ex-ante optimal signal choice.

Portfolio Choice Given equilibrium prices and posterior beliefs, each investor

solves

Uj = max
{qji}

n
i=1

Ej (Wj)−
ρ

2
Vj (Wj) (1)

s.t. Wj = r

(
W0j −

n∑

i=1

qjipi

)
+

n∑

i=1

qjizi, (2)

where Ej and Vj denote the mean and variance conditional on investor j’s in-

formation set, and W0j is initial wealth. Optimal portfolio holdings are given

by

qji =
µ̂ji − rpi
ρσ̂2

ji

, (3)

where µ̂ji and σ̂2
ji are the mean and variance of investor j’s posterior beliefs about

payoff zi.

Information Acquisition Choice Each investor can choose to receive a sep-

arate signal sji on each of the asset payoffs, zi. Given the optimal portfolio

choice, ex-ante, each investor chooses the optimal distribution of signals to max-

imize the ex-ante expected utility, E0j [Uj]. The choice of the vector of signals

sj = (sj1, ...sjn) about the vector of payoffs z = (z1, ..., zn), is subject to an infor-

mation capacity constraint, I (z; sj) ≤ Kj, where I (z; sj) denotes the Shannon

(1948) mutual information, quantifying the information that the vector of sig-

nals conveys about the vector of payoffs. The capacity constraint imposes a

limit on the amount of uncertainty reduction that the signals can achieve. Since

perfect information requires infinite capacity, each investor faces some residual

uncertainty about the realized payoffs.

For analytical tractability, we make the following assumption about the signal

structure:

Assumption 1. The signals sji are independent across assets.

9

Assumption 1 implies that the total quantity of information obtained by an

investor can be expressed as a sum of the quantities of information obtained

for each asset.9 The information constraint becomes
∑n

i=1 I (zi; sji) ≤ Kj, where

I (zi; sji) measures the information conveyed by the signal sji about the payoff

of asset i.

Investors decompose each payoff into a lower-entropy signal component and

a residual component that represents the information lost through this com-

pression: zi = sji + δji. For tractability, we introduce the following additional

assumption:

Assumption 2. The signal sji is independent of the data loss δji.

Since zi is normally distributed, Assumption 2 implies that sji and δji

are also normally distributed. By Cramer’s Theorem, sji ∼ N
(
z, σ2

sji

)
and

δji ∼ N
(
0, σ2

δji

)
with σ2

i = σ2
sji + σ2

δji.
10 Hence, posterior beliefs are normally

distributed random variables, independent across assets, with mean µ̂ji = sji

and variance σ̂2
ji = σ2

δji. Intuitively, a perfectly precise signal results in no in-

formation loss, such that posterior uncertainty is zero. Conversely, a signal that

consumes no information capacity discards all information about the realized

payoff, returning only the mean payoff, z, and leaving an investor’s posterior

uncertainty equal to her prior uncertainty.

Using this signal structure and the resulting distribution of expected excess

returns, the investor’s information problem becomes choosing the variance of

posterior beliefs to solve11

max
{σ̂2

ji}
n

i=1

n∑

i=1

Gi
σ2
i

σ̂2
ji

s.t.
n∏

i=1

σ2
i

σ̂2
ji

≤ e2Kj , (4)

where Gi represents the equilibrium utility gain from learning about asset i. This

9Assumption 1 is common in the literature. Allowing for potentially correlated signals
requires a numerical approach, and is beyond the scope of this paper.

10In general, the optimal signal structure may require correlation between the signal and
the data loss, but Assumption 2 maintains analytical tractability.

11The investor’s objective omits terms that do not affect the optimization. For detailed
derivations, see the Appendix.
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gain represents the shadow value of investing capacity in asset i in equilibrium.

It is a function of the distribution of expected excess returns only, and hence is

common across investor types and taken as given by each investor.

Lemma 1. The solution to the maximization problem (4) is a corner: each

investor allocates her entire capacity to learning about a single asset from the

set of assets with maximal utility gains. The posterior beliefs of an investor j,

learning about asset lj ∈ argmaxi Gi, are normally distributed, with mean and

variance given by

�µji =




sji if i = lj

z if i �= lj

and �σ2
ji =




e−2Kjσ2

i if i = lj

σ2
i if i �= lj.

(5)

Conditional on the realized payoff zi, the signal is normally distributed with mean

E (sji|zi) = z +
�
1− e−2Kj

�
εi, and variance V (sji|zi) =

�
1− e−2Kj

�
e−2Kjσ2

i .

The linear objective function and the convex constraint imply that each in-

vestor specializes, learning about a single asset. She always picks an asset with

the highest gain Gi and hence all assets that are learned about in equilibrium

will have the same gains. Which assets these are is endogenously determined in

equilibrium, which we characterize below.

2.2 Equilibrium

Equilibrium Prices Given the solution to each investor’s portfolio and infor-

mation problem, market clearing pins down equilibrium prices as linear combi-

nations of the shocks.

Lemma 2. The price of asset i is given by pi = ai + biεi − ciνi, with

ai =
1

r

�
z − ρσ2

i x

(1 + Φi)

�
, bi =

Φi

r (1 + Φi)
, ci =

ρσ2
i

r (1 + Φi)
, (6)

where Φi ≡ m1i

�
e2K1 − 1

�
+m2i

�
e2K2 − 1

�
is a measure of the information ca-

pacity allocated to learning about asset i in equilibrium, m1i ∈ [0, λ] is the mass

11

of sophisticated investors who choose to learn about asset i, and m2i ∈ [0, 1− λ]

is the mass of unsophisticated investors who choose to learn about asset i, with
∑n

i=1 m1i = λ and
∑n

i=1 m2i = 1− λ.

The price of an asset reflects the asset’s payoff and effective supply shocks,

with relative importance determined by mass of investors learning about the asset

through Φi, which is a measure of the total capacity that the market allocates

to learning about asset i in equilibrium. If there is no information capacity

(K1 = K2 = 0), or for assets that are not learned about (m1i = m2i = 0),

the price only reflects the noise trader shock νi. As the capacity allocated to

an asset increases, the asset’s price co-moves more strongly with the underlying

payoff (ci decreases and bi increases, though at a decreasing rate). In the limit,

as Kj → ∞, the price approaches the discounted realized payoff, zi/r, and noise

traders become irrelevant for price determination.

Equilibrium Learning Using equilibrium prices, we determine the assets

that are learned about and the mass of investors learning about each asset.

Without loss of generality, let assets be ordered such that σi > σi+1 for all

i ∈ {1, ..., n− 1}. Let ξi ≡ σ2
i (σ

2
x + x2) summarize the properties of asset i.

Then the gain from learning about asset i is

Gi =
1 + ρ2ξi

(1 + Φi)
2 . (7)

Lemma 3. The allocation of information capacity across assets, {Φi}
n
i=1, is

uniquely pinned down by:

Gi = max
h∈{1,...,n}

Gh, ∀i ∈ {1, ..., k} , (8)

Gi < max
h∈{1,...,n}

Gh, ∀i ∈ {k + 1, ..., n} , (9)

k∑

i=1

Φi = φ, (10)

where k denotes the endogenous number of assets with strictly positive learning

12
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mass in equilibrium, and φ ≡ λ
(
e2K1 − 1

)
+ (1− λ)

(
e2K2 − 1

)
is a measure of

the total capacity for processing information available in the economy.

In a symmetric equilibrium in which m1i = λmi and m2i = (1− λ)mi, where

mi is the total mass of investors learning about asset i, the masses {mi}
n
i=1 are

given by

mi =
ci1
Ck

+
1

φ

(
kci1
Ck

− 1

)
, ∀i ∈ {1, ..., k} , (11)

mi = 0, ∀i ∈ {k + 1, ..., n} , (12)

where ci1 ≡
√

1+ρ2ξi
1+ρ2ξ1

≤ 1, with equality iff i = 1, and Ck ≡
∑k

i=1 ci1.

The model uniquely pins down the total capacity allocated to each asset,

Φi, but it does not separately pin down m1i and m2i. Since the asset-specific

gain from learning is the same for both types of investors, we assume that the

participation of sophisticated and unsophisticated investors in learning about a

particular asset is proportional to their mass in the population. In turn, this

implies a unique set of masses {mi}
n
i=1, with Φi = φmi. Lemma 3 implies the

following three properties:

∂Gi

∂σ2
i

> 0,
∂Gi

∂mi

< 0,
∂Gi

∂φ
≤ 0.

Learning in the model exhibits preference for volatility (high σ2
i ) and strategic

substitutability (low mi). Furthermore, the value of learning about an asset also

falls with the aggregate amount of information in the market (φ), since higher

capacity overall increases the comovement between prices and payoffs, thereby

reducing expected excess returns.

For sufficiently low information capacity, all investors learn only about the

most volatile asset: for φ ∈ (0, φ1], m1 = 1 and mi = 0 for all i > 1, where

φ1 ≡

√
1 + ρ2ξ1
1 + ρ2ξ2

− 1. (13)

13

This threshold endogenizes single-asset learning as an optimal outcome for low

enough information capacity relative to asset dispersion. As the overall capacity

in the economy increases above this threshold, investors expand their learning

towards lower volatility assets. We define the thresholds for learning as follows:

Definition 1. Let φk be such that for any φ ≤ φk, at most the first k assets

are actively traded (learned about) in equilibrium, while for φ > φk, at least the

first k + 1 assets are actively traded in equilibrium.

Lemma 3 implies that the threshold values of aggregate information capacity

are monotonic: 0 < φ1 < φ2 < ... < φn−1. For sufficiently high information ca-

pacity, or alternatively, for low enough dispersion in assets volatilities, all assets

are actively traded, thus endogenizing the assumption employed in models with

exogenous signals.

In the presence of assets heterogeneity, even if many assets are learned about,

there is heterogeneity in the information capacity allocated to each of the actively

traded assets. Since the equilibrium gain is increasing in volatility and decreasing

in mi, the mass of investors learning about each asset is increasing in volatility.

In turn, this heterogeneity has implications for holdings, returns, and turnover

in the cross-section of assets. Additionally, if we let the degree of dispersion

in asset payoff volatilities vary, learning will also vary, with periods with high

dispersion being characterized by more concentrated learning, and periods with

low dispersion characterized by more diversified learning (and hence portfolios).

We next characterize learning in response to variation in the level of investor

capacities.

Lemma 4. Let φ ∈ (φk−1, φk] such that k > 1 assets are actively traded, and

consider an increase in φ such that k′ ≥ k is the new equilibrium number of

actively traded assets.

(i) There exists a threshold asset ı̄ < k′, such that mi is decreasing in φ for all

assets i ∈ {1, ..., ı̄}, and increasing in φ for all assets i ∈ {ı̄ + 1, ..., k′}.

(ii) The quantity (φmi) is increasing in φ for all assets i ∈ {1, ..., k′}.

14
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(iii) For an increase in φ generated by a symmetric growth, K ′
j = (1 + γ)Kj,

with γ ∈ (0, 1), the quantity mi(e
2Kj − 1), j ∈ {1, 2}, is increasing in

Kj at an increasing rate, for assets i ∈ {ı̄+ 1, ..., k′}. For assets i ∈

{1, ..., ı̄}, mi

(
e2K1 − 1

)
grows while mi

(
e2K2 − 1

)
grows by less, or even

falls if capacity dispersion is large enough.

Lemma 4 shows the diversification effect. First, as the amount of aggregate

capacity φ increases, the mass of investors learning about the most volatile assets

decreases as some investors shift to learning about less volatile assets. Neverthe-

less, the total amount of capacity allocated to each asset (φmi) strictly increases

for all assets that are actively traded. Lastly, symmetric growth in capacity

benefits the sophisticated group disproportionately: this group allocates more

capacity to each asset relative to the unsophisticated group, which in turn gen-

erates asymmetry in investment patters. In Section 3, we use these results to

derive analytic predictions on the patterns of investment in response to changes

in capacity.

15

3 Analytic Results

In this section, we present a set of analytic results implied by our information

friction, and we discuss how variations in the baseline framework affect these

results.

3.1 Model Predictions

Heterogeneous Capacity Our first set of analytic results show that hetero-

geneity in information capacity across investors drives capital income inequality

in the cross-section, through differences in average portfolio holdings and through

heterogeneity in the ability to adjust holdings to shocks. Let q1i and q2i denote

the average per-capita holdings of asset i for sophisticated and unsophisticated

investors, respectively. The per-capita asset-level holdings of sophisticated in-

vestors are

q1i =

(
zi − rpi
ρσ2

i

)
+mi

(
e2K1 − 1

)(zi − rpi
ρσ2

i

)
, (14)

and those of the relatively unsophisticated investors are defined analogously. Per-

capita holdings are a weighted average of the quantity that would be held under

the investors’ prior beliefs and a quantity that is increasing in the realized excess

return, scaled by an asset-specific term that captures the amount of information

capacity allocated to this asset by this investor group. For actively traded as-

sets, heterogeneity in capacities generates differences in ownership across investor

types at the asset level:

q1i − q2i = mi

(
e2K1 − e2K2

)(zi − rpi
ρσ2

i

)
. (15)

Integrating over the realizations of the state (zi, xi), the expected per-capita

ownership difference, as a share of the supply of each asset, is also asset specific,

E [q1i − q2i]

x
=

(
e2K1 − e2K2

) mi

1 + φmi

, (16)
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which implies that the portfolio of the unsophisticated investor is not simply a

scaled down version of the sophisticated portfolio. Rather, the portfolio weights

within the class of risky assets are also different for the two investor types.

Proposition 1 (Ownership). Let K1 > K2 and φk−1 ≤ φ < φk, such that the

first k > 1 assets are actively traded in equilibrium. Then, for i ∈ {1, ..., k},

(i) E [q1i − q2i] /x > 0;

(ii) E [q1i − q2i] /x is increasing in E [zi − rpi];

(iii) q1i − q2i is increasing in zi − rpi.

The average sophisticated investor (i) holds a larger portfolio of risky assets

on average, (ii) tilts her portfolio towards assets with higher expected excess

returns, and (iii) adjusts ownership, state by state, towards assets with higher

realized excess returns.

These results imply that sophisticated investors generate relatively higher

capital income, asset by asset, both on average and state by state. Let π1i and

π2i denote the capital income per capita from trading asset i, for sophisticated

and unsophisticated investors, respectively, with π1i ≡ q1i (zi − rpi) and π2i ≡

q2i (zi − rpi). For actively traded assets, heterogeneity in ownership generates

heterogeneity in capital income across investor types at the asset level:

π1i − π2i = mi

(
e2K1 − e2K2

) (zi − rpi)
2

ρσ2
i

. (17)

Integrating over the realizations of the state (zi, xi), the average capital income

difference is

E [π1i − π2i] =
1

ρ
mi

(
e2K1 − e2K2

)
Gi, (18)

where Gi is the gain from learning about asset i.

Proposition 2 (Capital Income). Let K1 > K2 and φk−1 ≤ φ < φk, such that

the first k > 1 assets are actively traded in equilibrium. Then, for i ∈ {1, ..., k},

(i) π1i − π2i ≥ 0, with strict inequality in states with non-zero realized excess

returns;

17

(ii) E [π1i − π2i] is increasing in asset volatility σi.

The average sophisticated investor realizes larger profits in states with pos-

itive excess returns, and incurs smaller losses in states with negative excess re-

turns, because her holdings, q1i, co-move more strongly with the realized state,

zi − rpi. Moreover, the biggest difference in profits, on average, comes from

investment in the more volatile, higher expected excess return assets.

The differential adjustment to shocks also implies differences in trading in-

tensity, which provides an additional set of testable implications. Formally, we

define the expected volume of trade in asset i as Vi ≡
∫
|qji,t − qji,t−1| dj. We can

decompose total volume into parts coming from four different investor groups,

by their level of sophistication and by whether or not they are learning about

the asset:12

Vi = λmiV1i + (1− λ)miV2i + λ (1−mi)V3i + (1− λ) (1−mi)V4i,

where V1i is the expected per capita volume of sophisticated investors actively

trading asset i, whose mass in the population is λmi; the remaining terms are

analogous. For each group g, volume is proportional to the group’s cross-sectional

standard deviation of holdings, Vgi =
2σgi√

π
. Hence, the average turnover of asset

i, Ti ≡ Vi/x, is given by

Ti =
2mi

ρxσi

√
π

[
λ
√

e2K1 − 1 + (1− λ)
√

e2K2 − 1
]
. (19)

Proposition 3 (Turnover). Let K1 > K2 and φk−1 ≤ φ < φk, such that the

first k > 1 assets are actively traded in equilibrium. Then,

(i) For i ∈ {1, ..., k}, average turnover by investor group satisfies

T1i > T2i > T3i = T4i = 0.

(ii) For h ∈ {k + 1, ..., n}, average turnover is Th = 0.

Hence, sophisticated investors generate more asset turnover, since having

12The average volume of noise traders is zero. Among the optimizing investors, we assume
that investors do not change groups over time.
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higher capacity to process information enables them to take larger and more

volatile positions, relative to unsophisticated investors. Moreover, assets that

are actively traded, in turn, have a higher turnover compared with assets that

are passively traded (based only on prior beliefs). In fact, for passively traded

assets, average turnover is zero.

Larger Capacity Dispersion Our second set of analytic results show that

increased dispersion in capacities implies further polarization in holdings, which

in turn leads to a growing capital income polarization. Intuitively, greater disper-

sion in information capacity implies that sophisticated investors receive relatively

higher-quality signals about the fundamental payoffs, which enables them to re-

spond more strongly to realized state.

Proposition 4 (Capacity Dispersion). Let K1 > K2 and φk−1 ≤ φ < φk, such

that the first k > 1 assets are actively traded in equilibrium. Consider an increase

in capacity dispersion of the form K ′
1 = K1+∆1 > K1, K

′
2 = K2−∆2 < K2, with

∆1 and ∆2 chosen such that the total information capacity φ remains unchanged.

Then, for i ∈ {1, ..., k},

(i) Asset prices and excess returns remain unchanged.

(ii) The difference in ownership shares (q1i − q2i) /x increases.

(iii) Capital income becomes more polarized as the ratio π1i/π2i increases state

by state.

Increasing the level of capacity dispersion while leaving the aggregate mea-

sure of information in the economy unchanged, does not affect equilibrium prices,

since keeping φ unchanged implies that both the number of assets learned about

and the mass of investors learning about each asset remain unchanged. Hence

the adjustment reflects a pure transfer of ownership from the relatively unsophis-

ticated investors (who now have even lower capacity) to the more sophisticated

investors (who now have even higher capacity). This reallocation of holdings

leads to higher capital income inequality without any general equilibrium effects.

19

Symmetric Capacity Growth Our third and most important set of analytic

results shows that in the presence of initial heterogeneity, technological progress

in the form of symmetric growth in information capacity leads to a dispropor-

tionate increase in ownership of risky assets by sophisticated investors, and to

growing capital income polarization. Symmetric growth is modeled as a common

growth rate of both K1 and K2,

Proposition 5 (Symmetric Growth). Let K1 > K2 and φk−1 ≤ φ < φk,

such that the first k > 1 assets are actively traded in equilibrium. Consider an

increase in φ generated by a symmetric growth in capacities to K ′
1 = (1 + γ)K1

and K ′
2 = (1 + γ)K2, γ ∈ (0, 1). Let k′ ≥ k denote the new equilibrium number

of actively traded assets. Then, for i ∈ {1, ..., k′},

(i) Average asset prices increase and average excess returns decrease.

(ii) The average ownership share of sophisticated investors E [q1i] /x increases

and the average ownership share of unsophisticated investors E [q2i] /x decreases.

(iii) Average capital income becomes more polarized, as the ratio E [π1i] /E [π2i]

increases.

(iv) Total market turnover T ≡
∑

i Vi/nx increases.

First, higher capacity for processing information means that investors receive

more accurate signals about the realized payoffs. Hence, their demand for assets

co-moves more closely with the realized state, which implies that prices contain

a larger amount of information about the fundamental shocks. As a result, the

equilibrium implies lower average returns, larger and more volatile positions, and

higher market turnover.

Second, a symmetric growth in capacity that benefits both sophisticated and

unsophisticated investors has two effects on portfolio holdings and capital income

inequality: a partial equilibrium effect and a general equilibrium effect. Absent

any equilibrium price adjustment, the average holdings of risky assets and the

comovement between holdings and the realized state increase for both investor

types. However, because growth in capacity benefits investors who already have

relatively high capacity, the benefits accrue more for sophisticated investors.
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Further, in contrast to the case of increased dispersion, a symmetric change

in information capacity affects equilibrium prices. As sophisticated investors

increase their demand for risky assets, this drives up average prices, reducing the

expected profits of unsophisticated investors, who in turn reduce their average

holdings of risky securities.

3.2 The Value of Prices

In our analysis so far, we have presented the information acquisition prob-

lem in terms of a constraint on information obtained through private signals

alone, excluding the information contained in prices. When some investors ac-

quire information through private signals, prices become informative about asset

payoffs, because they reflect the demand of these privately informed investors.

In the literature on portfolio choice with exogenous signals, investors are often

assumed to learn about payoffs not only from their private signals, but also from

equilibrium prices, which aggregate the information of all investors in the market

(e.g., Admati (1985)). Would investors with an endogenous signal choice have an

incentive to allocate any capacity to learning from prices? We show that if the

information contained in prices is costly to process, then prices are an inferior

source of information compared with private signals.

We consider the signal choice of an individual investor, taking the choices of

all other investors as given by the equilibrium obtained in Section 2.2. Process-

ing information through either prices or private signals consumes the investor’s

capacity. Hence, whatever the source of information, the investor cannot acquire

a total quantity beyond her capacity Kj.

Proposition 6 (Prices). If learning about prices consumes capacity, then the

capacity-constrained investor chooses to devote all her capacity to learning about

payoffs through private signals on asset payoffs, rather than devoting any capacity

to learning from prices.

Intuitively, prices represent an indirect way of learning about asset payoffs,

21

which are ultimately what investors seek to learn. Our proof follows the logic of

Kacperczyk, Van Nieuwerburgh, and Veldkamp (2013), although it is derived for

a different information structure and extended to include the case in which the

information content of prices is not processed perfectly.

If processing the noise trader shock also consumes capacity, then Proposition 6

implies that investors will not allocate any capacity to learning about the supply

shock, νi. Learning about the activity of noise traders is not useful unless that

information is combined with information processed from prices. It is only the

joint information on both variables that informs investors about payoffs.

3.3 Alternative Specifications

Free prices To assess the sensitivity of our model to the assumption that prices

consume capacity, we also solve the model under the assumption that processing

the information content of prices is costless. We consider a setting in which in-

vestors can design a signal structure that conditions the private signal choice on

the price realization (just as the choice of asset holdings conditions on the price

realization). Signal acquisition is subject to a modified information constraint,

I (sj; z|p) ≤ Kj, where I (sj; z|p) denotes the conditional relative entropy, mea-

suring the information about z conveyed by private signals given prices.13 This

change partially erodes the informational advantage of sophisticated investors.

As a result, the heterogeneity in both holdings and returns is reduced (though

not eliminated). Nonetheless, our results pertaining to the preference for volatil-

ity in learning and the expansion of learning due to aggregate capacity growth

continue to hold.14

Additive constraint Changing the form of the information constraint does

not affect equilibrium outcomes qualitatively. Suppose we replaced the entropy

constraint with a constraint on the sum of the ratios of variances of prior and pos-

13This formulation provides an upper bound on the information value of prices.
14The derivations for this and the subsequent alternative specifications follow the baseline

derivation in the Appendix and are available upon request.
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change partially erodes the informational advantage of sophisticated investors.

As a result, the heterogeneity in both holdings and returns is reduced (though

not eliminated). Nonetheless, our results pertaining to the preference for volatil-

ity in learning and the expansion of learning due to aggregate capacity growth

continue to hold.14

Additive constraint Changing the form of the information constraint does

not affect equilibrium outcomes qualitatively. Suppose we replaced the entropy

constraint with a constraint on the sum of the ratios of variances of prior and pos-

13This formulation provides an upper bound on the information value of prices.
14The derivations for this and the subsequent alternative specifications follow the baseline

derivation in the Appendix and are available upon request.
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terior beliefs, similar to Grossman and Stiglitz (1980) and Van Nieuwerburgh and

Veldkamp (2009):
∑n

i=1

(
σ2
i

σ̂2
ji

− 1
)
≤ Kj, while maintaining the same signal struc-

ture. Maximization continues to imply that each investor specializes, learning

about a single asset. Moreover, investors choose to learn about the same assets

as in the baseline specification. Heterogeneity in capacities continues to generate

heterogeneity in both holdings and returns. However, dynamically, in response to

symmetric growth in capacity, capital income inequality grows at a slower rate,

since the additive constraint reduces the marginal benefit of additional capacity

for sophisticated investors relative to the benefit for unsophisticated investors.

Additive noise signals Previous work on information choice typically as-

sumes an additive noise signal structure, s̃ji = zi+ δ̃ji. In our setup, additive

noise signals yield exactly the same equilibrium outcomes as the compressed

signals we employ, given the assumptions that we have made in setting up the

signal structure. However, given our use of an entropy constraint, additive noise

poses some interpretation challenges. In our specification, agents compress the

state into a simpler signal, with the residual representing information about the

state that is lost due to the processing constraint. Hence, no learning amounts

to the simplest possible signal, equal to the mean payoff in all states. As agents

devote more and more capacity to learning about the state, they lose less and

less information about the state (rather than adding less and less noise to it).

Conversely, in the additive noise framework, a lower capacity constraint amounts

to adding more noise to the realized state, and no learning amounts to adding

infinite noise to the realized state. Hence, we find the additive noise signal struc-

ture more appealing for applications in which agents receive signals exogenously,

rather than for settings in which they design the signals themselves. Finally,

although mathematically equivalent here, in general, the two formulations need

not give the same results (Matějka (2011), Stevens (2014)).

Risk Aversion Heterogeneity Capital income inequality can be also driven

by differences in risk aversion among investors, in the absence of any heterogene-
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ity in the capacity to process information about asset payoffs. In particular, if one

group of investors were less risk averse they would hold a greater share of risky

assets, and hence they would have higher expected capital income.15 Within our

mean-variance specification, a growing difference in risk aversion produces grow-

ing aggregate ownership in risky assets of less risk averse investors, and a uniform,

proportional retrenchment from risky assets of more risk averse investors. How-

ever, it does not generate (i) differences in portfolio weights within a class of

risky assets, (ii) investor-specific rates of return on equity, or (iii) differential

growth in ownership by asset volatility.16

15Such setting would also encompass situations in which investors are exposed to different
levels of volatility in areas outside capital markets, like labor income.

16In a CRRA model, portfolio weights would also be identical across risky assets; hence,
even in that specification, rates of return on equity would be equalized across investor types.
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Chapter 4

4 Quantifying the Information Friction

In this section, we first parameterize the model using stock-level micro data

by asset class and investor type. Then, we evaluate the quantitative power of the

proposed information friction vis-a-vis investment patterns in the data. Finally,

we present results on the dynamics of heterogeneity in returns, participation,

and portfolio composition that help us identify our economic mechanism in the

data.

4.1 Parametrization

Our analytical design combines a portfolio framework with information fric-

tions. Thus, in order to parameterize the model it is essential that we use data

with a similar level of granularity. To this end, we use institutional portfolio

holdings from a Thomson Reuters dataset, which contain a large sample of port-

folios of publicly traded equity held by institutional investors, and comes from

quarterly reports required by law and submitted by institutional investors to the

Securities and Exchange Commission.17

Investor Types To map the model to the data, we study portfolios of investors

with different degrees of sophistication. Sophisticated investors are defined as

investment companies or independent advisors (types 3 and 4) in the Thomson

data set. These investors include wealthy individuals, mutual funds, and hedge

funds. Among all types, these groups are particularly active in their information

production efforts; in turn, other groups, such as banks, insurance companies,

or endowments and pensions are more passive by nature. Our definition of un-

sophisticated investors is other shareholders who are not part of Thomson data.

These include individual (retail) investors.

To provide the empirical verification of the proposed investor classification,

17While the official requirement for reporting is that the minimum asset size exceed 100
million, such that not all investors are in the data; in reality, the data are comprehensive, as
more than 95% of all dollar investments are reported.
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we show the evolution of the cumulative returns of portfolios held by the two

types of investors over the period 1989-2012. We proceed in three steps. First,

we obtain the market value of each stock held by all investors of a given type.

The market value of each stock is the product of the number of combined shares

held by a given investor type and the price per share of that stock, obtained

from CRSP. Since the number of shares held by unsophisticated investors is not

directly observable, we impute this value by taking the difference between the

total number of shares available for trade and the number of shares held by all

institutional investors. Second, we calculate the value shares of each stock in

the aggregate portfolio by taking the ratio of market value of each stock relative

to the total value of the portfolio of each investor type. Third, we obtain the

return on the aggregate portfolio by matching each asset share with their next

month realized return and calculating the value-weighted aggregated return. We

repeat this procedure separately for sophisticated and unsophisticated investors.

Figure 1 shows the cumulative values of $1 invested by each group in January

1989, using the aggregated monthly returns through December 2012.
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Figure 1: Cumulative Portfolio Returns by Investor Type.

Our results indicate that the portfolios of sophisticated investors systemati-

cally outperform those of unsophisticated investors. The value of $1 invested in

January 1989 grows to $5.32 at the end of 2012 for sophisticated investors ver-

sus $3.28 for unsophisticated investors. Hence, our investor classification implies

26
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Our results indicate that the portfolios of sophisticated investors systemati-

cally outperform those of unsophisticated investors. The value of $1 invested in

January 1989 grows to $5.32 at the end of 2012 for sophisticated investors ver-

sus $3.28 for unsophisticated investors. Hence, our investor classification implies
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superior investment strategies of the investor group we label as sophisticated.

Empirical Targets We parameterize the model by targeting statistics based

on stock market data. Table 1 presents the complete parametrization. For

parsimony, we restrict some parameters and normalize the natural candidates.

In particular, we normalize the mean payoff to z̄i = 10 and the asset supply to

x̄i = 5 for all assets, we restrict the volatilities of the noise shocks, σxi = σx for

all assets, and we set the number of assets to n = 10. The remaining parameters

are the information capacities of the two investor types (K1 = 0.598 and K2 =

0.0598), the fraction of sophisticated investors in the population (λ = 0.2), the

risk-free interest rate (r = 2.5%), the risk aversion parameter (ρ = 1.12), the

volatility of the noise shock (σx = 0.41), and the volatilities of the payoffs (σi),

for which we normalize the lowest volatility, σn = 1, and assume that volatility

changes linearly across assets. Specifically, we set the slope of the volatility line

to α = 0.53 and set σi = σn + α(n − i)/n, which implies that volatilities range

from σn = 1 to σ1 = 1.48.

Table 1: Parameter Values

Parameter Symbol Value Target

Mean payoff, supply z̄i, x̄i 10, 5 for all i Normalization

Number of assets n 10 Normalization

Risk-free rate r 2.5% 3-month T-bill − inflation = 2.5%

Risk aversion ρ 1.12 Market return = 11.9%

Vol. of noise shocks σxi 0.41 for all i Average turnover = 9.7%

Vol. of asset payoffs σi ∈ [1, 1.48] p90/p50 of idio return vol = 3.54

Information capacities, K1, K2, λ 0.598, 0.0598, 0.2 Sophisticated share = 23%

fraction sophisticated Share actively traded = 50%

Ratio of K1 to K2 = 10%

These parameter values are chosen to jointly match key moments from stock-

level micro data and aggregate investor-type equity shares for the first half of

our sample, 1989-2000. We take this sub-sample as the point of departure for

our dynamic comparative statics exercises. We match the following targets: (i)
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the equity ownership share of sophisticated investors of 23%; (ii) the average

return on 3-month Treasury bills minus the inflation rate, equal to 2.5%; (iii)

the average annualized stock market return in excess of the risk-free rate, equal

to 11.9%; (iv) the average monthly equity turnover (defined as the total monthly

volume divided by the number of shares outstanding), equal to 9.7%; (v) the ratio

of the 90th percentile to the median of the cross-sectional idiosyncratic volatility

of stock returns, equal to 3.54; and (vi) the fraction of assets that investors

learn about, which, in the absence of empirical guidance, we arbitrarily set to

50%. This procedure leaves us with one key parameter: the relative information

capacity of sophisticated to unsophisticated investors, K1/K2. In this section, we

set this parameter to 10%, while in Section 5, we identify this parameter using

data from the Survey of Consumer Finances.

4.2 Return Differences

In this section, we evaluate the quantitative power of our information friction

by contrasting the implied return differential with the stock-level micro evidence.

We report the results in Table 2. The parameterized model implies a 2.8 per-

centage point advantage in the average portfolio returns of the sophisticated

investors (who earn an average return of 14.6%) relative to the unsophisticated

investors (who earn an average return of 11.8%). This difference is comparable

to the 3.0 percentage point difference in the data for the 1989-2000 period (with

average portfolio returns of 13.4% versus 10.4%). Thus, the model can generate

the empirical difference in returns, while matching other aggregate targets.

Table 2: Average Portfolio Returns: Data and Model

1989-2000

Portfolio Return Data Model

Sophisticated investors 13.4% 14.6%

Unsophisticated investors 10.4% 11.8%

Unsophisticated investors + Noise traders 11.2%
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fraction sophisticated Share actively traded = 50%

Ratio of K1 to K2 = 10%

These parameter values are chosen to jointly match key moments from stock-

level micro data and aggregate investor-type equity shares for the first half of

our sample, 1989-2000. We take this sub-sample as the point of departure for

our dynamic comparative statics exercises. We match the following targets: (i)
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the equity ownership share of sophisticated investors of 23%; (ii) the average

return on 3-month Treasury bills minus the inflation rate, equal to 2.5%; (iii)

the average annualized stock market return in excess of the risk-free rate, equal

to 11.9%; (iv) the average monthly equity turnover (defined as the total monthly

volume divided by the number of shares outstanding), equal to 9.7%; (v) the ratio

of the 90th percentile to the median of the cross-sectional idiosyncratic volatility

of stock returns, equal to 3.54; and (vi) the fraction of assets that investors

learn about, which, in the absence of empirical guidance, we arbitrarily set to

50%. This procedure leaves us with one key parameter: the relative information

capacity of sophisticated to unsophisticated investors, K1/K2. In this section, we

set this parameter to 10%, while in Section 5, we identify this parameter using

data from the Survey of Consumer Finances.

4.2 Return Differences

In this section, we evaluate the quantitative power of our information friction

by contrasting the implied return differential with the stock-level micro evidence.

We report the results in Table 2. The parameterized model implies a 2.8 per-

centage point advantage in the average portfolio returns of the sophisticated

investors (who earn an average return of 14.6%) relative to the unsophisticated

investors (who earn an average return of 11.8%). This difference is comparable

to the 3.0 percentage point difference in the data for the 1989-2000 period (with

average portfolio returns of 13.4% versus 10.4%). Thus, the model can generate

the empirical difference in returns, while matching other aggregate targets.

Table 2: Average Portfolio Returns: Data and Model

1989-2000

Portfolio Return Data Model

Sophisticated investors 13.4% 14.6%

Unsophisticated investors 10.4% 11.8%

Unsophisticated investors + Noise traders 11.2%
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In addition to the optimizing sophisticated and unsophisticated investors,

the model features a third type of agent: noise traders, who trade for reasons

unrelated to asset payoffs and prices. The question is whether to classify them

as sophisticated or unsophisticated. On the one hand, such traders generate

losses from their trading activity, and their trading strategies seem inefficient.

On the other hand, sophisticated investors may also occasionally face shocks

that force them to trade assets for reasons other than the price or payoff, for

hedging or liquidity reasons. For our parametrization, these considerations are

not quantitatively important. The last row of Table 2 reports the portfolio

returns of a joint unsophisticated plus noise trader portfolio. The joint portfolio

generates a return that is quantitatively close to that of the pure unsophisticated

portfolio (11.2% versus 11.8%). Since noise trader demand is a mean zero random

variable with relatively small volatility, the allocation of noise traders to either

investor group has quantitatively small effects.

Return Decomposition As our analytical results suggest, sophisticated in-

vestors outperform unsophisticated investors for two reasons (summarized in

Propositions 1 and 2): (i) they are more exposed to risk because they hold a

larger share of risky assets (compensation for risk); and (ii) they have informa-

tional advantage (compensation for skill). In order to shed light on the relative

importance of these two effects, we decompose the returns of each investor type

by computing the unconditional expectation of the return on the portfolio held

by investor type j ∈ {S, U}:

Rj = E
∑

i

ωjit(rit − r) =
∑

i

Cov(ωjit, rit) +
∑

i

EωjitE[rit − r], (20)

where rit = zit/pit is the time t return on asset i and ωjit is the portfolio weight

of asset i for investor j at time t as ωjit = qjitpit/
∑

l qjltplt. The first term of the

decomposition captures the covariance conditional on investor j information set,

i.e. the investor’s reaction to information flow via portfolio weight adjustment

(skill effect); the second term captures the average effect, unrelated to active
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trading.

Quantitatively, the skill effect accounts for the majority of the return dif-

ferential in the model. To show that, we compute the counterfactual return of

sophisticated investors if their skill effect were the same as that of unsophisticated

investors, but their average holdings were still the same

R̂S =
∑

i

Cov(ωUit, rit) +
∑

i

EωSitE[rit − r]. (21)

Such a portfolio would generate an annualized return of 12.4%, which implies that

the compensation for skill accounts for approximately 80% of the 2.8% return

differential between the sophisticated and the unsophisticated portfolios.

4.3 Testing the Mechanism

In this section, we generate a set of dynamic predictions of the model and

compare them to the corresponding data moments in order to provide support for

our mechanism. These are robust predictions of our mechanism and are proven

analytically in Section 3. Below, we show a good fit of these results not only

qualitatively but also quantitatively.

To test our mechanism, we explore the consequences of a symmetric change

in capacities of both investor types, targeting the change in the equity ownership

share of sophisticated investors. In the data, this share grew to an average of

46% in the 2001-2012 period, from an average of 23% in the 1989-2000 period.

We find that the progress in information capacity required to achieve this target

amounts to an annual growth of 9.7% (for 11 years, from the middle of the first

sub period to the middle of the second sub period).18 Hence, in the presence of

initial capacity dispersion, subsequent symmetric capacity growth is sufficient to

generate a disproportionate growth in sophisticated ownership, and retrenchment

of unsophisticated investors from risky assets.

18This growth results in final capacities of K1 = 1.654 and K2 = 0.1654.
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Market Averages In the model, symmetric growth in information capacities

implies large changes in average market returns, cross-sectional return differen-

tials, and turnover (Proposition 5). Table 3 reports the model predictions and

their empirical counterparts.

Table 3: Market Averages: Data and Model

2001-2012

Statistic Data Model

Market Returns 2.4% 3.1%
Sophisticated portfolio 2.9% 3.3%
Unsophisticated portfolio 1.6% 3.0%
Unsophisticated + Noise traders portfolio - 2.95%

Average Equity Turnover 16.0% 14.7%
Sophisticated Ownership Share (target) 46.0% 46.0%

Both the model and the data exhibit a decrease in market return and in

the return differential between sophisticated and unsophisticated portfolios. The

lower market return is a result of an increase in the quantity of information,

as prices track payoffs more closely than in the initial sample period, implying

lower excess returns. The model also predicts a sharp increase in average asset

turnover, in magnitudes consistent with the data. As with the market return,

this result is a direct implication of our mechanism and is not driven by changes

in fundamental asset volatilities, which remain unchanged. Intuitively, higher

turnover is driven by more informed trading by sophisticated investors, due to

their holding a larger share of the market and receiving more precise signals

about asset payoffs (Proposition 3).

Expansion of Ownership In our dynamic exercise, we target the overall in-

crease in sophisticated ownership. The expansion occurs in a very specific way

across assets, both in the model and in the data. In the model, investors pre-

fer to learn about assets with high volatility, and they initially start learning

about the most volatile assets, which increases their holdings of those assets.

Further increases in capacity induce them to expand learning to lower-volatility
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Figure 2: Cumulative Growth in Sophisticated Ownership: Model (a) and Data
(b).

assets, per Lemma 3. In partial equilibrium, this process holds for both investor

types. However, in general equilibrium, as sophisticated investors expand own-

ership, they take larger positions, which shrinks excess returns. Unsophisticated

investors are more responsive to lower excess returns, and retrench.

As shown in the left panel of Figure 2, the model predicts that sophisticated

investors exhibit the highest initial growth in ownership for the the highest-

volatility assets, followed by growth in ownership of the medium-volatility assets,

followed by growth for the lowest-volatility assets. This prediction is robustly

borne out in the data, plotted the right panel of Figure 2.19 We view this

prediction as unique to our information-based mechanism, hence providing an

important verification test of the model.

19To generate this graph in the model, we increase aggregate capacity from zero to the level
that matches 51% sophisticated ownership, which is the last point in the data.
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Market Averages In the model, symmetric growth in information capacities

implies large changes in average market returns, cross-sectional return differen-

tials, and turnover (Proposition 5). Table 3 reports the model predictions and

their empirical counterparts.

Table 3: Market Averages: Data and Model

2001-2012

Statistic Data Model

Market Returns 2.4% 3.1%
Sophisticated portfolio 2.9% 3.3%
Unsophisticated portfolio 1.6% 3.0%
Unsophisticated + Noise traders portfolio - 2.95%

Average Equity Turnover 16.0% 14.7%
Sophisticated Ownership Share (target) 46.0% 46.0%

Both the model and the data exhibit a decrease in market return and in

the return differential between sophisticated and unsophisticated portfolios. The

lower market return is a result of an increase in the quantity of information,

as prices track payoffs more closely than in the initial sample period, implying

lower excess returns. The model also predicts a sharp increase in average asset

turnover, in magnitudes consistent with the data. As with the market return,

this result is a direct implication of our mechanism and is not driven by changes

in fundamental asset volatilities, which remain unchanged. Intuitively, higher

turnover is driven by more informed trading by sophisticated investors, due to

their holding a larger share of the market and receiving more precise signals

about asset payoffs (Proposition 3).

Expansion of Ownership In our dynamic exercise, we target the overall in-

crease in sophisticated ownership. The expansion occurs in a very specific way

across assets, both in the model and in the data. In the model, investors pre-

fer to learn about assets with high volatility, and they initially start learning

about the most volatile assets, which increases their holdings of those assets.

Further increases in capacity induce them to expand learning to lower-volatility
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Figure 2: Cumulative Growth in Sophisticated Ownership: Model (a) and Data
(b).

assets, per Lemma 3. In partial equilibrium, this process holds for both investor

types. However, in general equilibrium, as sophisticated investors expand own-

ership, they take larger positions, which shrinks excess returns. Unsophisticated

investors are more responsive to lower excess returns, and retrench.

As shown in the left panel of Figure 2, the model predicts that sophisticated

investors exhibit the highest initial growth in ownership for the the highest-

volatility assets, followed by growth in ownership of the medium-volatility assets,

followed by growth for the lowest-volatility assets. This prediction is robustly

borne out in the data, plotted the right panel of Figure 2.19 We view this

prediction as unique to our information-based mechanism, hence providing an

important verification test of the model.

19To generate this graph in the model, we increase aggregate capacity from zero to the level
that matches 51% sophisticated ownership, which is the last point in the data.
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In Figure 3, we show the change in cross-sectional asset ownership between

the two sub-samples for sophisticated investors. We sort assets by the volatility

of their returns. This cross-sectional change in ownership underlies the average

ownership targets in the model of 23% in the initial period and 46% in the

later period. Both the data and the model exhibit a hump-shaped profile of the

increase; they are also very close quantitatively.
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Figure 3: Absolute Change in Sophisticated Ownership by Asset Volatility
Decile.

In conclusion, even though we parameterize the model to match the aggregate

ownership levels of sophisticated investors in the pre- and post-2000 periods, the

model also explains quantitatively how ownership changes across asset volatility

classes, in terms of both the timing of growth levels and the absolute magnitudes

of the changes.

Cross-sectional Turnover Our model implies cross-sectional variation in as-

set turnover. Intuitively, if an asset is more attractive and investors want to

invest in it, then there are more investors with precise signals about this asset’s

returns, and these investors want to act on such better information by taking

larger and more volatile positions. Since sophisticated investors receive more pre-

cise signals, and they have preference towards high-volatility assets, we should

see a positive relationship between volatility and turnover. In Table 4, we report

turnover in relation to return volatility in the model and in the data.
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Table 4: Turnover by Asset Volatility

Volatility quintile 1 2 3 4 5 Mean

1989-2000
Data 5% 8.5% 10.5% 12.5% 11.5% 9.7%
Model 9.2% 9.3% 9.6% 10.1% 10.8% 9.7%

2001-2012
Data 11% 14.6% 17% 18.4% 19.3% 16%
Model 12.3% 13.5% 14.3% 14.6% 14.8% 14%

The first two rows compare data and the model prediction for 1989-2000 sub-

sample. Both data and model show that turnover is increasing in volatility, and

they are quantitatively close to each other. In the next two rows, we compare

data for the 2001-2012 period to results generated from the dynamic exercise

in the model in which we increase overall capacity. The model implies an in-

crease in average turnover and additionally matches the cross-sectional pattern

of this increase. This effect is purely driven by our information friction, since the

fundamental volatilities remain constant over time in this exercise.20

Retrenchment Across Other Asset Classes We provide auxiliary empirical

support in favor of the model’s ownership predictions by considering money flows

into mutual funds. Equity funds are more risky than non-equity funds; hence,

unsophisticated investors should be less likely to invest in the former, especially

if aggregate information capacity grows.

We use mutual fund data from Morningstar, which classifies different funds

into those serving institutional investors and individuals whose investment is at

least $100,000 (institutional funds) and those serving individual investors with

investment value less than $100,000 (retail funds). For the purpose of testing our

predictions, we define sophisticated investors as those investing in institutional

funds and unsophisticated investors as those investing in retail funds. We then

20Our model also implies a positive turnover-ownership relationship, which we further con-
firm in the data. This result is consistent with the empirical findings in Chordia, Roll, and
Subrahmanyam (2011).
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In Figure 3, we show the change in cross-sectional asset ownership between

the two sub-samples for sophisticated investors. We sort assets by the volatility

of their returns. This cross-sectional change in ownership underlies the average

ownership targets in the model of 23% in the initial period and 46% in the

later period. Both the data and the model exhibit a hump-shaped profile of the
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In conclusion, even though we parameterize the model to match the aggregate

ownership levels of sophisticated investors in the pre- and post-2000 periods, the

model also explains quantitatively how ownership changes across asset volatility

classes, in terms of both the timing of growth levels and the absolute magnitudes

of the changes.

Cross-sectional Turnover Our model implies cross-sectional variation in as-

set turnover. Intuitively, if an asset is more attractive and investors want to

invest in it, then there are more investors with precise signals about this asset’s

returns, and these investors want to act on such better information by taking

larger and more volatile positions. Since sophisticated investors receive more pre-

cise signals, and they have preference towards high-volatility assets, we should

see a positive relationship between volatility and turnover. In Table 4, we report

turnover in relation to return volatility in the model and in the data.
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Table 4: Turnover by Asset Volatility

Volatility quintile 1 2 3 4 5 Mean

1989-2000
Data 5% 8.5% 10.5% 12.5% 11.5% 9.7%
Model 9.2% 9.3% 9.6% 10.1% 10.8% 9.7%

2001-2012
Data 11% 14.6% 17% 18.4% 19.3% 16%
Model 12.3% 13.5% 14.3% 14.6% 14.8% 14%

The first two rows compare data and the model prediction for 1989-2000 sub-

sample. Both data and model show that turnover is increasing in volatility, and

they are quantitatively close to each other. In the next two rows, we compare

data for the 2001-2012 period to results generated from the dynamic exercise

in the model in which we increase overall capacity. The model implies an in-

crease in average turnover and additionally matches the cross-sectional pattern

of this increase. This effect is purely driven by our information friction, since the

fundamental volatilities remain constant over time in this exercise.20

Retrenchment Across Other Asset Classes We provide auxiliary empirical

support in favor of the model’s ownership predictions by considering money flows

into mutual funds. Equity funds are more risky than non-equity funds; hence,

unsophisticated investors should be less likely to invest in the former, especially

if aggregate information capacity grows.

We use mutual fund data from Morningstar, which classifies different funds

into those serving institutional investors and individuals whose investment is at

least $100,000 (institutional funds) and those serving individual investors with

investment value less than $100,000 (retail funds). For the purpose of testing our

predictions, we define sophisticated investors as those investing in institutional

funds and unsophisticated investors as those investing in retail funds. We then

20Our model also implies a positive turnover-ownership relationship, which we further con-
firm in the data. This result is consistent with the empirical findings in Chordia, Roll, and
Subrahmanyam (2011).
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Figure 4: Cumulative Flows to Mutual Funds for Institutional (Sophisticated,
panel a) and Retail (Unsophisticated, panel b) investors: Equity v. Non-Equity.

calculate cumulative aggregate dollar flows into equity and non-equity funds,

separately for each investor type. The data span the years 1989-2012.

As shown in Figure 4, the cumulative flows from sophisticated investors into

equity and non-equity funds increase steadily over the entire sample period. In

contrast, the flows from unsophisticated investors display a markedly different

pattern. The flows into equity funds grow until 2000 but subsequently decrease at

a significant rate of more than 3 times by 2012. Moreover, this decrease coincides

with a significant increase in cumulative flows to non-equity funds. Notably, the

increase in equity fund flows by unsophisticated investors observed in the early

sample period is consistent with the steady decrease in holdings of individual

equity documented earlier. To the extent that direct equity holdings are more

risky than diversified equity portfolios, such as mutual funds, this implies that
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unsophisticated investors have been systematically reallocating their wealth from

riskier to safer asset classes.

Overall, these findings support the predictions of our model: Sophisticated

investors have a large exposure to risky assets and subsequently add exposure

to less risky assets, whereas unsophisticated investors leave riskier assets and

increasingly move into safer assets as they perceive greater information disad-

vantage.
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Figure 4: Cumulative Flows to Mutual Funds for Institutional (Sophisticated,
panel a) and Retail (Unsophisticated, panel b) investors: Equity v. Non-Equity.

calculate cumulative aggregate dollar flows into equity and non-equity funds,

separately for each investor type. The data span the years 1989-2012.

As shown in Figure 4, the cumulative flows from sophisticated investors into

equity and non-equity funds increase steadily over the entire sample period. In

contrast, the flows from unsophisticated investors display a markedly different

pattern. The flows into equity funds grow until 2000 but subsequently decrease at

a significant rate of more than 3 times by 2012. Moreover, this decrease coincides

with a significant increase in cumulative flows to non-equity funds. Notably, the

increase in equity fund flows by unsophisticated investors observed in the early

sample period is consistent with the steady decrease in holdings of individual

equity documented earlier. To the extent that direct equity holdings are more

risky than diversified equity portfolios, such as mutual funds, this implies that
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unsophisticated investors have been systematically reallocating their wealth from

riskier to safer asset classes.

Overall, these findings support the predictions of our model: Sophisticated

investors have a large exposure to risky assets and subsequently add exposure

to less risky assets, whereas unsophisticated investors leave riskier assets and

increasingly move into safer assets as they perceive greater information disad-

vantage.
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Chapter 5

5 Quantifying Capital Income Inequality

In this section, we use our micro-level parametrization of the stochastic en-

vironment of the model to shed light on the main question of our paper: what

drives the dynamics of capital income inequality? We show that our parameter-

ized model, when mapped to household level data from the Survey of Consumer

Finances (SCF), generates a path for capital income inequality that is quantita-

tively close to the data. The critical force in the model is symmetric aggregate

technological growth combined with initial heterogeneity. We then show that

the two key elements of the model, asset and investor heterogeneity, are essential

to obtaining a good quantitative fit. Capital income inequality in the model

is driven by portfolio composition–participation decisions in asset classes–rather

than by pure return differential. We conclude with robustness checks.

5.1 Evidence from the Survey of Consumer Finances

We map investors in our model into households in the SCF. The SCF has

been a standard testing ground for questions related to household finance and

thus is a reliable source for our purpose. We restrict the sample to households

who participate in capital markets, namely households with non-zero investment

in stocks, bonds, or mutual funds, or with a brokerage account (34% of the SCF

sample, on average). We use income flows from realized capital gains, dividend

income, and interest income as our measure of capital income.21

A critical element for our analysis is the measurement of investor sophistica-

tion. Following the work of Arrow (1987), Calvet, Campbell, and Sodini (2009b),

and Vissing-Jorgensen (2004), we use initial wealth levels as proxies for initial

sophistication. We assume that wealthier individuals have access to better infor-

mation production or processing technologies, i.e. they have greater information

capacity. For each survey year, we consider two groups of participating house-

holds: those who are in the top decile of total wealth (sophisticated investors)

21These correspond to variables 5706, 5708, 5710 and 5712 in the SCF.
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and those who are in the bottom 50% of total wealth (unsophisticated investors).

Table 5 presents summary statistics for the 1989 and 2013 surveys. Capital

income and financial wealth inequalities across the two sophistication groups are

large, and exhibit substantial growth between 1989 and 2013 (Panel I). Notably,

all the growth in financial wealth inequality is concentrated exclusively within

our participant group. In Panel II, we show the financial wealth inequality for

unsophisticated vs. non-participating group and for the bottom wealth decile

of participants vs. non-participants. We find no significant increase in financial

wealth inequality between non-participants and either of the participant groups.

Non-participants have more than twice the financial wealth of the bottom par-

ticipants, and that number is stable in the data. In Figure 5, we present the time

series for financial wealth inequality in the SCF for various household groups.

The source of the inequality growth is concentrated within the participating

group, and is most notable for our sophisticated vs. unsophisticated investor

classes.

Sophisticated households earn more capital income per dollar of financial

wealth (Panel III), a crude measure of their rates of return, which suggests that

the composition of financial wealth of investor groups is different. Our measure of

sophistication is also correlated with higher educational attainment and greater

use of brokerage accounts (Panels IV and V).

The data also show a significant increase in access to brokerage accounts for

unsophisticated relative to sophisticated investors. This fact, along with evi-

dence that transaction costs on brokerage accounts have been trending down

(French (2008)), suggests that the costs of accessing and transacting in financial

markets are an unlikely explanation for the observed rise in capital income in-

equality. If anything, the improved access to financial markets should generate

lower inequality, in the absence of informational heterogeneity.

Panel VI shows the fraction of financial wealth that each class of investors

allocates to (low yield) liquid assets. Throughout the sample, sophisticated in-

vestors hold a much smaller fraction of their financial wealth in liquid assets. In
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Table 5: Investor Characteristics in the SCF

1989 2013

I. Sophisticated/Unsophisticated Ratio
Capital Income 61 129
Financial Wealth 38 66

II. Financial Wealth
Unsophisticated/Non-participants 198% 219%
Bottom participants/Non-participants 42% 43%

III. Capital Income/Financial Wealth
Sophisticated 10.7% 4.6%
Unsophisticated 9.2% 3.0%

IV. Highest Degree Earned
Sophisticated 1.9 2.5
Unsophisticated 0.7 1.1

V. Has brokerage account
Sophisticated 64% 82%
Unsophisticated 16% 35%

VI. Share of liquid assets in financial wealth
Sophisticated 21% 19%
Unsophisticated 33% 46%

VII. Age (years)
Sophisticated 58 60
Unsophisticated 49 51

Degree variable is coded as 0: < 12 years; 1: jr. college or associate; 2: bachelor,

nursing degree or other certificate; 3: master or MBA; 4: PhD, JD, MD, DDS/DMD,

other doctorate. “Bottom participants” is the bottom decile of the wealth distribution

in our participant group.

turn, unsophisticated investors demonstrate a significant growth in the fraction of

financial wealth held in liquid assets, from 33% in 1989 to 46% in 2013. This type

of portfolio composition shift is consistent with our mechanism in Section 4.3.

Panel VII reports the average age for each investor group. As expected, wealthy

households are older on average. However, there are no time-series dynamics to

the age difference that could explain the observed capital income dynamics.
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Figure 5: Financial Wealth Inequality: Extensive Margin of Participation in the
SCF.

5.2 Dynamics of Capital Income Inequality

We assess our model’s quantitative predictions for the evolution of capital

income inequality in response to aggregate growth in information technology.

We use the ratio of financial wealth levels in the SCF in 1989 as a target for

initial ratio of information capacities.22 Subsequently, we assume that the growth

rate of aggregate information capacity is determined by aggregate market return.

Thus, all growth in income inequality is through portfolio composition decisions

in response to aggregate progress in information technology.

The details of the parametrization of the new elements of the model are as

follows. We set the initial ratio of investors’ information capacity, K1/K2 in

the model, to the 1989 ratio of average financial wealth in the top 10% and the

bottom 50% of the total wealth distribution of our households. In the data, this

ratio is equal to 38. We then pick the initial aggregate capacity level to match

the excess return on the market portfolio, equal to 11.9% in the data,23 and

assume that the growth of each investor type’s capacity is the same and equal

22A guiding principle of our exercise is the existence of a capacity generating technology
that is characterized by high fixed and low marginal costs, as explored in Arrow (1987).

23We also set initial wealth to match the average initial return on wealth of 10%, consistent
with the SCF in 1989. The parametrization procedure gives capacity levels equal to K1 =
0.3169 and K2 = 0.0083.
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to the market return. We simulate the model for 25 years forward, which is the

time span of our data set. The outcome of the experiment is the endogenous

capital income inequality growth implied by our mechanism.
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Figure 6: Cumulative Growth in Capital Income Dispersion

The results of this exercise are presented in Figure 6. The model comes

very close to matching the overall growth in inequality in the data, with a 134%

growth in the model vs. 109% growth in the data.

The Role of Heterogeneity Below, we explore a quantitative importance

of heterogeneity in investor capacity and asset heterogeneity for the model’s

quantitative predictions. In Figure 7, we present results from two alternative

specifications of the benchmark model.

In the first specification, labeled Asymmetric Growth, we ask how impor-

tant are initial capacity differences versus different capacity evolution for capital

income inequality. In particular, we consider growth in capacity driven by indi-

vidual rather than market returns on equity. This generates asymmetric growth

in capacities across investor groups. As Figure 7 demonstrates, asymmetric ca-

pacity growth driven by individual returns increases the growth in inequality over

time. Nevertheless, the quantitative impact is small relative to the benchmark

inequality growth. This indicates that the initial capacity heterogeneity com-

bined with subsequent aggregate growth are the key forces driving the evolution

41

of inequality in the model.
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Figure 7: Cumulative Growth in Capital Income Dispersion: The Role of Asset
and Capacity Growth Heterogeneity.

In the second specification, labeled One Asset, we quantify the role of as-

set heterogeneity in driving capital income inequality. Specifically, we consider

an analogously parameterized model with only one risky asset.24 The one-asset

economy generates growth in capital income inequality that is approximately

40% of the growth generated by the benchmark model. Hence, asset hetero-

geneity plays a crucial role in driving capital income inequality in the model. It

generates higher payoffs from learning and larger effects on the retrenchment of

unsophisticated investors from risky asset markets.

5.3 Robustness

The Role of Capital Income in Financial Wealth To assess the impor-

tance of capital income as a driving force of financial wealth inequality, relative

to other mechanisms, such as savings rates from non-capital income sources, we

24In terms of the parametrization, the model with one asset takes away two targets from
the benchmark model: heterogeneity in asset volatility and fraction of actively traded assets.
We keep the value of risk aversion coefficient the same as in the benchmark model and change
only three parameters: overall capacity φ, volatility of the noise trader demand σx, and the
volatility of asset payoff σ to match: the average market return (11.9%), asset turnover (9.7%),
and sophisticated ownership (23%). To make the results comparable, in simulating the model,
we feed in aggregate capacity growth equal to the one in the benchmark model.
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In the second specification, labeled One Asset, we quantify the role of as-

set heterogeneity in driving capital income inequality. Specifically, we consider

an analogously parameterized model with only one risky asset.24 The one-asset

economy generates growth in capital income inequality that is approximately

40% of the growth generated by the benchmark model. Hence, asset hetero-

geneity plays a crucial role in driving capital income inequality in the model. It

generates higher payoffs from learning and larger effects on the retrenchment of

unsophisticated investors from risky asset markets.

5.3 Robustness

The Role of Capital Income in Financial Wealth To assess the impor-

tance of capital income as a driving force of financial wealth inequality, relative

to other mechanisms, such as savings rates from non-capital income sources, we

24In terms of the parametrization, the model with one asset takes away two targets from
the benchmark model: heterogeneity in asset volatility and fraction of actively traded assets.
We keep the value of risk aversion coefficient the same as in the benchmark model and change
only three parameters: overall capacity φ, volatility of the noise trader demand σx, and the
volatility of asset payoff σ to match: the average market return (11.9%), asset turnover (9.7%),
and sophisticated ownership (23%). To make the results comparable, in simulating the model,
we feed in aggregate capacity growth equal to the one in the benchmark model.
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generate the counterfactual financial wealth obtained from reinvesting capital

income only. Specifically, for each wealth decile in the 1989 SCF, we take 1989

financial wealth as a starting point, and derive a hypothetical wealth level in

subsequent SCF surveys by accumulating capital income.25
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Figure 8: Financial Wealth: Actual and counterfactual due only to capital in-
come.

Figure 8 shows the time series for actual and counterfactual financial wealth

inequality between sophisticated and unsophisticated investors. The two series

are remarkably close, which suggests an important role for capital income in the

evolution of financial wealth.26 One interpretation of Figure 8 is that looking

at past capital income realizations may be sufficient to explain the evolution of

financial wealth, without resorting to mechanisms that incorporate savings rates

from other income sources. Still, we treat this evidence as suggestive only, since

this construction imposes a panel interpretation on a repeated cross-section.

Passive Investment Policies We study whether capital income differences

are an outcome of differences in market returns over time combined with passive,

buy-and-hold household strategies. The hypothesis is that some households (the

wealthy) hold a larger share of their wealth in stock relative to the median

25For example, the counterfactual financial wealth level in 1995 is equal to financial wealth
in 1989 plus 3 times capital income in the 1989 and 1992 surveys.

26By construction, the two wealth levels are identical in 1989, so the figure also implies that
the counterfactual levels of financial wealth of each of the group are very close to the data.
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Figure 9: Cumulative market return on a 15-year passive investment in the U.S.
stock market.

household, which gives higher returns by the mere fact that stocks outperform

bonds. Figure 9 plots, for each year, the past 15-year cumulative return on

holding the aggregate index of the U.S. stock market.27 This gives the cumulative

return of such passive strategy of a household, relative to a household which

exclusively holds bonds (with a gross return of 1). The cumulative return on

the passive strategy actually exhibits a declining trend, which implies that if

investors used the passive strategy and the only difference was how much money

they hold in the stock market versus bonds, then we should observe a declining

trend in capital income inequality, as the gross return on the market converges

to the gross return on bonds. This exercise highlights the importance of active

decisions of when to enter and exit stock market in generating returns.

Endogenous Capacity Choice In the benchmark model, we assume an ex-

ogenous relation between initial capacity and an investor’s wealth. In the Ap-

pendix, we show how such relation could arise endogenously. Intuitively, if in-

vestors endogenously choose different portfolio sizes, then their net benefit of

investing in information will increase with portfolio size. We apply this idea in

a model in which investors have identical CRRA preferences and make endoge-

nous capacity choice decisions. In the context of the information choice model,

27The patterns we document are essentially the same for other choices of the horizon: 5, 10,
or 20 years.
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generate the counterfactual financial wealth obtained from reinvesting capital

income only. Specifically, for each wealth decile in the 1989 SCF, we take 1989

financial wealth as a starting point, and derive a hypothetical wealth level in

subsequent SCF surveys by accumulating capital income.25
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CRRA utility specification is not tractable; hence, we map a common relative

risk aversion together with wealth differences locally into different absolute risk

aversion coefficients. In a numerical example, we show how initial wealth differ-

ences observed in the 1989 SCF map into endogenous capacity differences, for

different values of the cost of capacity and different relative risk aversion coef-

ficients. We show that for a wide range of the risk aversion specifications and

for capacity cost away from zero, the implied differences in capacity are equal or

actually larger than the ones specified in the benchmark model. Hence, we view

our parametrization as cautious in that it implies modest initial differences.

Constant Relative Risk Aversion Utility In the Appendix, we analyze the

model with CRRA utility. Since a closed-form solution to the full model is not

feasible, we focus on a local approximation of the utility function. We show

that the model solution under no capacity differences predicts the same portfolio

shares for risky assets, independent of wealth. Intuitively, if agents have common

information, then wealth differences affect the composition of their allocation

between the risk-free asset and the risky portfolio, but not the composition of the

risky portfolio, which is determined optimally by the (common) belief structure.

As a result, differences in capacity are a necessary component of the model to

generate any risky return differences across agents.
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6 Concluding Remarks

What contributes to the growing income inequality across households? This

question has been of great economic and policy relevance for at least several

decades starting with the seminal work by Kuznets (1953). We approach this

question from the perspective of capital income that is known to be highly un-

equally distributed across individuals. We propose a theoretical information-

based framework that links capital income derived from financial markets to a

level of investor sophistication. Our model implies the presence of income in-

equality between sophisticated and unsophisticated investors that is growing in

the extent of total sophistication in the market, and could be the result of aggre-

gate technological progress. Additional predictions on asset ownership, market

returns, and turnover help us pin down the economic mechanism and rule out

alternative explanations. The quantitative predictions of the model match qual-

itatively and quantitatively the observed data.

One could argue that the overall growth of investment resources and com-

petition across investors with different skill levels are generally considered as a

positive aspect of a well-functioning financial market. However, our work sug-

gests that one should assess any policy targeting overall information environment

in financial markets as potentially exerting an offsetting and negative effect on

socially relevant issues, such as distribution of income. Our work also sheds light

on the overall benefits and redistribution aspects of progress in financial markets

in terms of creating new financial instruments. Depending on where the new as-

sets land on the volatility (or more generally, opaqueness) spectrum, the benefits

will accrue to the relatively less (low-volatility assets) or more (high-volatility

assets) sophisticated investors.
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Appendix: Proofs

Model

Portfolio Choice. In the second stage, each investor chooses portfolio holdings qji
to solve

max{qji}ni=1
Uj = Ej (Wj)− ρ

2Vj (Wj) s.t. Wj = r (W0j −
∑n

i=1 qjipi) +
∑n

i=1 qjizi,

where Ej and Vj denote the mean and variance conditional on investor j’s information
set:

Ej (Wj) = Ej [rW0j +
∑n

i=1 qji (zi − rpi)] = rW0j +
∑n

i=1 qji [Ej (zi)− rpi] ,

Vj (Wj) = Vj [rW0j +
∑n

i=1 qji (zi − rpi)] =
∑n

i=1 q
2
jiVj (zi) .

Let µ̂ji ≡ Ej [zi] and σ̂2
ji ≡ Vj [zi]. The investor’s portfolio problem is to maximize

Uj = rW0j +
∑n

i=1 qji (µ̂ji − rpi)− ρ
2

∑n
i=1 q

2
jiσ̂

2
ji.

The first order conditions with respect to qji yield qji =
µ̂ji−rpi
ρσ̂2

ji

. Since W0j does not

affect the optimization, we normalize it to zero. The indirect utility function becomes

Uj =
1
2ρ

∑n
i=1

(µ̂ji−rpi)
2

σ̂2
ji

.

Posterior Beliefs. The signal structure, zi = sji+δji, implies that Cov (sji, zi) = σ2
sji

and

µ̂ji = z +
Cov(sji,zi)

σ2
sji

(sji − sji) = sji,

σ̂2
ji = σ2

i

(
1− Cov2(sji,zi)

σ2
sjiσ

2
i

)
= σ2

δji.

Information Constraint. Let H (z) denote the entropy of z, and let H (z|sj) denote
the conditional entropy of z given the vector of signals sj . Then

I (z; sj) ≡ H (z) − H (z|sj)
(1)
=

∑n
i=1H (zi) − H (z|sj)

(2)
=

∑n
i=1H (zi) −∑n

i=1H
(
zi|z

i−1, sj
)

(1)
=

∑n
i=1H (zi)−

∑n
i=1H (zi|sj)

(3)
=

∑n
i=1H (zi)−

∑n
i=1H (zi|sji) =

∑n
i=1 I (zi; sji)

where (1) follows from the independence of the payoffs zi; (2) follows from the chain
rule for entropy, where zi−1 = {z1, ..., zi−1}; (3) follows from the independence of the
signals sji.

For each asset i, the entropy of zi ∼ N
(
z, σ2

i

)
is H (zi) =

1
2 ln

(
2πeσ2

i

)
.

The signal structure, zi = sji + δji, implies that
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Appendix: Proofs

Model

Portfolio Choice. In the second stage, each investor chooses portfolio holdings qji
to solve

max{qji}ni=1
Uj = Ej (Wj)− ρ

2Vj (Wj) s.t. Wj = r (W0j −
∑n

i=1 qjipi) +
∑n

i=1 qjizi,

where Ej and Vj denote the mean and variance conditional on investor j’s information
set:

Ej (Wj) = Ej [rW0j +
∑n

i=1 qji (zi − rpi)] = rW0j +
∑n

i=1 qji [Ej (zi)− rpi] ,

Vj (Wj) = Vj [rW0j +
∑n

i=1 qji (zi − rpi)] =
∑n

i=1 q
2
jiVj (zi) .

Let µ̂ji ≡ Ej [zi] and σ̂2
ji ≡ Vj [zi]. The investor’s portfolio problem is to maximize

Uj = rW0j +
∑n

i=1 qji (µ̂ji − rpi)− ρ
2

∑n
i=1 q

2
jiσ̂

2
ji.

The first order conditions with respect to qji yield qji =
µ̂ji−rpi
ρσ̂2

ji

. Since W0j does not

affect the optimization, we normalize it to zero. The indirect utility function becomes

Uj =
1
2ρ

∑n
i=1

(µ̂ji−rpi)
2

σ̂2
ji

.

Posterior Beliefs. The signal structure, zi = sji+δji, implies that Cov (sji, zi) = σ2
sji

and

µ̂ji = z +
Cov(sji,zi)

σ2
sji

(sji − sji) = sji,

σ̂2
ji = σ2

i

(
1− Cov2(sji,zi)

σ2
sjiσ

2
i

)
= σ2

δji.

Information Constraint. Let H (z) denote the entropy of z, and let H (z|sj) denote
the conditional entropy of z given the vector of signals sj . Then

I (z; sj) ≡ H (z) − H (z|sj)
(1)
=

∑n
i=1H (zi) − H (z|sj)

(2)
=

∑n
i=1H (zi) −∑n

i=1H
(
zi|z

i−1, sj
)

(1)
=

∑n
i=1H (zi)−

∑n
i=1H (zi|sj)

(3)
=

∑n
i=1H (zi)−

∑n
i=1H (zi|sji) =

∑n
i=1 I (zi; sji)

where (1) follows from the independence of the payoffs zi; (2) follows from the chain
rule for entropy, where zi−1 = {z1, ..., zi−1}; (3) follows from the independence of the
signals sji.

For each asset i, the entropy of zi ∼ N
(
z, σ2

i

)
is H (zi) =

1
2 ln

(
2πeσ2

i

)
.

The signal structure, zi = sji + δji, implies that
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I (zi; sji) = H (zi) +H (sji)−H (zi, sji) =
1
2 log

(
σ2
i σ

2
sji

|Σzisji |

)
= 1

2 log

(
σ2
i

σ2
δji

)
,

where
∣∣Σzisji

∣∣ = σ2
sjiσ

2
δji is the determinant of the variance-covariance matrix of zi and

sji.

Hence I (zi; sji) = 0 if σ2
δji = σ2

i . Note, for an additive noise signal structure, s̃ji =

zi + δ̃ji, I (zi; s̃ji) =
1
2 log

(
σ2
i +σ̃2

δji

σ̃2
δji

)
. Hence I (zi; s̃ji) → 0 as σ̃2

δji → ∞.

Across assets, I (z; sj) =
∑n

i=1 I (zi; sji) =
1
2

∑n
i=1 log

(
σ2
i

σ2
δji

)
= 1

2 log

(
n∏

i=1

σ2
i

σ2
δji

)
≤ Kj .

Finally, since σ̂2
ji = σ2

δji, the information constraint becomes
n∏

i=1

σ2
i

σ̂2
ji

≤ e2Kj .

Information Objective. Expected utility is given by

E0j [Uj ] =
1
2ρE0j

[∑n
i=1

(µ̂ji−rpi)
2

σ̂2
ji

]
= 1

2ρ

∑n
i=1

E0j[(µ̂ji−rpi)
2]

σ̂2
ji

= 1
2ρ

∑n
i=1

(
R̂2

ji+V̂ji

σ̂2
ji

)
,

where R̂ji and V̂ji denote the ex-ante mean and variance of expected excess returns,
µ̂ji − rpi. Conjecture (and later verify) that prices are normally distributed, pi ∼
N

(
pi, σ

2
pi

)
.

R̂ji ≡ E0j (µ̂ji − rpi) = z − rpi,

V̂ji ≡ V0j (µ̂ji − rpi) = V ar (µ̂ji) + r2σ2
pi − 2rCov (µ̂ji, pi) .

The signal structure implies that V ar (µ̂ji) = σ2
sji.

Following Admati (1985), we conjecture (and later verify) that prices are pi = ai +
biεi − ciνi, for some coefficients ai, bi, ci ≥ 0. We compute Cov (µ̂ji, pi) exploiting the
fact that posterior beliefs and prices are conditionally independent given payoffs:

Cov (µ̂ji, pi) =
Cov(µ̂ji,zi)Cov(zi,pi)

σ2
i

.

Since Cov (zi, pi) = biσ
2
i and Cov (µ̂ji, zi) = σ2

sji, then Cov (µ̂ji, pi) = biσ
2
sji. Then

V̂ji = σ2
sji + r2σ2

pi − 2rbiσ
2
sji = (1− rbi)

2 σ2
i + r2c2iσ

2
x − (1− 2rbi) σ̂

2
ji.

Hence the distribution of expected excess returns is normal with mean and variance:

R̂ji = z − rai and V̂ji = (1− rbi)
2 σ2

i + r2c2iσ
2
x − (1− 2rbi) σ̂

2
ji.

Expected utility becomes

E0j [Uj ] = 1
2ρ

∑n
i=1

[
(z−rai)

2+(1−rbi)
2σ2

i +r2c2i σ
2
x−(1−2rbi)σ̂

2
ji

σ̂2
ji

]
= 1

2ρ

∑n
i=1Gi

σ2
i

σ̂2
ji

−
1
2ρ

∑n
i=1 (1− 2rbi) ,

where Gi ≡ (1− rbi)
2+

r2c2i σ
2
x

σ2
i

+ (z−rai)
2

σ2
i

, and where the second summation is indepen-

dent of the investor’s choices.

51

Proof of Lemma 1. The linear objective function and the convex constraint imply
that each investor allocates all capacity to learning about a single asset. For all other
assets, the posterior variance is equal to the prior variance. Let lj index the asset about

which investor j learns. The information constraint becomes
n∏

i=1

σ2
i

σ̂2
ji

=
σ2
lj

σ̂2
jlj

= e2Kj , and

hence the variance of the investor’s beliefs is given by

σ̂2
ji =

{
e−2Kjσ2

i if i = lj ,

σ2
i if i �= lj .

The investor’s problem becomes picking the asset lj to maximize
∑n

i=1Gi
σ2
i

σ̂2
ji

=
(
e2Kj − 1

)
Glj +

∑n
i=1Gi. Since e2Kj > 1, the objective is maximized by allocating all

capacity to the asset with the largest utility gain: lj ∈ argmaxiGi. The distribution
of posterior beliefs follows.

Conditional Distribution of Signals. Conditional on the realized payoff, the sig-
nal is a normally distributed random variable, with mean and variance given by

E (sji|zi) = sji +
Cov(sji,zi)

σ2
i

(zi − z) =

{
z +

(
1− e−2Kj

)
εi if i = lj

z if i �= lj ,

V (sji|zi) = σ2
sji

(
1− Cov2(sji,zi)

σ2
sjiσ

2
i

)
=

{(
1− e−2Kj

)
e−2Kjσ2

i if i = lj

0 if i �= lj .

Proof of Lemma 2. The market clearing condition for each asset in state (zi, xi) is

∫
M1i

(
sji−rpi

e−2K1ρσ2
i

)
dj +

∫
M2i

(
sji−rpi

e−2K2ρσ2
i

)
dj + (1−m1i −m2i)

(
z−rpi
ρσ2

i

)
= xi,

where M1i denotes the set of measure m1i ∈ [0, λ] of sophisticated investors who
choose to learn about asset i, and M2i denotes the set of measure m2i ∈ [0, 1− λ], of
unsophisticated investors who choose to learn about asset i.
Using the conditional distribution of the signals,

∫
M1i

sjidj = m1i

[
z +

(
1− e−2K1

)
εi
]

for the type-1 investors, and analogously for the type-2 investors. Then, the market
clearing condition can be written as α1z + α2εi − xi = α1rpi, where

α1 ≡
1+m1i(e2K1−1)+m2i(e2K2−1)

ρσ2
i

and α2 ≡
m1i(e2K1−1)+m2i(e2K2−1)

ρσ2
i

.

We obtain identification of the coefficients in pi = ai + biεi − ciνi as

ai =
1
r

[
z − x

α1

]
, bi =

α2
rα1

, and ci =
1

rα1
.

Let Φi ≡ m1i

(
e2K1 − 1

)
+ m2i

(
e2K2 − 1

)
be a measure of the information capacity

allocated to learning about asset i in equilibrium. Further substitution yields

ai =
1
r

(
z − ρσ2

i x
1+Φi

)
, bi =

1
r

(
Φi

1+Φi

)
, ci =

1
r

(
ρσ2

i

1+Φi

)
.
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I (zi; sji) = H (zi) +H (sji)−H (zi, sji) =
1
2 log

(
σ2
i σ

2
sji

|Σzisji |

)
= 1

2 log

(
σ2
i

σ2
δji

)
,

where
∣∣Σzisji

∣∣ = σ2
sjiσ

2
δji is the determinant of the variance-covariance matrix of zi and

sji.

Hence I (zi; sji) = 0 if σ2
δji = σ2

i . Note, for an additive noise signal structure, s̃ji =

zi + δ̃ji, I (zi; s̃ji) =
1
2 log

(
σ2
i +σ̃2

δji

σ̃2
δji

)
. Hence I (zi; s̃ji) → 0 as σ̃2

δji → ∞.

Across assets, I (z; sj) =
∑n

i=1 I (zi; sji) =
1
2

∑n
i=1 log

(
σ2
i

σ2
δji

)
= 1

2 log

(
n∏

i=1

σ2
i

σ2
δji

)
≤ Kj .

Finally, since σ̂2
ji = σ2

δji, the information constraint becomes
n∏

i=1

σ2
i

σ̂2
ji

≤ e2Kj .

Information Objective. Expected utility is given by

E0j [Uj ] =
1
2ρE0j

[∑n
i=1

(µ̂ji−rpi)
2

σ̂2
ji

]
= 1

2ρ

∑n
i=1

E0j[(µ̂ji−rpi)
2]

σ̂2
ji

= 1
2ρ

∑n
i=1

(
R̂2

ji+V̂ji

σ̂2
ji

)
,

where R̂ji and V̂ji denote the ex-ante mean and variance of expected excess returns,
µ̂ji − rpi. Conjecture (and later verify) that prices are normally distributed, pi ∼
N

(
pi, σ

2
pi

)
.

R̂ji ≡ E0j (µ̂ji − rpi) = z − rpi,

V̂ji ≡ V0j (µ̂ji − rpi) = V ar (µ̂ji) + r2σ2
pi − 2rCov (µ̂ji, pi) .

The signal structure implies that V ar (µ̂ji) = σ2
sji.

Following Admati (1985), we conjecture (and later verify) that prices are pi = ai +
biεi − ciνi, for some coefficients ai, bi, ci ≥ 0. We compute Cov (µ̂ji, pi) exploiting the
fact that posterior beliefs and prices are conditionally independent given payoffs:

Cov (µ̂ji, pi) =
Cov(µ̂ji,zi)Cov(zi,pi)

σ2
i

.

Since Cov (zi, pi) = biσ
2
i and Cov (µ̂ji, zi) = σ2

sji, then Cov (µ̂ji, pi) = biσ
2
sji. Then

V̂ji = σ2
sji + r2σ2

pi − 2rbiσ
2
sji = (1− rbi)

2 σ2
i + r2c2iσ

2
x − (1− 2rbi) σ̂

2
ji.

Hence the distribution of expected excess returns is normal with mean and variance:

R̂ji = z − rai and V̂ji = (1− rbi)
2 σ2

i + r2c2iσ
2
x − (1− 2rbi) σ̂

2
ji.

Expected utility becomes

E0j [Uj ] = 1
2ρ

∑n
i=1

[
(z−rai)

2+(1−rbi)
2σ2

i +r2c2i σ
2
x−(1−2rbi)σ̂

2
ji

σ̂2
ji

]
= 1

2ρ

∑n
i=1Gi

σ2
i

σ̂2
ji

−
1
2ρ

∑n
i=1 (1− 2rbi) ,

where Gi ≡ (1− rbi)
2+

r2c2i σ
2
x

σ2
i

+ (z−rai)
2

σ2
i

, and where the second summation is indepen-

dent of the investor’s choices.
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Proof of Lemma 1. The linear objective function and the convex constraint imply
that each investor allocates all capacity to learning about a single asset. For all other
assets, the posterior variance is equal to the prior variance. Let lj index the asset about

which investor j learns. The information constraint becomes
n∏

i=1

σ2
i

σ̂2
ji

=
σ2
lj

σ̂2
jlj

= e2Kj , and

hence the variance of the investor’s beliefs is given by

σ̂2
ji =

{
e−2Kjσ2

i if i = lj ,

σ2
i if i �= lj .

The investor’s problem becomes picking the asset lj to maximize
∑n

i=1Gi
σ2
i

σ̂2
ji

=
(
e2Kj − 1

)
Glj +

∑n
i=1Gi. Since e2Kj > 1, the objective is maximized by allocating all

capacity to the asset with the largest utility gain: lj ∈ argmaxiGi. The distribution
of posterior beliefs follows.

Conditional Distribution of Signals. Conditional on the realized payoff, the sig-
nal is a normally distributed random variable, with mean and variance given by

E (sji|zi) = sji +
Cov(sji,zi)

σ2
i

(zi − z) =

{
z +

(
1− e−2Kj

)
εi if i = lj

z if i �= lj ,

V (sji|zi) = σ2
sji

(
1− Cov2(sji,zi)

σ2
sjiσ

2
i

)
=

{(
1− e−2Kj

)
e−2Kjσ2

i if i = lj

0 if i �= lj .

Proof of Lemma 2. The market clearing condition for each asset in state (zi, xi) is

∫
M1i

(
sji−rpi

e−2K1ρσ2
i

)
dj +

∫
M2i

(
sji−rpi

e−2K2ρσ2
i

)
dj + (1−m1i −m2i)

(
z−rpi
ρσ2

i

)
= xi,

where M1i denotes the set of measure m1i ∈ [0, λ] of sophisticated investors who
choose to learn about asset i, and M2i denotes the set of measure m2i ∈ [0, 1− λ], of
unsophisticated investors who choose to learn about asset i.
Using the conditional distribution of the signals,

∫
M1i

sjidj = m1i

[
z +

(
1− e−2K1

)
εi
]

for the type-1 investors, and analogously for the type-2 investors. Then, the market
clearing condition can be written as α1z + α2εi − xi = α1rpi, where

α1 ≡
1+m1i(e2K1−1)+m2i(e2K2−1)

ρσ2
i

and α2 ≡
m1i(e2K1−1)+m2i(e2K2−1)

ρσ2
i

.

We obtain identification of the coefficients in pi = ai + biεi − ciνi as

ai =
1
r

[
z − x

α1

]
, bi =

α2
rα1

, and ci =
1

rα1
.

Let Φi ≡ m1i

(
e2K1 − 1

)
+ m2i

(
e2K2 − 1

)
be a measure of the information capacity

allocated to learning about asset i in equilibrium. Further substitution yields

ai =
1
r

(
z − ρσ2

i x
1+Φi

)
, bi =

1
r

(
Φi

1+Φi

)
, ci =

1
r

(
ρσ2

i

1+Φi

)
.
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Proof of Lemma 3. Substituting ai, bi, and ci, equilibrium gains become Gi =
1+ρ2σ2

i (σ2
x+x2)

(1+Φi)
2 . Defining ξi ≡ σ2

i

(
σ2
x + x2

)
, gives Gi =

1+ρ2ξi
(1+Φi)

2 .

By Lemma 1, each investor learns about a single asset among the assets with the
highest gain. WLOG, assets in the economy are ordered such that σi > σi+1, for all
i ∈ {1, ..., n− 1}. First suppose that all investors learn about the same asset. Since Gi

is increasing in σi, this asset is asset 1. All investors learn about a single asset as long

as φ ≤ φ1 ≡
√

1+ρ2ξ1
1+ρ2ξ2

− 1. At this threshold, some investors switch and learn about

the second asset.

For φ > φ1, equilibrium gains must be equated among all assets with positive learning
mass. Otherwise, investors have an incentive to switch to learning about the asset
with the higher gain. Moreover, the gains of all assets with zero learning mass must be
strictly lower. Otherwise, an investor would once again have the incentive to deviate
and learn about one of these assets.

We now derive expressions for the mass of investors learning about each asset. We
assume that the participation of sophisticated and unsophisticated investors in learning
about a particular asset is proportional to their mass in the population: m1i = λmi

and m2i = (1− λ)mi, where mi is the total mass of investors learning about asset i.
Hence Φi = φmi. Note that this implies that the masses mi are also strictly decreasing
in i across the assets that are learned about. We can write the necessary and sufficient
conditions for determining {mi}

n
i=1 as

∑k
i=1mi = 1; 1+φmi

1+φm1
= ci1, for any i ∈ {2, ..., k} ,

where ci1 ≡
√

1+ρ2ξi
1+ρ2ξ1

≤ 1, with equality iff i = 1; and mi = 0 for any i ∈ {k + 1, ..., n}.

Recursively,mi = ci1m1− 1
φ (1− ci1) , ∀i ∈ {2, ..., k}. Using

∑k
i=1mi = 1, and defining

Ck ≡
∑k

i=1 ci1, we obtain the solution for m1 given by m1 =
1
Ck

+ 1
φ

(
k
Ck

− 1
)
, where

we have used the fact that c11 = 1. Using this expression, we obtain the solution for

all mi, i ∈ {1, ..., k}, mi =
ci1
Ck

+ 1
φ

(
kci1
Ck

− 1
)
.

Proof of Lemma 4. (i) First, consider an increase in φ to some φ′ ≤ φk, such that
no new assets are learned about in equilibrium (k and Ck are unchanged). For i ∈
{1, ..., k},

dmi

dφ = − 1
φ2

(
kci1
Ck

− 1
)
.

Hence mi is strictly decreasing in φ if ci1 > Ck

k (namely, if the asset is above average
in terms of adjusted volatility), and mi is increasing in φ otherwise. Since ci1 is
decreasing in i, the condition cı̄1 = Ck/k defines the cutoff asset ı̄. Moreover, note
that for i ∈ {1, ..., ı̄}, the absolute value of dmi

dφ is decreasing in i, such that the masses
of the more volatile assets fall by more than those of the less volatile assets. Likewise,
for i ∈ {ı̄+ 1, ..., k}, the value of dmi

dφ is increasing in i, such that the masses of the less
volatile assets increase by more than those of the more volatile assets. This results in
a flattening of the distribution of investors across assets.

Next, suppose that k < n, and consider an increase in φ to some φ′ > φk, such that
k′ > k assets are learned about (with k′ ≤ n). Let the new equilibrium masses be
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denoted by m′
i for i ∈ {1, ..., k′}. Hence, Σk

i=1m
′
i < 1. Using the recursive expression

for mi in terms of m1, for i ∈ {2, ..., k}

mi −m′
i = ci1 (m1 −m′

1)− (1− ci1)
(

1
φ − 1

φ′

)
.

Suppose that m1 ≤ m′
1. Then mi − m′

i < 0, which implies that Σ
k
i=1mi − Σ

k
i=1m

′
i =

1 − Σ
k
i=1m

′
i < 0, which is a contradiction. Hence m1 > m′

1. Moreover, since ci1 is
decreasing in i, the condition mı̄ = m′

ı̄ defines the threshold value for ci1 that defines
the cutoff asset ı̄.

(ii) First, consider an increase in φ to some φ′ < φk, such that no new assets are
learned about (k and Ck are unchanged). For i ∈ {1, ..., k},

d(φmi)
dφ = ci1

Ck
> 0.

Next, suppose that k < n, and consider an increase in φ to some φ′ > φk, such that
k′ > k assets are learned about in equilibrium (with k′ ≤ n). First, for the new assets
that are actively traded, i ∈ {k + 1, ..., k′}, m′

i > mi = 0, hence, φ′m′
i > φmi. Second,

consider an asset i ∈ {1, ..., k} and an asset h ∈ {k + 1, ..., k′}. Let the new equilibrium
gains be denoted by G′

i and G′
h. Then Gi > Gh, which implies that 1 + φmi < cih,

and G′
i = G′

h, which implies that 1+φ′m′
i = (1 + φ′m′

h) cih > (1 + φ′m′
h) (1 + φmi) ⇔

φ′m′
i > φmi + φ′m′

h (1 + φmi) > φmi.

(iii) Let K1 = K and K2 = δK, for some δ ∈ (0, 1), and consider an increase in K
such that the first k′ ≥ k assets are learned about. For i ∈ {k + 1, ...., k′}, first, mi = 0
and m′

i > 0; second, d(e2K − 1)/dK = 2e2K > 2δe2Kδ = d(e2Kδ − 1)/dK > 0. The
result follows.

For i ∈ {1, ...., k}, let miφ ≡ dmi

dφ . The derivatives of interest are

D1 ≡ d[mi(e
2K−1)]

dK = miφ

(
e2K − 1

) dφ
dK + 2e2Kmi

D2 ≡ d[mi(e
2Kδ−1)]
dK = miφ

(
e2Kδ − 1

) dφ
dK + 2δe2Kδmi

where dφ
dK = 2λe2K + 2δ (1− λ) e2Kδ > 0.

First, for assets i ∈ {ı̄, ..., k}, for which miφ ≥ 0, D1 > D2 > 0, since e2K > e2Kδ >
δe2Kδ.

Next, for assets i ∈ {1, ..., ı̄− 1}, for which miφ < 0, factoring out 2e2K yields

D1 = 2e2K
{
mi +miφ

(
e2K − 1

) [
λ+ (1− λ) δe2K(δ−1)

]}

= 2e2K
{
mi +miφ

[
λ
(
e2K − 1

)
+ (1− λ) δ

(
e2Kδ − e2K(δ−1)

)]}

> 2e2K
{
mi +miφ

[
λ
(
e2K − 1

)
+ (1− λ)

(
e2Kδ − 1

)]}

= 2e2K {mi +miφφ} = 2e2K
[
d(φmi)

dφ

]
> 0,

where the first inequality follows from miφ < 0, δ < 1, e2K > 1, and e2K(δ−1) < 1; and
the last inequality follows from part (ii) above.
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Proof of Lemma 3. Substituting ai, bi, and ci, equilibrium gains become Gi =
1+ρ2σ2

i (σ2
x+x2)

(1+Φi)
2 . Defining ξi ≡ σ2

i

(
σ2
x + x2

)
, gives Gi =

1+ρ2ξi
(1+Φi)

2 .

By Lemma 1, each investor learns about a single asset among the assets with the
highest gain. WLOG, assets in the economy are ordered such that σi > σi+1, for all
i ∈ {1, ..., n− 1}. First suppose that all investors learn about the same asset. Since Gi

is increasing in σi, this asset is asset 1. All investors learn about a single asset as long

as φ ≤ φ1 ≡
√

1+ρ2ξ1
1+ρ2ξ2

− 1. At this threshold, some investors switch and learn about

the second asset.

For φ > φ1, equilibrium gains must be equated among all assets with positive learning
mass. Otherwise, investors have an incentive to switch to learning about the asset
with the higher gain. Moreover, the gains of all assets with zero learning mass must be
strictly lower. Otherwise, an investor would once again have the incentive to deviate
and learn about one of these assets.

We now derive expressions for the mass of investors learning about each asset. We
assume that the participation of sophisticated and unsophisticated investors in learning
about a particular asset is proportional to their mass in the population: m1i = λmi

and m2i = (1− λ)mi, where mi is the total mass of investors learning about asset i.
Hence Φi = φmi. Note that this implies that the masses mi are also strictly decreasing
in i across the assets that are learned about. We can write the necessary and sufficient
conditions for determining {mi}

n
i=1 as

∑k
i=1mi = 1; 1+φmi

1+φm1
= ci1, for any i ∈ {2, ..., k} ,

where ci1 ≡
√

1+ρ2ξi
1+ρ2ξ1

≤ 1, with equality iff i = 1; and mi = 0 for any i ∈ {k + 1, ..., n}.

Recursively,mi = ci1m1− 1
φ (1− ci1) , ∀i ∈ {2, ..., k}. Using

∑k
i=1mi = 1, and defining

Ck ≡
∑k

i=1 ci1, we obtain the solution for m1 given by m1 =
1
Ck

+ 1
φ

(
k
Ck

− 1
)
, where

we have used the fact that c11 = 1. Using this expression, we obtain the solution for

all mi, i ∈ {1, ..., k}, mi =
ci1
Ck

+ 1
φ

(
kci1
Ck

− 1
)
.

Proof of Lemma 4. (i) First, consider an increase in φ to some φ′ ≤ φk, such that
no new assets are learned about in equilibrium (k and Ck are unchanged). For i ∈
{1, ..., k},

dmi

dφ = − 1
φ2

(
kci1
Ck

− 1
)
.

Hence mi is strictly decreasing in φ if ci1 > Ck

k (namely, if the asset is above average
in terms of adjusted volatility), and mi is increasing in φ otherwise. Since ci1 is
decreasing in i, the condition cı̄1 = Ck/k defines the cutoff asset ı̄. Moreover, note
that for i ∈ {1, ..., ı̄}, the absolute value of dmi

dφ is decreasing in i, such that the masses
of the more volatile assets fall by more than those of the less volatile assets. Likewise,
for i ∈ {ı̄+ 1, ..., k}, the value of dmi

dφ is increasing in i, such that the masses of the less
volatile assets increase by more than those of the more volatile assets. This results in
a flattening of the distribution of investors across assets.

Next, suppose that k < n, and consider an increase in φ to some φ′ > φk, such that
k′ > k assets are learned about (with k′ ≤ n). Let the new equilibrium masses be

53

denoted by m′
i for i ∈ {1, ..., k′}. Hence, Σk

i=1m
′
i < 1. Using the recursive expression

for mi in terms of m1, for i ∈ {2, ..., k}

mi −m′
i = ci1 (m1 −m′

1)− (1− ci1)
(

1
φ − 1

φ′

)
.

Suppose that m1 ≤ m′
1. Then mi − m′

i < 0, which implies that Σ
k
i=1mi − Σ

k
i=1m

′
i =

1 − Σ
k
i=1m

′
i < 0, which is a contradiction. Hence m1 > m′

1. Moreover, since ci1 is
decreasing in i, the condition mı̄ = m′

ı̄ defines the threshold value for ci1 that defines
the cutoff asset ı̄.

(ii) First, consider an increase in φ to some φ′ < φk, such that no new assets are
learned about (k and Ck are unchanged). For i ∈ {1, ..., k},

d(φmi)
dφ = ci1

Ck
> 0.

Next, suppose that k < n, and consider an increase in φ to some φ′ > φk, such that
k′ > k assets are learned about in equilibrium (with k′ ≤ n). First, for the new assets
that are actively traded, i ∈ {k + 1, ..., k′}, m′

i > mi = 0, hence, φ′m′
i > φmi. Second,

consider an asset i ∈ {1, ..., k} and an asset h ∈ {k + 1, ..., k′}. Let the new equilibrium
gains be denoted by G′

i and G′
h. Then Gi > Gh, which implies that 1 + φmi < cih,

and G′
i = G′

h, which implies that 1+φ′m′
i = (1 + φ′m′

h) cih > (1 + φ′m′
h) (1 + φmi) ⇔

φ′m′
i > φmi + φ′m′

h (1 + φmi) > φmi.

(iii) Let K1 = K and K2 = δK, for some δ ∈ (0, 1), and consider an increase in K
such that the first k′ ≥ k assets are learned about. For i ∈ {k + 1, ...., k′}, first, mi = 0
and m′

i > 0; second, d(e2K − 1)/dK = 2e2K > 2δe2Kδ = d(e2Kδ − 1)/dK > 0. The
result follows.

For i ∈ {1, ...., k}, let miφ ≡ dmi

dφ . The derivatives of interest are

D1 ≡ d[mi(e
2K−1)]

dK = miφ

(
e2K − 1

) dφ
dK + 2e2Kmi

D2 ≡ d[mi(e
2Kδ−1)]
dK = miφ

(
e2Kδ − 1

) dφ
dK + 2δe2Kδmi

where dφ
dK = 2λe2K + 2δ (1− λ) e2Kδ > 0.

First, for assets i ∈ {ı̄, ..., k}, for which miφ ≥ 0, D1 > D2 > 0, since e2K > e2Kδ >
δe2Kδ.

Next, for assets i ∈ {1, ..., ı̄− 1}, for which miφ < 0, factoring out 2e2K yields

D1 = 2e2K
{
mi +miφ

(
e2K − 1

) [
λ+ (1− λ) δe2K(δ−1)

]}

= 2e2K
{
mi +miφ

[
λ
(
e2K − 1

)
+ (1− λ) δ

(
e2Kδ − e2K(δ−1)

)]}

> 2e2K
{
mi +miφ

[
λ
(
e2K − 1

)
+ (1− λ)

(
e2Kδ − 1

)]}

= 2e2K {mi +miφφ} = 2e2K
[
d(φmi)

dφ

]
> 0,

where the first inequality follows from miφ < 0, δ < 1, e2K > 1, and e2K(δ−1) < 1; and
the last inequality follows from part (ii) above.
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Next, note that λD1 + (1− λ)D2 =
[
d(φmi)

dφ

]
dφ
dK = 2

[
d(φmi)

dφ

] [
λe2K + δ (1− λ) e2Kδ

]
.

We have just shown that D1 > 2e2K
[
d(φmi)

dφ

]
, so for the equality to hold, it must be

that D2 < 2δe2Kδ
[
d(φmi)

dφ

]
. Hence, D1 > 0 and D1 > D2. It remains to be determined

if D2 > 0 as well. We can obtain a sufficient condition for D2 > 0 as follows: For
miφ < 0,

D2 = 2δe2Kδmi + 2miφ

(
e2Kδ − 1

) [
λe2K + (1− λ) δe2Kδ

]

= 2e2Kδ
{
δmi +miφ

[
λ
(
e2K − e2K(1−δ)

)
+ (1− λ) δ

(
e2Kδ − 1

)]}
.

> 2e2Kδ
{
δmi +miφ

[
λ
(
e2K − e2K(1−δ)

)
+ (1− λ)

(
e2Kδ − 1

)]}

> 2e2Kδ
{
δmi +miφ

[
λ
(
e2K − 1

)
+ (1− λ)

(
e2Kδ − 1

)]}

= 2e2Kδ {δmi +miφφ} = 2e2Kδ
{[

d(φmi)
dφ

]
− (1− δ)mi

}
,

where the first inequality follows from miφ < 0 and δ < 1, and the second inequality
follows from miφ < 0 and e2K(1−δ) > 1. Hence if δ is not too small (i.e. capacity
dispersion is not too large), then D2 > 0 for i ∈ {1, ..., ı̄− 1} as well.

Summarizing, in response to symmetric capacity growth, for assets i ∈ {ı̄, ..., k′}, both
mi

(
e2K1 − 1

)
and mi

(
e2K2 − 1

)
growth, but mi

(
e2K1 − 1

)
grows by more. For assets

i ∈ {1, ..., ı̄− 1}, for which the mass of investors falls in response to the capacity
growth, mi

(
e2K1 − 1

)
grows and mi

(
e2K2 − 1

)
grows by less, or even falls, if capacity

dispersion is large enough.

Analytic Results

Proof of Proposition 1. Results follow from equations (14-16).

Proof of Proposition 2. (i) Follows from the definition of capital income per capita
and equation (15). (ii) Since for all i ∈ {1, ..., k}, the gains Gi are equated in equilib-
rium, then E [π1i − π2i] is increasing in mi, which in turn is increasing in σ2

i .

Derivation of volume per capita. Consider an investor with asset holdings q in
period t, and let f denote the PDF and F the CDF of the cross-sectional distribution
of holdings in this investor’s group, with mean q and standard deviation σ. Since
shocks are i.i.d., if investors don’t change groups over time, the distribution of q in
each investor group is stationary. The investor’s expected volume of trade from t to
t+ 1 is

v ≡
∫∞
−∞ |q′ − q| f (q′) dq′ =

∫ q
−∞ (q − q′) f (q′) dq′ +

∫∞
q (q′ − q) f (q′) dq′

=
∫ q
−∞ qf (q′) dq′ −

∫ q
−∞ q′f (q′) dq′ +

∫∞
q q′f (q′) dq′ −

∫∞
q qf (q′) dq′.

Adding and subtracting terms gives v = q [2F (q)− 1] + q − 2F (q)E [q′|q′ < q].

Using E [q′|q′ < q] = q − σ2
[
f(q)
F (q)

]
, v = q [2F (q)− 1] + q − 2F (q) q + 2σ2f (q).

Averaging across all q in the group,

V = 2
∫∞
−∞ qF (q) f (q) dq − 2q

∫∞
−∞ F (q) f (q) dq + 2σ2

∫∞
−∞ f (q)2 dq.

Using the formulas for integrals of normal distributions,
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∫∞
−∞ F (q) f (q) dq = 1/2,

∫∞
−∞ qF (q) f (q) dq = q/2 + σ/ (2

√
π), and

∫∞
−∞ f (q)2 dq =

1/2σ
√
π.

Then, the per capita expected volume of trade is

V = q + σ√
π
− q + σ√

π
= 2σ√

π
.

Derivation of asset turnover. Consider the group of sophisticated investors ac-
tively trading asset i. A particular investor j in this group holds qji =
e2K1 (sji − rpi) /ρσ

2
i . Conditional on the state (zi, xi), the cross-sectional variance

of holdings for this group is

V ar (qji) =
e4K1

ρ2σ4
i

V ar (sji − rpi) =
e2K1−1
ρ2σ2

i

.

Hence, the per capita expected volume for active sophisticated investors is V1i =

2√
π

(√
e2K1−1
ρσi

)
and for active unsophisticated investors is V2i =

2√
π

(√
e2K2−1
ρσi

)
.

Next, consider the group of sophisticated investors passively trading asset i. A par-
ticular investor j in this group holds qji = (z − rpi) /ρσ

2
i . Conditional on the realized

state (zi, xi), the cross-sectional variance of holdings for this group is 0. Hence, the
per capita expected volume for passive sophisticated investors is V3i = 0. Analogously,
the per capita expected volume for passive unsophisticated investors is V4i = 0. This
gives, the expected volume for asset i,

Vi = λmi
2√
π

(√
e2K1−1
ρσi

)
+(1− λ)mi

2√
π

(√
e2K2−1
ρσi

)
= 2mi√

π

[
λ
√

e2K1−1+(1−λ)
√

e2K2−1
ρσi

]
,

and average turnover

Ti ≡ Vi

x = 2mi

x
√
π

[
λ
√

e2K1−1+(1−λ)
√

e2K2−1
ρσi

]
.

Proof of Proposition 3. Results follow from the expression for asset turnover de-
rived above.

Proof of Proposition 4. (i) The increase in dispersion keeps φ unchanged. There-
fore, using equation (11), the masses mi are unchanged. With both φ and mi un-
changed, prices are unchanged. (ii) The result follows from equation (15): masses and
prices do not change, and dispersion,

(
e2K1 − e2K2

)
increases. (iii) Relative capital

income is

π1i
π2i

=
(zi − rpi) (zi − rpi) +

(
e2K1 − 1

)
mi (zi − rpi)

2

(zi − rpi) (zi − rpi) + (e2K2 − 1)mi (zi − rpi)
2 > 1.

Since prices are unchanged, (zi − rpi) (zi − rpi) and mi (zi − rpi)
2 are unchanged.

Since K ′
1 > K1 and K ′

2 < K2, the second term in π1i increases and the second term in
π2i decreases.

Proof of Proposition 5. (i) Using equilibrium prices, pi = 1
r

(
z − ρσ2

i x
1+φmi

)
. Per

Lemma 4, φmi is increasing in φ. Hence, for i ∈ {1, ..., k}, pi is increasing in φ.
The result for equilibrium expected excess returns E [zi − rpi] follows.
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Next, note that λD1 + (1− λ)D2 =
[
d(φmi)

dφ

]
dφ
dK = 2

[
d(φmi)

dφ

] [
λe2K + δ (1− λ) e2Kδ

]
.

We have just shown that D1 > 2e2K
[
d(φmi)

dφ

]
, so for the equality to hold, it must be

that D2 < 2δe2Kδ
[
d(φmi)

dφ

]
. Hence, D1 > 0 and D1 > D2. It remains to be determined

if D2 > 0 as well. We can obtain a sufficient condition for D2 > 0 as follows: For
miφ < 0,

D2 = 2δe2Kδmi + 2miφ

(
e2Kδ − 1

) [
λe2K + (1− λ) δe2Kδ

]

= 2e2Kδ
{
δmi +miφ

[
λ
(
e2K − e2K(1−δ)

)
+ (1− λ) δ

(
e2Kδ − 1

)]}
.

> 2e2Kδ
{
δmi +miφ

[
λ
(
e2K − e2K(1−δ)

)
+ (1− λ)

(
e2Kδ − 1

)]}

> 2e2Kδ
{
δmi +miφ

[
λ
(
e2K − 1

)
+ (1− λ)

(
e2Kδ − 1

)]}

= 2e2Kδ {δmi +miφφ} = 2e2Kδ
{[

d(φmi)
dφ

]
− (1− δ)mi

}
,

where the first inequality follows from miφ < 0 and δ < 1, and the second inequality
follows from miφ < 0 and e2K(1−δ) > 1. Hence if δ is not too small (i.e. capacity
dispersion is not too large), then D2 > 0 for i ∈ {1, ..., ı̄− 1} as well.

Summarizing, in response to symmetric capacity growth, for assets i ∈ {ı̄, ..., k′}, both
mi

(
e2K1 − 1

)
and mi

(
e2K2 − 1

)
growth, but mi

(
e2K1 − 1

)
grows by more. For assets

i ∈ {1, ..., ı̄− 1}, for which the mass of investors falls in response to the capacity
growth, mi

(
e2K1 − 1

)
grows and mi

(
e2K2 − 1

)
grows by less, or even falls, if capacity

dispersion is large enough.

Analytic Results

Proof of Proposition 1. Results follow from equations (14-16).

Proof of Proposition 2. (i) Follows from the definition of capital income per capita
and equation (15). (ii) Since for all i ∈ {1, ..., k}, the gains Gi are equated in equilib-
rium, then E [π1i − π2i] is increasing in mi, which in turn is increasing in σ2

i .

Derivation of volume per capita. Consider an investor with asset holdings q in
period t, and let f denote the PDF and F the CDF of the cross-sectional distribution
of holdings in this investor’s group, with mean q and standard deviation σ. Since
shocks are i.i.d., if investors don’t change groups over time, the distribution of q in
each investor group is stationary. The investor’s expected volume of trade from t to
t+ 1 is

v ≡
∫∞
−∞ |q′ − q| f (q′) dq′ =

∫ q
−∞ (q − q′) f (q′) dq′ +

∫∞
q (q′ − q) f (q′) dq′

=
∫ q
−∞ qf (q′) dq′ −

∫ q
−∞ q′f (q′) dq′ +

∫∞
q q′f (q′) dq′ −

∫∞
q qf (q′) dq′.

Adding and subtracting terms gives v = q [2F (q)− 1] + q − 2F (q)E [q′|q′ < q].

Using E [q′|q′ < q] = q − σ2
[
f(q)
F (q)

]
, v = q [2F (q)− 1] + q − 2F (q) q + 2σ2f (q).

Averaging across all q in the group,

V = 2
∫∞
−∞ qF (q) f (q) dq − 2q

∫∞
−∞ F (q) f (q) dq + 2σ2

∫∞
−∞ f (q)2 dq.

Using the formulas for integrals of normal distributions,
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∫∞
−∞ F (q) f (q) dq = 1/2,

∫∞
−∞ qF (q) f (q) dq = q/2 + σ/ (2

√
π), and

∫∞
−∞ f (q)2 dq =

1/2σ
√
π.

Then, the per capita expected volume of trade is

V = q + σ√
π
− q + σ√

π
= 2σ√

π
.

Derivation of asset turnover. Consider the group of sophisticated investors ac-
tively trading asset i. A particular investor j in this group holds qji =
e2K1 (sji − rpi) /ρσ

2
i . Conditional on the state (zi, xi), the cross-sectional variance

of holdings for this group is

V ar (qji) =
e4K1

ρ2σ4
i

V ar (sji − rpi) =
e2K1−1
ρ2σ2

i

.

Hence, the per capita expected volume for active sophisticated investors is V1i =

2√
π

(√
e2K1−1
ρσi

)
and for active unsophisticated investors is V2i =

2√
π

(√
e2K2−1
ρσi

)
.

Next, consider the group of sophisticated investors passively trading asset i. A par-
ticular investor j in this group holds qji = (z − rpi) /ρσ

2
i . Conditional on the realized

state (zi, xi), the cross-sectional variance of holdings for this group is 0. Hence, the
per capita expected volume for passive sophisticated investors is V3i = 0. Analogously,
the per capita expected volume for passive unsophisticated investors is V4i = 0. This
gives, the expected volume for asset i,

Vi = λmi
2√
π

(√
e2K1−1
ρσi

)
+(1− λ)mi

2√
π

(√
e2K2−1
ρσi

)
= 2mi√

π

[
λ
√

e2K1−1+(1−λ)
√

e2K2−1
ρσi

]
,

and average turnover

Ti ≡ Vi

x = 2mi

x
√
π

[
λ
√

e2K1−1+(1−λ)
√

e2K2−1
ρσi

]
.

Proof of Proposition 3. Results follow from the expression for asset turnover de-
rived above.

Proof of Proposition 4. (i) The increase in dispersion keeps φ unchanged. There-
fore, using equation (11), the masses mi are unchanged. With both φ and mi un-
changed, prices are unchanged. (ii) The result follows from equation (15): masses and
prices do not change, and dispersion,

(
e2K1 − e2K2

)
increases. (iii) Relative capital

income is

π1i
π2i

=
(zi − rpi) (zi − rpi) +

(
e2K1 − 1

)
mi (zi − rpi)

2

(zi − rpi) (zi − rpi) + (e2K2 − 1)mi (zi − rpi)
2 > 1.

Since prices are unchanged, (zi − rpi) (zi − rpi) and mi (zi − rpi)
2 are unchanged.

Since K ′
1 > K1 and K ′

2 < K2, the second term in π1i increases and the second term in
π2i decreases.

Proof of Proposition 5. (i) Using equilibrium prices, pi = 1
r

(
z − ρσ2

i x
1+φmi

)
. Per

Lemma 4, φmi is increasing in φ. Hence, for i ∈ {1, ..., k}, pi is increasing in φ.
The result for equilibrium expected excess returns E [zi − rpi] follows.
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(ii) Since λE [q1i] + (1− λ)E [q2i] = x̄, it is sufficient to show that for i ∈ {1, ..., k′},
E [q1i] increases in response to symmetric capacity growth. LetK ≡ K1, andK2 = δK,
with δ ∈ (0, 1). Since

E [q1i] =
1+mi(e2K−1)

(1+φmi)
x̄, then dE[q1i]

dK = x̄
(1+φmi)

2

[
d[mi(e2K−1)]

dK (1 + φmi)− d(φmi)
dφ

dφ
dKmi

(
e2K − 1

)]
.

Hence sign
(
dE[q1i]
dK

)
= sign

(
d[mi(e2K−1)]

dK − d(φmi)
dφ

dφ
dK

mi(e2K−1)
1+φmi

)
.

In the proof of Lemma 4, we show that
d[mi(e2K−1)]

dK > 2e2K d(φmi)
dφ > 0. Hence,

sign
(
dE[q1i]
dK

)
= sign

(
2e2K − dφ

dK

mi(e2K−1)
1+φmi

)

= sign

(
2e2K − 2mi[λe2K+(1−λ)δe2Kδ](e2K−1)

1+mi[λ(e2K−1)+(1−λ)(e2Kδ−1)]

)

= sign

(
e2K −

(
e2K − 1

) mi[λe2K+(1−λ)δe2Kδ]
1+mi[λe2K+(1−λ)e2Kδ]−mi

)

(1)
= sign

(
e2K −

(
e2K − 1

) [ mi[λe2K+(1−λ)e2Kδ]
1+mi[λe2K+(1−λ)e2Kδ]−mi

])

(2)
= sign

(
e2K −

(
e2K − 1

))
> 0

where (1) follows from δ ∈ (0, 1), and (2) follows from the fact that the term in square
brackets is less than 1.

(iii) Let the per capita capital income be decomposed into a component Ci that is
common across investor groups, and a component that is group-specific:
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T ≡ V ′/nx increases.

Proof of Proposition 6. We consider the choice of an individual investor, taking the
choices of all other investors as given, characterized by the solution in the main text.

Case A. First, we consider the case in which the investor treats the price as any
other random variable that cannot be processed perfectly for free. Suppose that the
investor allocates capacity to learning the price of asset i. This investor will observe
a compressed representation of the price, spji, that is the result of the decomposition
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where
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�� is the determinant of the variance-covariance matrix of zi and spji. Us-

ing the fact that zi and spji are conditionally independent given prices, Cov
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Next, we show that I
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. Suppose not. Then, in order for the

reverse inequality to hold, it must be the case that
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εji, which occurs only if I
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�
= 0. Hence for any positive capacity

dedicated to the price signal, the effective amount of information about the payoff is
less than the capacity consumed in order to receive the signal.
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choices of all other investors as given, characterized by the solution in the main text.
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Case B. Next, we consider the case in which the price itself is a perfectly observed
signal that nonetheless consumes capacity. Suppose that the investor uses capacity to
learn from pi, and let posterior beliefs about zi conditional on pi be denoted by yi.

Then yi ∼ N
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)
, with
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We next demonstrate that the investor’s ex-ante expected utility is higher when allo-
cating all her capacity to learning from private signals than when allocating at least
a portion of her capacity to learning from prices, owing to strategic substitutability.
The investor’s objective is to maximize

Ẽ1j [U2j ] =
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where R̃ji and Ṽji denote the ex-ante mean and variance of expected excess returns,
(µ̃ji − rpi), µ̃ji and σ̃2

ji denote the mean and variance of the investor’s posterior beliefs
about the payoff zi, and the tilde indicates that these variables are computed under a
signalling mechanism that allows for learning from prices.

Suppose that the investor uses capacity to learn from pi, and let posterior beliefs
about zi conditional on pi be denoted by yi. Then, the investor designs a signal
conditional on the information obtained from the price, yi = s̃ji + δ̃ji, where we
maintain the same two independence assumptions that were used in setting up the
private signal in the absence of learning from the price. Under this signal struc-
ture, the ex-ante mean is the same, regardless of whether the investor learns from
pi or not: R̃ji = zi − rpi. The ex-ante variance of expected excess returns is given

by Ṽji = V ar1j (µ̃ji) + r2σ2
pi − 2rCov1j (µ̃ji, pi). Using the formula for partial cor-

relation and exploiting the fact that signals and prices are conditionally indepen-
dent given beliefs, Cov1j (µ̃ji, pi) = Cov1j (µ̃ji, yi)Cov1j (yi, pi) /σ
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Conversely, if the investor does not allocate any capacity to learning from prices,
Vji = (1− 2rbi)σ

2
i + r2σ2

pi − (1− 2rbi) σ̃
2
ji, where we have used the fact that the
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information constraint implies that the investor’s posterior variance, here denoted by
σ̃2
ji, is the same in both cases. Both cases imply a corner solution, with the investor

allocating all capacity to learning about a single asset. The remaining question is:
will the investor allocate any capacity to learning from the price, or will she use all
capacity on the private signal? It can be easily seen that for any positive level of
capacity allocated to the price signal, Vji > Ṽji. Hence, the investor’s ex-ante utility
is lower when she devotes any positive amount of capacity to learning from prices.
Learning from prices increases the covariance between the investor’s posterior beliefs
and equilibrium prices, thereby reducing the investor’s excess returns. This case is
similar to that of Kacperczyk, Van Nieuwerburgh, and Veldkamp (2013), who show
that prices are an inferior source of information in a portfolio choice model with an
additive constraint on the sum of signal precisions.

Hence, regardless of the informativeness of prices relative to the investor’s capacity, the
investor is always better off learning through signals that provide information directly
on the payoffs. In our framework prices lose their special role as publicly available
signals.

Example with endogenous capacity choice

Below, we provide a numerical example of an endogenous capacity choice outcome
in a model in which wealth heterogeneity matters for endogenous capacity choice.
In particular, we assume that investors have identical CRRA preferences with IES
coefficient γ, and differ in terms of their beginning of period wealth. Then, for each
investor j, the absolute risk aversion coefficient is a function of wealth Wj , given by

A(Wj) = γ/Wj .

Locally, we map this into absolute risk aversion differences in a mean-variance op-
timization model by setting the coefficient ρj for investor j equal to A(Wj). What
these differences in absolute risk aversion imply in the model is differences in the size
of the risky portfolio, and hence different gains from investing wealth in purchases of
information capacity.
In particular, for a given cost of capacity given by the function f(K), each investor
type is going to choose the amount of capacity to maximize the ex-ante expectation of
utility:

1

2ρj

n∑

i=1

σ2
i

σ̂2
ij

Gi − f(Kj),

where, in equilibrium, Gi is a function of the distribution of individual capacity choices
of investors, but not of individual capacity choices, and σ̂2

ij = σ2
i e

−2Kj if the investor
learns about asset i.
The gain from increasing is given by the benefit of increasing the precision of informa-
tion for the asset that the investor is learning about. Since all actively traded assets
have the same gain in equilibrium, we can express the marginal benefit of increasing
capacity in terms of the gain of the highest volatility asset (asset 1), 1

2ρj
e2KjG1, and
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Locally, we map this into absolute risk aversion differences in a mean-variance op-
timization model by setting the coefficient ρj for investor j equal to A(Wj). What
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then the optimization problem for capacity choice can be expressed as

max
K

{
1

2ρj
e2KG1 − f(K)

}
. (22)

Assumption 3 below ensures an interior solution to (22) exists.

Assumption 3. The following statements hold:
(i) For all j, G1

ρj
− f ′(0) > 0, where G1 is evaluated at Kj = 0 for all j,

(ii) There exists K > 0, such that for all j and for all K > K, 2G1
ρj
e2K − f ′′(K) < 0,

(iii) There exists K̄ > 0 such that for all j and for all K > K̄, G1
ρj
e2K − f ′(K) < 0.

Numerical example Assume that the cost function is of the form: f(K) = eaK .
Under assumption 3, the optimal choice of K for agent j is implicitly defined by:

G1({K̄j})

ρj
= ae(a−2)K ,

where we make the dependence of G1 on the distribution of capacities explicit. Clearly,
for any a > 2, the higher wealth investors (implying lower ρj) will choose higher
capacity levels. However, because of the dependence of G on equilibrium capacity
choices, to quantify the differences we need to solve the equilibrium fixed point of the
model.
Figure 10 presents the ratio of capacities as a function of the cost parameter of ca-
pacity, a, for different values of the absolute risk aversion coefficient of the wealthy
ρ1 (which maps into different common relative risk aversion coefficients γ). The in-
equality in capacity exhibits a U-shape. First, if the cost of capacity is small, then the
equilibrium inequality in capacity grows without bound, as the wealthier accumulate
infinite capacity (faster than the less wealthy). For higher values of the cost of capac-
ity, inequality exhibits a growing trend as the cost increases, very quickly approaching
values in excess of 38, our benchmark value. It should be noted that even for the high
values of the cost parameter, the overall cost relative to gain, f(Kj)/

1
2ρj

e2KjG1, is

relatively small, less than 1% for the wealthy and less than 6% for the less wealthy.

CRRA Utility Specification

Here, we solve the main investment problem of maximizing the expected utility of
wealth, where the utility function is CRRA with respect to end of period wealth:

maxE
W 1−ρ

1− ρ
(23)

where ρ �= 1. Generally, for our specification of the payoff process, i.e. z ∼ N (z̄, σ2
i ),

wealth next period is

Wt+1 = r(Wt −
∑

i

piqi) +
∑

i

qizi

which has a normal distribution if zi’s are normal. In order to analytically express the
expectation in (23), we start by expressing wealth as W ′ = Welog{[r(1−

∑
p q

W
)+

∑ q

W
z]},

and then use an approximation of the log of return.
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Figure 10: Inequality in information capacity (K1/K2) as a function of a and
wealthy absolute risk aversion coefficient.

Approximation To approximate log{[r(1−
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p q
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∑ q
W z]}, define

f(z − rp) ≡ log[r +
1
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pq
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In the above equation, the term z is the only unknown stochastic term. The Taylor
approximation is

f(z − rp) = f(z̄ − rp) + f ′(z̄ − rp)(z − z̄) +
1

2
f ′′(z̄ − rp)(z − z̄)2 + o(z − rp)

where in the above,
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With these formulas in hand, the approximation is
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and

(elog(f(z−rp)))1−ρ = e
(1−ρ)(log[R(q)]+ 1

R(q)
q

W
(z−z̄)− 1

2
1

(R(q))2
q2

W2 (z−z̄)2)

= (R(q))1−ρe
(1−ρ) 1

R(q)
q

W
(z−z̄)− 1

2
(1−ρ) 1

(R(q))2
q2

W2 (z−z̄)2

We are interested in the object e
(1−ρ) 1

R(q)
q

W
(z−z̄)− 1

2
(1−ρ) 1

(R(q))2
q2

W2 (z−z̄)2
from the above

expression. First, we approximate the term (z − z̄)2 by its expected volatility, σ2
δi, to

get

e
(1−ρ) 1

R(q)
q

W
(z−z̄)− 1

2
(1−ρ) 1

(R(q))2
q2

W2 σ
2
δi

As an approximation point, we pick z̄, which gives a constant R(q), and then

logEW 1−ρ = const.× logEe
(1−ρ) 1

R(q)
q

W
(z−z̄)− 1

2
(1−ρ) 1

(R(q))2
q2

W2 σ
2
δi (24)

where the variable in the exponent is normal, with mean (ignoring constants)
∑

qi(µ̂i−
z̄i) and variance equal to

∑
q2i σ

2
δi. Then,

logEW 1−ρ = const.× (1− ρ)

{
1

R

∑ q

W
(µ̂i − z̄i) + (1− ρ)

1

W 2R2

1

2

∑
q2i σ

2
δi
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W 2R2
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δi

}

which gives

logEW 1−ρ = const.× (1− ρ)
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R

∑ q

W
(µ̂i − z̄i)− ρ

1

W 2R2

1

2

∑
q2i σ

2
δi

}

Interior minimum (which maximizes EW 1−ρ/(1− ρ)) is

qi =
1

ρ

µ̂i − rp

σ2
δi

(Wr).

Plugging in gives:

U =
1

1− ρ
W 1−ρr1−ρe

1−ρ

ρ
1
2

∑ (µ̂i−rp)2

σ2
δi

where µ̂i and σδi are the expected mean and standard deviation of the payoff process
z, given the investor’s prior, private signal and the price signal.
As in Brunnermeier (2001) to compute the expectation E(U). Some new notation is
needed for that. First, denote the excess return as

Ri ≡ µ̂i − rpi

with mean R̂i. Denote the period zero volatility of Ri − R̂i as V̂i (which is just the
volatility of Ri). Then we can write (in matrix form):

U =
1

1− ρ
W 1−ρr1−ρe

1−ρ

ρ
1
2
[(R−R̂)Σ−1

δ
(R−R̂)+2R̂Σ−1

δ
(R−R̂)+R̂Σ−1

δ
R̂]
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Which gives

EU =
1

1− ρ
W 1−ρr1−ρ|I − 2V̂

1− ρ

2ρ
Σ
−1
δ |−1/2×

exp(
(1− ρ)2

2ρ2
R̂Σ

−1
δ (I − 2V̂

1− ρ

2ρ
Σ
−1
δ )−1V̂ R̂Σ

−1
δ +

1− ρ

2ρ
R̂Σ

−1
δ R̂)

which becomes

EU =
1

1− ρ
W 1−ρr1−ρ(Πi(1−V̂i

1− ρ

ρ
σ−1
δi ))

−1/2×exp

(
1− ρ

2ρ

∑ R̂2
i

σδi

[
(1 +

V̂i

σδi

ρ− 1

ρ
)−1

])

logging the negative of that and simplifying gives

− log(−EU) = const.+
1

2

∑

i

log(1 +
V̂i

σδi

ρ− 1

ρ
) +

ρ− 1

2ρ

∑

i

R̂2
i

σδi + V̂i
ρ−1
ρ

This objective function is strictly decreasing in σδi and convex, which means that
agents are going to invest all capacity into learning about one asset. For that asset,
σδi = e−2Kσyi, and σδi = σyi otherwise.
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and

(elog(f(z−rp)))1−ρ = e
(1−ρ)(log[R(q)]+ 1

R(q)
q

W
(z−z̄)− 1

2
1

(R(q))2
q2

W2 (z−z̄)2)

= (R(q))1−ρe
(1−ρ) 1

R(q)
q

W
(z−z̄)− 1

2
(1−ρ) 1

(R(q))2
q2

W2 (z−z̄)2

We are interested in the object e
(1−ρ) 1

R(q)
q

W
(z−z̄)− 1

2
(1−ρ) 1

(R(q))2
q2

W2 (z−z̄)2
from the above

expression. First, we approximate the term (z − z̄)2 by its expected volatility, σ2
δi, to

get

e
(1−ρ) 1

R(q)
q

W
(z−z̄)− 1

2
(1−ρ) 1

(R(q))2
q2

W2 σ
2
δi

As an approximation point, we pick z̄, which gives a constant R(q), and then

logEW 1−ρ = const.× logEe
(1−ρ) 1

R(q)
q

W
(z−z̄)− 1

2
(1−ρ) 1

(R(q))2
q2

W2 σ
2
δi (24)

where the variable in the exponent is normal, with mean (ignoring constants)
∑

qi(µ̂i−
z̄i) and variance equal to

∑
q2i σ

2
δi. Then,

logEW 1−ρ = const.× (1− ρ)

{
1

R

∑ q

W
(µ̂i − z̄i) + (1− ρ)

1

W 2R2

1

2

∑
q2i σ

2
δi

−1

2

1

W 2R2

∑
q2i σ

2
δi

}

which gives

logEW 1−ρ = const.× (1− ρ)

{
1

R

∑ q

W
(µ̂i − z̄i)− ρ

1

W 2R2

1

2

∑
q2i σ

2
δi

}

Interior minimum (which maximizes EW 1−ρ/(1− ρ)) is

qi =
1

ρ

µ̂i − rp

σ2
δi

(Wr).

Plugging in gives:

U =
1

1− ρ
W 1−ρr1−ρe

1−ρ

ρ
1
2

∑ (µ̂i−rp)2

σ2
δi

where µ̂i and σδi are the expected mean and standard deviation of the payoff process
z, given the investor’s prior, private signal and the price signal.
As in Brunnermeier (2001) to compute the expectation E(U). Some new notation is
needed for that. First, denote the excess return as

Ri ≡ µ̂i − rpi

with mean R̂i. Denote the period zero volatility of Ri − R̂i as V̂i (which is just the
volatility of Ri). Then we can write (in matrix form):

U =
1

1− ρ
W 1−ρr1−ρe

1−ρ

ρ
1
2
[(R−R̂)Σ−1

δ
(R−R̂)+2R̂Σ−1

δ
(R−R̂)+R̂Σ−1

δ
R̂]
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Which gives

EU =
1

1− ρ
W 1−ρr1−ρ|I − 2V̂

1− ρ

2ρ
Σ
−1
δ |−1/2×

exp(
(1− ρ)2

2ρ2
R̂Σ

−1
δ (I − 2V̂

1− ρ

2ρ
Σ
−1
δ )−1V̂ R̂Σ

−1
δ +

1− ρ

2ρ
R̂Σ

−1
δ R̂)

which becomes

EU =
1

1− ρ
W 1−ρr1−ρ(Πi(1−V̂i

1− ρ

ρ
σ−1
δi ))

−1/2×exp

(
1− ρ

2ρ

∑ R̂2
i

σδi

[
(1 +

V̂i

σδi

ρ− 1

ρ
)−1

])

logging the negative of that and simplifying gives

− log(−EU) = const.+
1

2

∑

i

log(1 +
V̂i

σδi

ρ− 1

ρ
) +

ρ− 1

2ρ

∑

i

R̂2
i

σδi + V̂i
ρ−1
ρ

This objective function is strictly decreasing in σδi and convex, which means that
agents are going to invest all capacity into learning about one asset. For that asset,
σδi = e−2Kσyi, and σδi = σyi otherwise.
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