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Abstract

Abstract

We study abstract macroeconomic systems in which expectations play

an important role. Consistent with the recent literature on recursive learn-

ing and expectations, we replace the agents in the economy with econo-

metricians. Unlike the recursive learning literature, however, the econo-

metricians in the analysis here are Bayesian learners. We are interested

in the extent to which expectational stability remains the key concept in

the Bayesian environment. We isolate conditions under which versions of

expectational stability conditions govern the stability of these systems just

as in the standard case of recursive learning. We conclude that Bayesian

learning schemes, while they are more sophisticated, do not alter the es-

sential expectational stability findings in the literature.

JEL codes: D84, E00, D83.

Keywords: Expectational stability, recursive learning, learnability of ra-

tional expectations equilibrium, Bayesian learning.
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1 Introduction

1.1 Overview

A large and expanding literature has developed over the last two decades con-

cerning the issue of learning in macroeconomic systems. These systems have a

recursive feature, whereby expectations affect states, and states feed back into

the expectations formation process being used by the agents. The focus of the

literature has been on whether processes in this class are locally convergent to

rational expectations equilibria. Evans and Honkapohja (2001), in particular,

have stressed that the expectational stability condition governs the stability of

real-time learning systems defined in this way.

This line of research has so far emphasized recursive updating, including

least squares learning as a special case. There has been little study of Bayesian

updating in the context of expectational stability. What might one expect from

an extension to Bayesian updating? There seem to be at least two lines of thought

in this area. One is that Bayesian estimation is a close relative of least squares,

and therefore that all expectational stability results should obtain with suitable

adjustments, but without conceptual difficulties. A second, opposite view is

that Bayesian agents are essentially endowed with rational expectations—indeed

Bayesian learning is sometimes called “rational learning” in the literature—and

therefore one should not expect to find a concept of “expectational instability”

in the Bayesian case. A goal of this paper is to understand which of these views

is closer to reality in abstract macroeconomic systems.

It is also important to understand how Bayesian updating might repair certain

apparent inconsistencies in the recursive learning literature. Cogley and Sargent

(2008), for example, have noted that there are “two minds” embedded in the

anticipated utility approach to learning that has become popular. According to

Cogley and Sargent (2008, p. 186),

“[The anticipated utility approach recommended by Kreps (1998)]

is of two minds .... Parameters are treated as random variables when

3
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agents learn but as constants when they formulate decisions. Looking

backward, agents can see how their beliefs have evolved in the past,

but looking forward they act as if future beliefs will remain unchanged

forever. Agents are eager to learn at the beginning of each period,

but their decisions reflect a pretence that this is the last time they

will update their beliefs, a pretence that is falsified at the beginning

of every subsequent period.”

In this paper, we take a first step toward studying these issues in the context of

expectational stability. The Bayesian econometricians in our model will recognize

that their beliefs will continue to evolve in the future. The Bayesian perspective

means treating estimates as random variables, and is one way to take parameter

uncertainty into account. We think of this as a step toward rationality. However,

the Bayesian econometricians in our model may still be viewed as boundedly

rational rather than fully rational, because, while agents acknowledge that their

beliefs will change over time they do not have an explicit model of this process.

That is, they have a Bayesian perspective but they do not model their own

learning behavior. In this sense we see our paper as one step closer toward

rationality relative to the classical recursive learning case.

1.2 What we do

We consider a standard version of an abstract macroeconomic model, the gener-

alized linear model of Evans and Honkapohja (2001). Instead of assuming stan-

dard recursive learning, we think of the private sector agents as being Bayesian

econometricians. In particular, the agents will then treat estimated parameters

as random variables. In certain circumstances, the system will behave as if the

agents are classical recursive learners, but in general, the system will behave

somewhat differently from the one where agents are classical econometricians.

We highlight these differences and similarities. The primary question we wish

to address is whether we can describe local convergence properties of systems

4

with Bayesian learners in the same expectational stability terms as systems with

standard recursive learning.

1.3 Main findings

We find expectational stability conditions for systems with Bayesian learners. We

are able to isolate cases where these conditions are identical to the conditions

for non-Bayesian systems. In these cases, in terms of expectational stability,

the Bayesian systems yield no difference in results vis-a-vis the systems with

standard recursive learning.

The actual stochastic dynamical systems produced by the classical recursive

learning versus the Bayesian learning assumptions are not identical, however,

except under special circumstances. This means that the dynamics of the two

systems will differ during the transition to the rational expectations equilibrium,

even if the local asymptotic stability properties do not differ. We document via

examples how the dynamics of Bayesian systems can differ from the dynamics

of non-Bayesian systems with identical shock sequences. We show situations in

which the differences can be material and situations where the differences are

likely to be negligible.

We interpret these findings as follows. When we replace the rational expecta-

tions agents in a model with recursive least squares learners, as has been standard

in this literature, we are assuming a certain degree of bounded rationality. This

has been discussed extensively in the literature. However, since the systems can

converge, locally, to rational expectations equilibrium, the bounded rationality

eventually dissipates, which is perhaps a comforting way to think about how

rational expectations equilibrium is actually achieved. Still, one might worry

that if the agents were a little more rational at the time that they adopt their

learning algorithm, the local stability properties of the rational expectations equi-

librium might be altered. Here, “a little more rational” means that the agents use

Bayesian methods while learning instead of classical recursive algorithms, and so

they take into account that they will be learning in the future. It is conceivable

5
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that equilibria which were unstable under standard recursive learning might now

be stable under Bayesian learning, for instance. The results in this paper suggest

that this is not the case. The expectational stability conditions for the systems

with Bayesian learners are not any different, at least in the cases analyzed here,

from those which are commonly studied in the literature. This suggests that the

stability analysis following the tradition of Marcet and Sargent (1989) and Evans

and Honkapohja (2001) may have very broad appeal, and that the assumption

of standard recursive learning may be less restrictive than commonly believed.

1.4 Recent related literature

Bray and Savin (1986) studied learning in a cobweb model and noted that a

recursive least squares specification for the learning rule implied that agents

assumed fixed coefficients in an environment where coefficients were actually

time-varying.1 They thought of this as a misspecification, a form of bounded ra-

tionality. They asked whether convergence to rational expectations might occur

at a pace that was rapid enough to cause agents to not notice the misspecification

using standard statistical tests. They illustrated some cases where this was true,

and others where it was not. Bray and Savin (1986) used what we would call

fixed coefficient Bayesian updating; this was their source of bounded rationality.

We allow agents to see their estimated coefficients as random variables. Also,

the cobweb model used in the classic Bray and Savin paper does not encompass

the two-step ahead expectations which will play an important role in the results

reported below.

McGough (2003) studies Bray and Savin’s cobweb model but allows the agents

to use a Kalman filter to update parameter estimates. This allows the agents to

take into account the fact that estimates are time-varying.2 He finds conditions

under which such a system is expectationally stable. McGough also studies a

Muth model with Kalman filter updating.

1This is the same concern raised by Cogley and Sargent (2008).
2Bullard (1992) also uses the Kalman filter to allow agents to take time-varying parameters

into account.

6

Cogley and Sargent (2008) study a Lucas tree model with a representative

Bayesian decision-maker. Like Bray and Savin, they are concerned that while

the agent is learning using standard recursive algorithms, fixed coefficients are

assumed in the learning rule, whereas actual coefficients change along the path

to the rational expectations equilibrium.3 To address this, they allow the house-

hold to behave as a Bayesian decision-maker. They illustrate differences in deci-

sions when households are modeled as Bayesian versus rational expectations or

standard recursive learners. They argue that the standard recursive learning ap-

proximation to the Bayesian household is actually very good in the problem they

study. This theme will be echoed in the results reported below, as the systems

under recursive learning will not behave too differently from the systems under

Bayesian learning. Cogley and Sargent did not study the question of expecta-

tional stability. We, on the other hand, do not have households making economic

decisions, but instead study the reduced form model of Evans and Honkapohja

(2001).

Wieland (2000a) studies optimal decision making problem under parame-

ter uncertainty and Bayesian learning. He considers a Bayesian decision-maker

controlling a linear stochastic process with constant unknown parameters.4 He

studies the the value of optimal experimentation and shows numerically that

myopic behavior (no experimentation) may result in mistaken beliefs about un-

known parameters and as a result, in a bias in actions and outcomes. We consider

a reduced form model and do not study the joint optimal decision and optimal

estimation problem.

Guidolin and Timmerman (2007) study an asset pricing model with Bayesian

learning. They study the nature of the asset price dynamics in this setting,

comparing Bayesian systems to those with rational expectations and standard

recursive least squares, similar to Cogley and Sargent (2008).

Evans, Honkapohja, and Williams (2010) study stochastic gradient learning.

3See the quote above.
4Beck and Wieland (2002) consider an optimal Bayesian learning and control problem with

time-varying unknown parameters.

7
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They show that under certain conditions the stochastic gradient algorithm can

approximate the Bayesian estimator. They display expectational stability con-

ditions for their generalized stochastic gradient algorithm, and these conditions

have clear similarities to those under standard recursive least squares.

In this paper, we think of systems in which private sector expectations are

important, so that learning refers to private sector learning. However, some of the

learning literature emphasizes policymaker learning with a rational expectations

private sector. For instance, Sargent and Williams (2005) study the effect of

priors on escape dynamics in a model where the government is learning. Wieland

(2000b) adapts the framework of Nyarko and Kiefer (1989) to study optimal

control by a monetary authority when the authority is a Bayesian learner. We

do not have any policy in this paper and so we cannot address these topics.

1.5 Organization

We present a version of the generalized linear model of Evans and Honkapohja in

the next section. We analyze this model when the agents are Bayesian learners.

We find expectational stability conditions and show that they are the same as

in the case of recursive learning. However, differences can arise along transition

paths to the rational expectations equilibrium. We then turn to simulations to

illustrate some of the issues involved.

8

2 Environment

Evans and Honkapohja (2001) study a general linear model which can be viewed

as representative of a linear approximation to a rational expectations equilibrium.

This provides a common framework which will allow us to compare results clearly.

We study a somewhat less general, scalar version of their model given by

yt = α + δyt−1 + β0E
∗

t−1yt + β1E
∗

t−1yt+1 + vt, (1)

where vt ∼ N (0, ν2). Here yt is the state of the economic system, α, δ, β0,

and β1 are scalar parameters, and E∗

t−1 is a subjective expectations operator, as

expectations may not initially be rational. We work with this general form in

order to keep results comparable to Evans and Honkapohja (2001).5

We have chosen this particular version of Evans and Honkapohja (2001),

equation (1), carefully. One might be tempted to set, say, δ = 0 and β1 = 0,

for instance. But as we show below, both of these will have to be nonzero in

order to effectively see the differences between standard recursive learning and

the Bayesian learners we wish to understand.

The minimal state variable (MSV) solution is given by

yt = ā+ b̄yt−1 + vt, (2)

where ā and b̄ solve

α + (β0 + β1)ā+ β1āb̄ = ā, (3)

and

δ + β0b̄+ β1b̄
2 = b̄. (4)

We stress that there may be two solutions b̄ which solve these equations. We

5Taylor’s (1980) overlapping contract model is an example of a model that has this very
form. A simple New-Keynesian model based on Woodford (2003) also fits this specification
provided one assumes all expectations are taken using information available as of time t − 1
rather than t. Rotemberg and Woodford (1997) provide one example of a New Keynesian
model with an informational assumption of this type.

9
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where ā and b̄ solve

α + (β0 + β1)ā+ β1āb̄ = ā, (3)
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assign a traditional perceived law of motion (PLM), which is consistent in form

with the MSV solution (2),

yt = a+ byt−1 + vt (5)

= φ′zt + vt,

where φ = [a, b]′ and zt = [1, yt−1]
′ . The agents use the PLM to form expecta-

tions, which then can be substituted into equation (1) to produce an actual law

of motion (ALM) for the system.

In the standard analysis, agents are assumed to use recursive least squares to

update their parameter estimates. Using the PLM in (5) agents are assumed to

forecast according to

E∗

t−1yt = ât−1 + b̂t−1yt−1, (6)

E∗

t−1yt+1 = E(ât + b̂tyt + vt+1|Yt−1)

= ât−1(1 + b̂t−1) + b̂2t−1yt−1, (7)

with ât and b̂t denoting the least squares estimates through time t. Substituting

these equations into equation (1) we obtain the actual law of motion under

recursive least squares learning

yt = [α + (β0 + β1)ât−1 + β1ât−1b̂t−1] + [δ + β0b̂t−1 + β1b̂
2
t−1]yt−1 + vt. (8)

The expectational stability of the system will depend on mapping from the per-

ceived to the actual law of motion. We now wish to find the counterpart of the

actual law of motion, equation (8), in the case of Bayesian learning in order to

compare the two.

10

3 Real time Bayesian learning

3.1 Priors and posteriors

We now wish to assume instead that the private sector agents in this economy

use a Bayesian approach to updating the coefficients in their perceived law of

motion, that is, the scalar coefficients a and b in equation (5).6 They have priors

which are given by

φ′

0 = (a0, b0) ∼ N (µ0,Σ0), (9)

where µ
′

0 = (µa,0, µb,0), and

Σ0 =


 σ2

a,0 σab,0

σab,0 σ2
b,0


 , (10)

where σxy indicates the covariance of x and y. The conditional distribution of

the state yt is

yt|Yt−1, φ ∼ N (a+ byt−1, ν
2), (11)

where Yt−1 is the history of yt. The distribution of Yt conditional on φ is

f(Yt|φ) = f(yt|φ, Yt−1)f(Yt−1|φ)
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that is, the posterior distribution is proportional to the distribution of Yt times

the prior distribution. Assuming f(y1|φ) is known (for instance, f(y1|φ) = 1),

6We follow Evans and Honkapohja (2001) and assume that agents know the variance of the
shocks, ν2.
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assign a traditional perceived law of motion (PLM), which is consistent in form
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3 Real time Bayesian learning

3.1 Priors and posteriors

We now wish to assume instead that the private sector agents in this economy

use a Bayesian approach to updating the coefficients in their perceived law of

motion, that is, the scalar coefficients a and b in equation (5).6 They have priors

which are given by

φ′

0 = (a0, b0) ∼ N (µ0,Σ0), (9)

where µ
′

0 = (µa,0, µb,0), and

Σ0 =


 σ2

a,0 σab,0

σab,0 σ2
b,0


 , (10)

where σxy indicates the covariance of x and y. The conditional distribution of

the state yt is

yt|Yt−1, φ ∼ N (a+ byt−1, ν
2), (11)

where Yt−1 is the history of yt. The distribution of Yt conditional on φ is

f(Yt|φ) = f(yt|φ, Yt−1)f(Yt−1|φ)

= f(yt|φ, Yt−1)f(yt−1|φ, Yt−2) . . . f(y2|φ, y1)f(y1|φ). (12)

Using these expressions we can represent a posterior distribution of φ as

f(φ|Yt) ∝ f(Yt|φ)f(φ), (13)

that is, the posterior distribution is proportional to the distribution of Yt times
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we can obtain a Normal-Normal update given by

f(φ|Yt) = N (µt,Σt), (14)

where

µt = Σt

(
Σ−1

0 µ0 + ν−2(Z ′

tYt)
)
, (15)

and

Σt =
(
Σ−1

0 + ν−2(Z ′

tZt)
)
−1

, (16)

where Zt is the history of zt.
7

Since we will consider recursive updating it is useful to express µt and Σt in

a recursive form.

Lemma 1 µt and Σt can be written in a recursive form as

µt = µt−1 + Σtν
−2zt (yt − z′tµt−1) , (17)

Σ−1
t = Σ−1

t−1 + ν−2ztz
′

t. (18)

Proof. See Appendix A.

We note that since Σt =
ν2

t
R−1

t the functional form of the recursions above

are identical to those under recursive least squares,

φRLS
t = φRLS

t−1 + t−1R−1
t zt(yt − φRLS ′

t−1 zt) (19)

Rt = Rt−1 + t−1(ztz
′

t −Rt−1). (20)

However, the values of the estimates will differ except for the case where Σ−1
0 is

a null matrix—that is, the prior is diffuse.

3.2 The actual law of motion

To consider the evolution of the system we have to determine the ALM under

Bayesian learning. We begin with the same PLM under learning in the standard

7See Zellner (1971) for an introduction to Bayesian inference.

12

analysis described above in equation (5), namely

yt = a+ byt−1 + vt

= φ′zt + vt. (21)

We now take expectations based on this PLM in order to substitute these into

(1) to obtain the ALM. The necessary expectation terms are given by

Et−1yt = E(a+ byt−1 + vt|Yt−1)

= µ′

t−1zt, (22)

Et−1yt+1 = E(a+ byt + vt+1|Yt−1)

= E(φ′zt+1|Yt−1). (23)

We stress that one of the hallmarks of the Bayesian approach is that both yt and

b are random variables. We next have to compute E(φ′zt+1|Yt−1).

We first compute the joint distribution of φ and y. The density function of

φ conditional on Yt can be written as

f(φ|Yt) = f


 a

b

���Yt


 = N




 µa,t

µb,t


 ,


 σ2

a,t σab,t

σab,t σ2
b,t




 . (24)

Lemma 2 The joint distribution of φ and y is given by

f(φ, yt|Yt−1) = Nφ(µt,Σt)Ny(µ
′

t−1zt, ν
2 + z′tΣt−1zt). (25)

and, in particular, the joint distribution of b and y equals

f(b, yt|Yt−1) = Nb(µb,t, σ
2
b,t)Ny(µ

′

t−1zt, ν
2 + z′tΣt−1zt), (26)

where

µb,t = µb,t−1 + ν−2(σab,t + σ2
b,tyt−1)(yt − µa,t−1 − µb,t−1yt−1). (27)

Proof. See Appendix A.
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Now we can find E(byt|Yt−1) and E(φ′zt+1|Yt−1). As we have a joint distri-

bution of both random variables we can compute these expectations directly.

Lemma 3 The expectations E(byt|Yt−1) and E(φ′zt+1|Yt−1) are given by

E(byt|Yt−1) = µb,t−1E(yt|Yt−1) + Σb,tΩyt (28)

and

E(φ′zt+1|Yt−1) = µ′

t−1

(
1

µ′

t−1zt

)
+ Σb,tΩyt , (29)

where

Σb,t = ν−2(σab,t + σ2
b,tyt−1) (30)

Ωyt = ν2 + z′tΣt−1zt. (31)

Proof. See Appendix A.

We are now ready to present our key equation, the actual law of motion

under Bayesian learning. Recall that our general linear model from equation (1)

is given by

yt = α + δyt−1 + β0E
∗

t−1yt + β1E
∗

t−1yt+1 + vt. (32)

Substituting equations (22) and (29) into this equation we can write the actual

law of motion.

Proposition 4 The actual law of motion under Bayesian learning can be written

as

yt = [α + (β0 + β1)µa,t−1 + β1µa,t−1µb,t−1]

+
[
δ + β0µb,t−1 + β1µ

2
b,t−1

]
yt−1 + β1Σb,tΩyt + vt. (33)

Proof. See Appendix A.

Except for the term β1Σb,tΩyt , the above expression is exactly analogous to

what one would obtain under standard recursive least squares [as shown by equa-

14

tion (8) above] as analyzed by Evans and Honkapohja (2001) for the MSV so-

lution, but with parameters in the RLS case being here represented by their

means.

3.3 Remarks on the Bayesian ALM

We said that we chose equation (1) carefully. In particular, we made sure that

a lagged endogenous variable was included with a non-zero coefficient δ, and

that a two-step ahead expectation was included with a non-zero coefficient β1.

By considering the actual law of motion under Bayesian learning, we can show

clearly why both δ �= 0 and β1 �= 0 are necessary to see the differences between

standard recursive learning and Bayesian learning. First, if β1 = 0, then the

term β1Σb,tΩyt drops out of the expression (33). Second, if δ = 0, then there

would be no term Ωyt , as the MSV solution (2) would not depend on yt−1, and

so the agents would only need to estimate means.

To return to a standard recursive learning case, we would have to make two

assumptions. One is that the agents use the standard recursive least squares

estimator instead of the Bayesian estimator, and the second is that agents treat

parameter estimates as constants when using their PLM to form expectations.

So, there are really two levels to Bayesian learning as we are describing it here.

One is that the agents use the Bayesian estimators µa and µb, and the second

is that the agents treat the estimates as random variables, not constants, which

gives rise to the term β1Σb,tΩyt in the actual law of motion (33). It is important

to stress that even systems with Bayesian estimation only (e.g., β1 = 0) do not

produce an actual law of motion equivalent to the RLS case, because µa and

µb are not treated as constants. Similarly, even if agents treat parameters in

PLM as constants but still use Bayesian estimator to form their expectations—a

passive Bayesian case—the actual law of motion will also differ from the RLS

case.
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Chapter 4

4 Expectational stability

In this section we turn to an analysis of expectational stability. Agents have

beliefs about the parameters in their PLM and update them using Bayes rule.

Conditional on information at time t, that is, the observed sequence of {yτ}
t
τ=1 =

Yt, their beliefs are given by

f(φ|Yt) = N (µt,Σt), (34)

where µt and Σt have the recursive form

µt = µt−1 + Σtν
−2zt(yt − z′tµt−1), (35)

Σ−1
t = Σ−1

t−1 + ν−2ztz
′

t, (36)

where yt in the first equation is given by the actual law of motion in equation

(33) above.

In order to work with the expression (33), we can write it in an expanded

fashion.

Lemma 5 The actual law motion (33) can be written as

yt = [α + (β0 + β1)µa,t−1 + β1µa,t−1µb,t−1 + β1σab,t−1]

+
[
δ + β0µb,t−1 + β1µ

2
b,t−1 + β1σ

2
b,t−1

]
yt−1 + vt. (37)

Proof. See Appendix A.

This is an AR (1) process, consistent with the perceived law of motion, given

beliefs at date t. Using this alternative expression for the actual law of motion

allows us to define a T-map in a convenient way.

The evolution of the mean of the distribution is given by

µt = µt−1 + Σtν
−2zt(α + (β0 + β1)µa,t−1 + β1µa,t−1µb,t−1 + β1σab,t−1

+
[
δ + β0µb,t−1 + β1µ

2
b,t−1

]
yt−1 + vt − z′tµt−1). (38)
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We can now state our main result.

Theorem 6 Consider a macroeconomic system given by equation (1) with Bayesian

learners. Assume agents have PLM given by equation (5) and they update their

beliefs about the parameters in their PLM using Bayes rule according to equations

(17) and (18). Then, this system has the same E-stability conditions as under

classical recursive learning.

Proof. Following Evans and Honkapohja (2001), we define a T-map as

Ta(µ,Σ) = α + (β0 + β1)µa + β1µaµb + β1σab (39)

Tb(µ,Σ) = δ + β0µb + β1µ
2
b + β1σ

2
b . (40)

Rewriting Σt =
1
t
R−1

t , where

Rt = (1/t)Σ−1
0 + (1/t)ν−2Z ′

tZt, (41)

and defining St−1 = Rt, we can represent the problem in the stochastic recursive

form,8

µt = µt−1 + t−1ν−2S−1
t−1zt(z

′

t(T (µt−1, St−2)− µt−1)− vt), (42)

St = St−1 + t−1(ν−2zt+1z
′

t+1 − St−1)

+ t−2

(
−

t

t+ 1

)
(ν−2zt+1z

′

t+1 − St−1). (43)

The T-map is now defined in terms of µ and S as

Ta(µ, S) = α + (β0 + β1)µa + β1µaµb + β1
sab
t

(44)

Tb(µ, S) = δ + β0µb + β1µ
2
b + β1

sb
t
, (45)

where sab and sb are the corresponding entries in the S−1 matrix.

8See Evans and Honkapohja (2001, Section 8.4) for technical conditions on the recursive
stochastic algorithm.
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Using the stochastic recursive algorithm we can approximate the above sys-

tem with the ordinary differential equation

dµ

dτ
= h(µ)

= lim
t→∞

Eν−2S−1zt(z
′

t(T (µ, S)− µ)− vt). (46)

Using regularity condition Eztz
′

t ≡ Mz < ∞ and Eztvt = 0, we can rewrite this

as
dµ

dτ
= ν−2S−1Mz( lim

t→∞

T (µ, S)− µ)). (47)

From the definition of the T-map and using limt→∞

sab
t
= limt→∞

sb
t
= 0 , we can

define T̃ (µ) as

lim
t→∞

T (µ, S) = T̃ (µ) (48)

with

T̃a(µ) = α + (β0 + β1)µa + β1µaµb (49)

T̃b(µ) = δ + β0µb + β1µ
2
b . (50)

Therefore,
dµ

dτ
= ν−2S−1Mz(T̃ (µ)− µ), (51)

and the stability of the system is govern by the following equation.

dµ

dτ
= T̃ (µ)− µ. (52)

Linearizing and computing the eigenvalues of T̃ (µ) at an equilibrium, we

obtain the stability conditions

β0 + β1 + β1µb − 1 < 0 (53)

β0 − 1 + 2β1µb < 0 (54)

These conditions are identical to the ones shown by Evans and Honkapohja (2001)

18

to govern expectational stability under recursive least squares. We conclude that

the system under Bayesian learning has the same E-stability conditions as with

classical recursive learning.

Theorem 6 presents an important finding, as it shows that concerns about the

stability of macroeconomic systems under learning are equally relevant under a

Bayesian learning assumption as under a recursive learning assumption. In par-

ticular, the system with Bayesian learners could be locally stable or unstable—it

may or may not converge locally to the rational expectations equilibrium if ex-

pectations were initially displaced a small distance away from the REE. And, in

fact, for the system we study the expectational stability conditions are the same

under the two assumptions.

The intuition for this result is straightforward, given the known connections

between Bayesian and least squares estimation methodology. In particular, if

the variance terms vanish as data accumulates, and if in addition the estimators

converge to their means, then the system will in effect be the same one which

is analyzed for expectational stability under recursive least squares. The agents

using recursive learning are assuming no variance terms and replacing mean

parameter estimates with constants at the outset.9

Even though asymptotic stability properties are not altered, we have already

stressed that the actual law of motion will not be the same under a Bayesian

assumption relative to RLS. This means transition paths will be altered under

Bayesian learning relative to RLS. We now turn to this issue.

9The expectational stability of a system with passive Bayesian learners is governed by the
same conditions.
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Expectational stability

Using the stochastic recursive algorithm we can approximate the above sys-

tem with the ordinary differential equation

dµ

dτ
= h(µ)

= lim
t→∞

Eν−2S−1zt(z
′

t(T (µ, S)− µ)− vt). (46)

Using regularity condition Eztz
′

t ≡ Mz < ∞ and Eztvt = 0, we can rewrite this

as
dµ

dτ
= ν−2S−1Mz( lim

t→∞

T (µ, S)− µ)). (47)

From the definition of the T-map and using limt→∞

sab
t
= limt→∞

sb
t
= 0 , we can

define T̃ (µ) as

lim
t→∞

T (µ, S) = T̃ (µ) (48)

with

T̃a(µ) = α + (β0 + β1)µa + β1µaµb (49)

T̃b(µ) = δ + β0µb + β1µ
2
b . (50)

Therefore,
dµ

dτ
= ν−2S−1Mz(T̃ (µ)− µ), (51)

and the stability of the system is govern by the following equation.

dµ

dτ
= T̃ (µ)− µ. (52)

Linearizing and computing the eigenvalues of T̃ (µ) at an equilibrium, we

obtain the stability conditions

β0 + β1 + β1µb − 1 < 0 (53)

β0 − 1 + 2β1µb < 0 (54)

These conditions are identical to the ones shown by Evans and Honkapohja (2001)
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Chapter 5

5 Dynamics

5.1 Approach and parameterization

To illustrate above findings we conduct numerical simulations based on a version

of an example taken from Evans and Honkapohja (2001, Section 8.5). Our version

is intended to illustrate differences in the two systems as clearly as possible.

Accordingly, we consider again the model

yt = α + δyt−1 + β0E
∗

t−1yt + β1E
∗

t−1yt+1 + vt, (55)

with parameter values α = 2, δ = 0.3, β0 = 0.5, and β1 = −0.4. The two AR(1)

MSV solutions are (ā1, b̄1) = (1.86, 0.44) and (ā2, b̄2) = (8.97,−1.69). We assume

vt ∼ N (0, 0.5) . Clearly, only the first solution is stationary and, in accordance

with (53), E-stable.

We compare transition paths generated by agents with three different learning

procedures. First, the recursive least squares case serves as a benchmark. Our

second case is Bayesian learning. And, in order to isolate the effect of prior beliefs

on the transition path in the Bayesian learning case we also consider a third case,

passive Bayesian estimation, in which estimates are treated not as realizations

of random variables but as constants, just as in the standard recursive learning

case. In addition, we consider alternative priors, each with a different precision,

for both Bayesian learners and passive Bayesian estimation agents.

The initial settings of parameters, in the case of recursive least squares, and

priors, in cases of Bayesian learning and passive Bayesian estimation, are at the

stationary solution (ā1, b̄1). The lagged value of y is equal to unconditional mean

of y. For each parameterization, we conduct 1, 000 simulations and report the

mean realization to characterize the typical dynamics.
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Figure 3: Bayesian learning vs RLS, first 100 periods – µa

5.2 Bayesian learning dynamics can differ from RLS

We start with a comparison of the evolution of the RLS and Bayesian learning

systems. The theory predicts that even though the expectational stability condi-

tions are the same, the dynamics will be different. Figures 1 and 2 illustrate this

point. In these Figures, the horizontal dotted line represents the rational expec-

tations value of the parameter. Parameters estimated with both recursive least

squares and Bayesian learning converge to rational expectations equilibrium.10

However, it is also evident that the dynamic paths of at and bt differ—and that

these differences decrease over time. Figure 3 and Figure 4 depict first 100 pe-

riods from the same simulation. In these figures the difference between the two

learning procedures is more pronounced.

In both figures, the estimates of Bayesian learners are closer to the rational

expectations values than the recursive least squares estimates.

10The relatively slow convergence is typical result for learning of AR(1) processes. See the
discussion in Evans and Honkapohja (2001).
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5.3 Bayesian learning versus Bayesian estimation

As we mentioned earlier, there are two levels of Bayesian learning. One is that

the agents use the Bayesian estimator µa and µb, and the second is that the agents

treat the estimates as random variables, which gives rise to the term β1Σb,tΩyt in

the actual law of motion (33). In order to distinguish between these two versions

we can compare recursive least squares and Bayesian learning to the third case,

passive Bayesian estimation.

In Figures 5 and 6, we have added the simulated median path of estimated

parameters with the passive Bayesian estimation (PBE). One advantage of plot-

ting all three median trajectories is that we can decompose the Bayesian learning

effect on learning dynamics into two components. The difference between PBE

and RLS trajectories is the result of informative priors.11 The alternative paths

for Bayesian learning and PBE are the result, in turn, of the additional variance-

covariance term in the Bayesian learning expression, stemming from (33).

The striking feature of Figures 5 and 6 is that PBE and BL median tra-

jectories are extremely close to one another, relative to the difference between

these two trajectories and the trajectory of the recursive learning case. This

11In the case of non-informative priors PBE and RLS are the same.
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suggests that the effects of priors are more significant in these examples than

any contribution coming from the additional variance-covariance term.

5.4 Effects of priors and variance

Bayesians have priors that may differ from an uninformative state, while standard

recursive least squares does not. As Figures 7 and 8 illustrate, the precision

of prior beliefs can be relatively more important for transition paths. Figure

7 and Figure 8 depict alternative trajectories of at and bt for different prior

variances.12 The priors here are always centered at rational expectations values.13

The increase in the precision of prior beliefs decreases the variability of the

trajectory and moves it closer to rational expectations equilibrium. We stress,

however, that this pattern is the result of prior beliefs being centered at rational

expectations values. If the priors were centered at any other point, the increased

precision of the prior would cause slower convergence to REE. We think this

point is well understood and we do not illustrate it here.

Figures 9 and 10 show the effects of a larger shock variance on the evolu-

12Since the variance is equal to inverse of precision, x = 4 indicates variance of prior beliefs,
σ, equal 1/4.

13This removes a degree of freedom from the simulations. Since expectational stability is a
local concept, this seems reasonable.
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tion of estimated parameters. The differences between parameter estimates are

increasing in the variance in this example.
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Chapter 6

6 Conclusion

We have shown how to incorporate Bayesian learners into a standard linear recur-

sive macroeconomic system, similar to ones studied by Evans and Honkapohja

(2001). In order to illustrate the nature of the differences between Bayesian

learning and a standard recursive least squares approach, we included a lagged

endogenous variable in the system as well as a two-step ahead expectation. With-

out these features of the model, differences with RLS would not exist or would

be more difficult to see. The analysis here is for an abstract linear scalar system,

and it remains to be seen how these results would translate into commonly-

studied macroeconomic models with microfoundations. Those systems would

presumably have Bayesian decision-making as well as Bayesian updating.

A key result is that the system under Bayesian learning has the same ex-

pectational stability properties as the system under standard recursive learning.

That is, expectational stability conditions are unaffected here by the introduction

of Bayesian versus classical econometricians. Systems like this under Bayesian

learning are just as likely or unlikely to meet expectational stability requirements

as equivalent systems under recursive least squares. Of the “two views” men-

tioned in the introduction, the suggestion that Bayesian estimation is a close

relative of recursive least squares turned out to be the more prescient. Although

agents here understand that they will be updating again in the future, this does

not alter expectational stability findings.

However, we also show that the actual law of motion under Bayesian learning

is in general not identical to the ALM under recursive least squares. This means

that actual transition dynamics will differ under the two assumptions. This may

be material for studies that wish to make quantitative statements about learning

dynamics. We illustrated a few of these differences.
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A Proofs

A.1 Proof of Lemma 1.

Proof. Both µt and Σt can be written in a recursive form. For Σt, we can write

Σ−1
t = Σ−1

0 + ν−2(Z ′

tZt)

= Σ−1
0 + ν−2

t∑

i=1

ziz
′

i

= Σ−1
0 + ν−2

t−1∑

i=1

ziz
′

i + ν−2ztz
′

t

= Σ−1
t−1 + ν−2ztz

′

t. (56)

For µt, we use period-by-period updating, taking yesterday’s estimate as today’s

prior:

µt = Σt(Σ
−1
t−1µt−1 + ν−2ztyt),

= ΣtΣ
−1
t−1µt−1 + Σtν

−2ztyt, (57)

µt − µt−1 = (ΣtΣ
−1
t−1 − I)µt−1 + Σtν

−2ztyt,

µt = µt−1 + Σt

(
(Σ−1

t−1 − Σ−1
t )µt−1 + ν−2ztyt

)
, (58)

where I is a conformable identity matrix. Substituting the expression Σ−1
t =

Σ−1
t−1 + ν−2ztz

′

t, we obtain

µt = µt−1 + Σt

(
ν−2ztyt − ν−2ztz

′

tµt−1

)

= µt−1 + Σtν
−2zt (yt − z′tµt−1) . (59)
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A Proofs

A.1 Proof of Lemma 1.

Proof. Both µt and Σt can be written in a recursive form. For Σt, we can write

Σ−1
t = Σ−1

0 + ν−2(Z ′

tZt)

= Σ−1
0 + ν−2

t∑

i=1

ziz
′

i

= Σ−1
0 + ν−2

t−1∑

i=1

ziz
′

i + ν−2ztz
′

t

= Σ−1
t−1 + ν−2ztz

′

t. (56)

For µt, we use period-by-period updating, taking yesterday’s estimate as today’s

prior:

µt = Σt(Σ
−1
t−1µt−1 + ν−2ztyt),

= ΣtΣ
−1
t−1µt−1 + Σtν

−2ztyt, (57)

µt − µt−1 = (ΣtΣ
−1
t−1 − I)µt−1 + Σtν

−2ztyt,

µt = µt−1 + Σt

(
(Σ−1

t−1 − Σ−1
t )µt−1 + ν−2ztyt

)
, (58)

where I is a conformable identity matrix. Substituting the expression Σ−1
t =

Σ−1
t−1 + ν−2ztz

′

t, we obtain

µt = µt−1 + Σt

(
ν−2ztyt − ν−2ztz

′

tµt−1

)

= µt−1 + Σtν
−2zt (yt − z′tµt−1) . (59)
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A.2 Proof of Lemma 2.

Proof. We can write joint distribution of φ and y as

f(φ, yt|Yt−1) = f(φ|Yt)� �� �
Posterior beliefs

· f(yt|Yt−1)� �� �
Posterior prediction

(60)

= Nφ(µt,Σt)Ny(µ
′

t−1zt, ν
2 + z′tΣt−1zt). (61)

To see the second term of (61), we write the distribution of yt+1 conditional

on Yt as

f(yt+1|Yt) =

�
f(yt+1|Yt, φ)f(φ|Yt) dφ

=

�
Ny(φ

′zt+1, ν
2)Nφ(µt,Σt) dφ

= Ny(µ
′

tzt+1, ν
2 + z′t+1Σtzt+1), (62)

so that f (yt|Yt−1) is as given in (61).

The density function can be written as

f(φ|Yt) = f


 a

b

���Yt


 = N




 µa,t

µb,t


 ,


 σ2

a,t σab,t

σab,t σ2
b,t




 . (63)
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Also, using (17),

µt =


 µa,t

µb,t


 = µt−1 + Σtν

−2zt (yt − z′tµt)

=


 µa,t−1

µb,t−1


+


 σ2

a,t σab,t

σab,t σ2
b,t


 ν−2


 1

yt−1


 (yt − µa,t−1 − µb,t−1yt−1)

(64)

µa,t = µa,t−1 + ν−2(σ2
a,t + σab,tyt−1)� �� �

Σa,t

(yt − µa,t−1 − µb,t−1yt−1) (65)

µb,t = µb,t−1 + ν−2(σab,t + σ2
b,tyt−1)� �� �

Σb,t

(yt − µa,t−1 − µb,t−1yt−1). (66)

We can write

f(b, yt|Yt−1) = f(b|yt, Yt−1)f(yt|Yt−1)

= Nb(µb,t, σ
2
b,t)Ny(µ

′

t−1zt, ν
2 + z′tΣt−1zt). (67)

A.3 Proof of Lemma 3.

Proof. Consider E(byt|Yt−1):

E(byt|Yt−1) =

� �
bytf(b, yt|Yt−1) dyt db

=

� �
bytNb(µb,t, σ

2
b,t)Ny(µ

′

t−1zt, ν
2 + z′tΣt−1zt)dbdyt. (68)
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A.2 Proof of Lemma 2.
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=

�
Ny(φ

′zt+1, ν
2)Nφ(µt,Σt) dφ

= Ny(µ
′

tzt+1, ν
2 + z′t+1Σtzt+1), (62)

so that f (yt|Yt−1) is as given in (61).

The density function can be written as

f(φ|Yt) = f


 a

b

���Yt


 = N




 µa,t

µb,t


 ,


 σ2

a,t σab,t

σab,t σ2
b,t




 . (63)

32

Also, using (17),

µt =
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µb,t
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−2zt (yt − z′tµt)
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 µa,t−1
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 σ2
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σab,t σ2
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 1

yt−1


 (yt − µa,t−1 − µb,t−1yt−1)

(64)
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Σb,t

(yt − µa,t−1 − µb,t−1yt−1). (66)

We can write

f(b, yt|Yt−1) = f(b|yt, Yt−1)f(yt|Yt−1)

= Nb(µb,t, σ
2
b,t)Ny(µ

′

t−1zt, ν
2 + z′tΣt−1zt). (67)

A.3 Proof of Lemma 3.

Proof. Consider E(byt|Yt−1):

E(byt|Yt−1) =

� �
bytf(b, yt|Yt−1) dyt db

=

� �
bytNb(µb,t, σ

2
b,t)Ny(µ

′

t−1zt, ν
2 + z′tΣt−1zt)dbdyt. (68)
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As Ny does not depend on b we can write it as

E(byt|Yt−1) =

∫
ytNy(µ

′

t−1zt, ν
2 + z′tΣt−1zt︸ ︷︷ ︸

Ωyt

)

∫
bNb(µb,t, σ

2
b,t)db

︸ ︷︷ ︸
Etb=µb,t

dyt

=

∫
µb,t ytNy(µ

′

t−1zt,Ωyt) dyt

=

∫
(µb,t−1 + Σb,t(yt − µa,t−1 − µb,t−1yt−1)) ytNy(µ

′

t−1zt,Ωyt)dyt

= (µb,t−1 − Σb,t(µa,t−1 + µb,t−1yt−1))

∫
ytNy(µ

′

t−1zt,Ωyt) dyt
︸ ︷︷ ︸

Et−1yt

+ Σb,t

∫
y2tNyt(µ

′

t−1zt,Ωyt) dyt
︸ ︷︷ ︸
Et−1y

2

t=V art−1(yt)+(Et−1yt)2

= (µb,t−1 − Σb,t(µa,t−1 + µb,t−1yt−1))Et−1yt + Σb,tV art−1(yt) + Σb,t(Et−1yt)
2.

(69)

Recall that

E(yt|Yt−1) = µa,t−1 + µb,t−1yt−1 = µ′

t−1zt.

Therefore, we obtain

E(byt|Yt−1) = (µb,t−1 + Σb,t(E(yt|Yt−1)− µa,t−1 − µb,t−1yt−1))E(yt|Yt−1)+Σb,tV ar(yt|Yt−1)

= µb,t−1E(yt|Yt−1) + Σb,tΩyt . (70)

Then,

E(φ′zt+1|Yt−1) = E(a|Yt−1) + E(byt|Yt−1)

= µa,t−1 + µb,t−1E(yt|Yt−1) + Σb,tΩyt

= µ′

t−1

(
1

µ′

t−1zt

)
+ Σb,tΩyt . (71)
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As Ny does not depend on b we can write it as

E(byt|Yt−1) =
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ytNy(µ

′

t−1zt, ν
2 + z′tΣt−1zt︸ ︷︷ ︸

Ωyt

)

∫
bNb(µb,t, σ

2
b,t)db

︸ ︷︷ ︸
Etb=µb,t

dyt

=

∫
µb,t ytNy(µ

′

t−1zt,Ωyt) dyt

=
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(µb,t−1 + Σb,t(yt − µa,t−1 − µb,t−1yt−1)) ytNy(µ

′

t−1zt,Ωyt)dyt

= (µb,t−1 − Σb,t(µa,t−1 + µb,t−1yt−1))

∫
ytNy(µ

′

t−1zt,Ωyt) dyt
︸ ︷︷ ︸

Et−1yt

+ Σb,t

∫
y2tNyt(µ

′

t−1zt,Ωyt) dyt
︸ ︷︷ ︸
Et−1y

2

t=V art−1(yt)+(Et−1yt)2

= (µb,t−1 − Σb,t(µa,t−1 + µb,t−1yt−1))Et−1yt + Σb,tV art−1(yt) + Σb,t(Et−1yt)
2.

(69)

Recall that

E(yt|Yt−1) = µa,t−1 + µb,t−1yt−1 = µ′

t−1zt.

Therefore, we obtain

E(byt|Yt−1) = (µb,t−1 + Σb,t(E(yt|Yt−1)− µa,t−1 − µb,t−1yt−1))E(yt|Yt−1)+Σb,tV ar(yt|Yt−1)

= µb,t−1E(yt|Yt−1) + Σb,tΩyt . (70)

Then,

E(φ′zt+1|Yt−1) = E(a|Yt−1) + E(byt|Yt−1)

= µa,t−1 + µb,t−1E(yt|Yt−1) + Σb,tΩyt

= µ′

t−1

(
1

µ′

t−1zt

)
+ Σb,tΩyt . (71)
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ytNy(µ

′

t−1zt, ν
2 + z′tΣt−1zt︸ ︷︷ ︸

Ωyt

)

∫
bNb(µb,t, σ

2
b,t)db
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Etb=µb,t

dyt

=

∫
µb,t ytNy(µ

′

t−1zt,Ωyt) dyt

=

∫
(µb,t−1 + Σb,t(yt − µa,t−1 − µb,t−1yt−1)) ytNy(µ

′

t−1zt,Ωyt)dyt

= (µb,t−1 − Σb,t(µa,t−1 + µb,t−1yt−1))

∫
ytNy(µ

′

t−1zt,Ωyt) dyt
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Et−1yt

+ Σb,t

∫
y2tNyt(µ

′

t−1zt,Ωyt) dyt
︸ ︷︷ ︸
Et−1y

2

t=V art−1(yt)+(Et−1yt)2

= (µb,t−1 − Σb,t(µa,t−1 + µb,t−1yt−1))Et−1yt + Σb,tV art−1(yt) + Σb,t(Et−1yt)
2.

(69)

Recall that

E(yt|Yt−1) = µa,t−1 + µb,t−1yt−1 = µ′

t−1zt.

Therefore, we obtain

E(byt|Yt−1) = (µb,t−1 + Σb,t(E(yt|Yt−1)− µa,t−1 − µb,t−1yt−1))E(yt|Yt−1)+Σb,tV ar(yt|Yt−1)

= µb,t−1E(yt|Yt−1) + Σb,tΩyt . (70)

Then,

E(φ′zt+1|Yt−1) = E(a|Yt−1) + E(byt|Yt−1)

= µa,t−1 + µb,t−1E(yt|Yt−1) + Σb,tΩyt

= µ′

t−1

(
1

µ′

t−1zt

)
+ Σb,tΩyt . (71)
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A.4 Proof of Proposition 4.

Proof. Substituting expressions (29) and (22) into (1) under Bayesian learning

we obtain the following expression:

yt = α + δyt−1 + β0E
∗

t−1yt + β1E
∗

t−1yt+1 + vt,

= α + δyt−1 + β0µ
′

t−1zt + β1µ
′

t−1

�
1

µ′

t−1zt

�
+ β1Σb,tΩyt + vt,

= α + δyt−1 + β0(µa,t−1 + µb,t−1yt−1)

+ β1 (µa,t−1 + µb,t−1(µa,t−1 + µb,t−1yt−1)) + β1Σb,tΩyt + vt. (72)

Finally, rearranging this expression, we conclude that the actual law of motion

under Bayesian learning can be written as

yt = [α + (β0 + β1)µa,t−1 + β1µa,t−1µb,t−1]

+
�
δ + β0µb,t−1 + β1µ

2
b,t−1

�
yt−1 + β1Σb,tΩyt + vt. (73)

A.5 Proof of Lemma 5.

Proof. First, consider Σb,tΩyt :

Σ−1
t = Σ−1

t−1 + ν−2ztz
′

t

=


 σ2

a,t−1 σab,t−1

σab,t−1 σ2
b,t−1




−1

+ ν−2


 1 yt−1

yt−1 y2t−1




=




σ2

b,t−1

At−1

+ ν−2 −
σab,t−1

At−1

+ ν−2yt−1

−
σab,t−1

At−1

+ ν−2yt−1
σ2

a,t−1

At−1

+ ν−2y2t−1


 , (74)
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As Ny does not depend on b we can write it as
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′
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Ωyt
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∫
bNb(µb,t, σ

2
b,t)db
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=
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′
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′
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Et−1yt

+ Σb,t
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′
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Et−1y

2
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Recall that

E(yt|Yt−1) = µa,t−1 + µb,t−1yt−1 = µ′
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Therefore, we obtain
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= µb,t−1E(yt|Yt−1) + Σb,tΩyt . (70)

Then,

E(φ′zt+1|Yt−1) = E(a|Yt−1) + E(byt|Yt−1)

= µa,t−1 + µb,t−1E(yt|Yt−1) + Σb,tΩyt

= µ′

t−1

(
1

µ′

t−1zt

)
+ Σb,tΩyt . (71)
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As Ny does not depend on b we can write it as

E(byt|Yt−1) =
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ytNy(µ

′

t−1zt, ν
2 + z′tΣt−1zt︸ ︷︷ ︸

Ωyt
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∫
bNb(µb,t, σ

2
b,t)db
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′
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︸ ︷︷ ︸
Et−1y

2

t=V art−1(yt)+(Et−1yt)2

= (µb,t−1 − Σb,t(µa,t−1 + µb,t−1yt−1))Et−1yt + Σb,tV art−1(yt) + Σb,t(Et−1yt)
2.
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t−1zt.

Therefore, we obtain
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E(φ′zt+1|Yt−1) = E(a|Yt−1) + E(byt|Yt−1)

= µa,t−1 + µb,t−1E(yt|Yt−1) + Σb,tΩyt

= µ′

t−1

(
1

µ′

t−1zt

)
+ Σb,tΩyt . (71)
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Proof. Substituting expressions (29) and (22) into (1) under Bayesian learning

we obtain the following expression:

yt = α + δyt−1 + β0E
∗

t−1yt + β1E
∗

t−1yt+1 + vt,

= α + δyt−1 + β0µ
′

t−1zt + β1µ
′

t−1

�
1

µ′

t−1zt

�
+ β1Σb,tΩyt + vt,

= α + δyt−1 + β0(µa,t−1 + µb,t−1yt−1)

+ β1 (µa,t−1 + µb,t−1(µa,t−1 + µb,t−1yt−1)) + β1Σb,tΩyt + vt. (72)

Finally, rearranging this expression, we conclude that the actual law of motion

under Bayesian learning can be written as

yt = [α + (β0 + β1)µa,t−1 + β1µa,t−1µb,t−1]

+
�
δ + β0µb,t−1 + β1µ

2
b,t−1

�
yt−1 + β1Σb,tΩyt + vt. (73)

A.5 Proof of Lemma 5.

Proof. First, consider Σb,tΩyt :

Σ−1
t = Σ−1

t−1 + ν−2ztz
′

t

=


 σ2

a,t−1 σab,t−1

σab,t−1 σ2
b,t−1




−1

+ ν−2


 1 yt−1

yt−1 y2t−1




=




σ2

b,t−1

At−1

+ ν−2 −
σab,t−1

At−1

+ ν−2yt−1

−
σab,t−1

At−1

+ ν−2yt−1
σ2

a,t−1

At−1

+ ν−2y2t−1


 , (74)
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where At−1 = σ2
a,t−1σ

2
b,t−1 − σ2

ab,t−1 is the determinant of Σt−1. Then,

Σt = (Σ−1
t )−1

=




σ2

a,t−1

At−1A
I
t

+
ν−2y2t−1

AI
t

σab,t−1

At−1A
I
t

− ν−2yt−1

AI
t

σab,t−1

At−1A
I
t

− ν−2yt−1

AI
t

σ2

b,t−1

At−1A
I
t

+ ν−2

AI
t


 , (75)

where AI
t = det(Σ−1

t ). We defined Σb,t as

Σb,t = Xν−2Σtzt = ν−2(σab,t + σ2
b,tyt−1), (76)

with X = (0 1). Therefore,

Σb,t = ν−2

�
σab,t−1

At−1AI
t

−
ν−2yt−1

AI
t

+

�
σ2
b,t−1

At−1AI
t

+
ν−2

AI
t

�
yt−1

�
,

=
ν−2

At−1AI
t

�
σab,t−1 + σ2

b,t−1yt−1

�
,

=
σab,t−1 + σ2

b,t−1yt−1

ν2 + σ2
a,t−1 + 2σab,t−1yt−1 + σ2

b,t−1y
2
t−1

, (77)

as

AI
t =

1

ν2At−1

�
ν2 + σ2

a,t−1 + 2σab,t−1yt−1 + σ2
b,t−1y

2
t−1

�
. (78)

We are ultimately interested in Σb,tΩyt . Using

Ωyt = V ar(yt|Yt−1)

= ν2 + z′tΣt−1zt

= ν2 + σ2
a,t−1 + 2yt−1σab,t−1 + y2t−1σ

2
b,t−1, (79)

we can express Σb,tΩyt as

Σb,tΩyt = σab,t−1 + σ2
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