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Abstract

Accurate inflation forecasts lie at the heart of effective monetary policy. By utilizing a thick modelling

approach, this paper investigates the out-of-sample quality of the short-term Polish headline inflation

forecasts generated by a combination of thousands of bagged single hidden-layer feed-forward artificial

neural networks in the period of systematically falling and persistently low inflation. Results indicate

that the forecasts from this model outperform a battery of popular approaches, especially at longer

horizons. During the excessive disinflation it has more accurately accounted for the slowly evolving

local mean of inflation and remained only mildly biased. Moreover, combining several linear and non-

linear approaches with diverse underlying model assumptions delivers further statistically significant

gains in the predictive accuracy and statistically outperforms a panel of examined benchmarks at

multiple horizons. The robustness analysis shows that resigning from data preprocessing and bootstrap

aggregating severely compromises the forecasting ability of the model.

JEL: C22, C38, C45, C53, C55

Keywords: inflation forecasting, artificial neural networks, principal components, bootstrap

aggregating, forecast combination

Highlights

1. The performance of the artificial neural networks in forecasting inflation is investigated.

2. Bagging and forecast combination methods of thousands of forecasts are applied.

3. The model outperforms several competing rivals especially at longer horizons.

4. The combination of linear and non-linear models delivers further gains in accuracy.

5. Resigning from bootstrap aggregating severely compromises the forecasting ability of the model.

2
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Chapter 1

1. Introduction

Forecasting inflation lies at the heart of central bank’s activities. Since monetary policy influences

the economy via transmission mechanisms with a substantial lag, tackling inflationary or deflationary

pressures that may arise in the future requires the policy makers to take decisions ahead of time. Therefore,

accurate and reliable inflation forecasts are an indispensable ingredient in formulating monetary policy and

targeting future inflation (Orphanides and Wieland, 2008). They play also a vital role in the proper and

transparent communication process with the general public (Blinder et al., 2008), since they approximate

the shape of the future monetary policy and influence the decision-making process of the private and

business sector agents by forming their expectations and affecting negotiations regarding the nominal

commitment (Faust and Wright, 2013).

Over the years a significant amount of various approaches has been developed to improve the accuracy

of forecasts. In particular, a considerable body of the existing literature is devoted to predicting inflation.

The complexity of the price dynamics as well as the plurality of its potential determinants motivate

researchers to pursue more and more elastic modelling frameworks that incorporate as much useful

information as possible. Employing a large number of potential predictors, methods aimed at reducing the

dimensionality of the analysis, shrinkage or forecast combination has systematically become the current

state of the art. Several common frameworks should be enumerated here.

Firstly, popular univariate approaches adopted by practitioners include time-series models exploiting

the information embedded in large datasets of real activity indicators (Stock and Watson, 1999), asset prices

(Forni et al., 2003), survey measures (Ang et al., 2007) or aggregating forecasts of highly disaggregated

inflation components (Duarte and Rua, 2007). Secondly, apart from employing large information sets, a

strand of researchers develop their models utilizing a generalized Phillips curve framework using Bayesian

model averaging across different regression specifications and allowing the coefficients as well as the

entire forecasting model to change over time (e.g Groen et al., 2013). Thirdly, multivariate approaches

include most often vector autoregressive models augmented with common factors (Berg and Henzel,

2015), shrinkage procedures (Jochmann et al., 2010), time-varying coefficients (Stella and Stock, 2012) or

tight steady-state priors (Stelmasiak and Szafrański, 2016a). Fourthly, common structural approaches

employ either the univariate present value formulation of the new Keynesian Phillips curve (Rumler and

Valderrama, 2010) or the dynamic stochastic equilibrium models (Edge and Gurkaynak, 2010). Finally,

an important role play judgemental forecasts (Faust and Wright, 2013), prepared by the professional

forecasters and based on applying a subjective filters to the observed developments in the economy. The

majority of these approaches have been extensively compared and discussed by Faust and Wright (2013).

With the explosion in the number and the variety of the forecasting methods, attention has also

been paid to artificial neural networks – a class of highly non-linear models. Tremendous surge in the

research activities took place in the last decade of the twentieth century (Zhang et al., 1998). Although

the predictive performance of forecasts generated by the artificial neural networks is ambiguous across the

forecast horizons, a number of empirical studies conclude that the improvement in the forecast accuracy

upon the standard benchmarks is non-negligible, especially for predicting inflation at longer horizons

(e.g. Moshiri and Cameron, 2000; Chen et al., 2001; Nakamura, 2005; Binner et al., 2005) or in times of

structural change and considerable uncertainty (McAdam and McNelis, 2005). Moreover, Ahmed et al.

(2010) imply that a particular class of these models – single hidden-layer feed-forward artificial neural

networks – beside beating linear benchmarks displays also superior predictive performance in comparison

to other common machine learning techniques.

Although a myriad of forecasting models and methods are constantly developed, predicting inflation

can be still perceived as a daunting challenge. Evidence put forward by Atkeson and Ohanian (2001)

suggests that the traditional macroeconomic Phillips curve linking the adjustments in the real activity with

the nominal sphere of the economy fails to forecast inflation more accurately than the naive benchmark

extrapolating the inflation developments in the most recent past. Stock and Watson (2007) continue this

3
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argument underlining that it has become much more difficult to provide a generous value added from a

multivariate forecasting model over a univariate benchmark. They show that the U.S. inflation can be well

approximated by the univariate unobserved component model where the disturbances follow a stochastic

volatility process. The out-of-sample performance of this model is hard to beat. Moreover, in a recent

comprehensive comparison of models popularly employed for inflation forecasting Faust and Wright (2013)

conclude that judgemental inflation forecasts tend to outperform traditional approaches. The authors

argue that this advantage stems from the fact that a professional forecaster can elastically choose two

boundary values denoting the current and the expected future local mean of inflation and simply employ

a smooth transition path to connect these two extreme states.

This difficult challenge of inflation forecasting continues. Recently headline inflation in many countries

has revealed a peculiar behaviour throwing down the gauntlet to both models and professional forecasters.

After 2011 the inflation rate across most of the highly developed economies and a number of emerging ones

has abruptly decreased and remained persistently low for a prolonged period of time, deviating significantly

from the official targets of the central banks. A protracted period of low inflation has been observed also

in Poland (Szafranek, 2017). As as result, most of the stationary models displaying a mean-reverting

property has failed in forecasting inflation for longer horizons and revealed a significant bias.

This puzzling development of inflation motivates me to study whether employing a large combination

of highly non-linear models can improve inflation forecasts in Poland upon the battery of benchmarks.

For this purpose, I employ the Polish data. In the forecasting exercise I consider several novelties by

studying the joint effect of employing factor analysis, bootstrap aggregating and forecast combinations in

a thick-based approach of inflation forecasting. In a pseudo real-time out-of-sample experiment I study the

usefulness of combining a large number of forecasts generated from bagged single hidden-layer artificial

neural networks which architecture is governed by the realization of a random variable. More specifically,

in the first step I employ a vintage, large macroeconomic database and extract several unobserved factors

using principal components analysis. I treat these derived components as input variables for each of the

10 000 individual single hidden-layer feed-forward artificial neural networks. Secondly, in order to avoid

subjectivity in choosing the number of units in the hidden layer, I assume that it follows a zero-truncated

Poisson distribution. Thirdly, I apply the supervised learning procedure to train the models and employ

bootstrap averaging to stabilize the results of the whole model and improve its forecast accuracy. Next,

I use combination methods to aggregate all individual predictions into the point combination forecast.

Lastly, I perform an extensive comparison between the competing models and report the outcomes of the

sensitivity analysis regarding the key parameters of the model.

The following conclusions are warranted in the paper. First, the combined forecast from a large

number of bagged artificial neural networks is able to outperform a battery of competing models for longer

horizons. Importantly, this superior predictive ability is more pronounced once the inflation deviates

significantly from its official target and remains persistently low. This divergence in the forecast accuracy

of the considered models and the proposed approach stems from the fact that most time-series models and

judgement forecasts available for the Polish headline inflation reflect a strong property of mean-reversion.

As a result, they have failed to pin down the unorthodox behaviour of the headline inflation after 2011.

Secondly, according to the Giacomini and White (2006) test statistics, the gains in the forecast accuracy

are statistically significant in a number of cases. Thirdly, combining best performing linear and non-linear

approaches delivers further gains in the forecast accuracy and statistically outperforms a panel of univariate

and multivariate approaches, including the Atkeson and Ohanian (2001) benchmark. Lastly, the robustness

analysis indicates that a parsimonious architecture of the neural network is preferred and applying proper

data preprocessing and the bootstrap aggregating greatly increases the forecast accuracy.

The outline of the paper is as follows. Section 2 briefly introduces the concept of an artificial neural

network model and reviews the recent findings from the literature on the predictive ability of this class

of non-linear models. The model, the data and the estimation process is described in detail in section 3.

Main results are presented in section 4 along with an extensive robustness check. Section 5 concludes.

4
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Chapter 2

argument underlining that it has become much more difficult to provide a generous value added from a

multivariate forecasting model over a univariate benchmark. They show that the U.S. inflation can be well

approximated by the univariate unobserved component model where the disturbances follow a stochastic

volatility process. The out-of-sample performance of this model is hard to beat. Moreover, in a recent

comprehensive comparison of models popularly employed for inflation forecasting Faust and Wright (2013)

conclude that judgemental inflation forecasts tend to outperform traditional approaches. The authors

argue that this advantage stems from the fact that a professional forecaster can elastically choose two

boundary values denoting the current and the expected future local mean of inflation and simply employ

a smooth transition path to connect these two extreme states.

This difficult challenge of inflation forecasting continues. Recently headline inflation in many countries

has revealed a peculiar behaviour throwing down the gauntlet to both models and professional forecasters.

After 2011 the inflation rate across most of the highly developed economies and a number of emerging ones

has abruptly decreased and remained persistently low for a prolonged period of time, deviating significantly

from the official targets of the central banks. A protracted period of low inflation has been observed also

in Poland (Szafranek, 2017). As as result, most of the stationary models displaying a mean-reverting

property has failed in forecasting inflation for longer horizons and revealed a significant bias.

This puzzling development of inflation motivates me to study whether employing a large combination

of highly non-linear models can improve inflation forecasts in Poland upon the battery of benchmarks.

For this purpose, I employ the Polish data. In the forecasting exercise I consider several novelties by

studying the joint effect of employing factor analysis, bootstrap aggregating and forecast combinations in

a thick-based approach of inflation forecasting. In a pseudo real-time out-of-sample experiment I study the

usefulness of combining a large number of forecasts generated from bagged single hidden-layer artificial

neural networks which architecture is governed by the realization of a random variable. More specifically,

in the first step I employ a vintage, large macroeconomic database and extract several unobserved factors

using principal components analysis. I treat these derived components as input variables for each of the

10 000 individual single hidden-layer feed-forward artificial neural networks. Secondly, in order to avoid

subjectivity in choosing the number of units in the hidden layer, I assume that it follows a zero-truncated

Poisson distribution. Thirdly, I apply the supervised learning procedure to train the models and employ

bootstrap averaging to stabilize the results of the whole model and improve its forecast accuracy. Next,

I use combination methods to aggregate all individual predictions into the point combination forecast.

Lastly, I perform an extensive comparison between the competing models and report the outcomes of the

sensitivity analysis regarding the key parameters of the model.

The following conclusions are warranted in the paper. First, the combined forecast from a large

number of bagged artificial neural networks is able to outperform a battery of competing models for longer

horizons. Importantly, this superior predictive ability is more pronounced once the inflation deviates

significantly from its official target and remains persistently low. This divergence in the forecast accuracy

of the considered models and the proposed approach stems from the fact that most time-series models and

judgement forecasts available for the Polish headline inflation reflect a strong property of mean-reversion.

As a result, they have failed to pin down the unorthodox behaviour of the headline inflation after 2011.

Secondly, according to the Giacomini and White (2006) test statistics, the gains in the forecast accuracy

are statistically significant in a number of cases. Thirdly, combining best performing linear and non-linear

approaches delivers further gains in the forecast accuracy and statistically outperforms a panel of univariate

and multivariate approaches, including the Atkeson and Ohanian (2001) benchmark. Lastly, the robustness

analysis indicates that a parsimonious architecture of the neural network is preferred and applying proper

data preprocessing and the bootstrap aggregating greatly increases the forecast accuracy.

The outline of the paper is as follows. Section 2 briefly introduces the concept of an artificial neural

network model and reviews the recent findings from the literature on the predictive ability of this class

of non-linear models. The model, the data and the estimation process is described in detail in section 3.

Main results are presented in section 4 along with an extensive robustness check. Section 5 concludes.

4

2. Literature review

Artificial neural networks are one of the most powerful state-of-the-art machine learning frameworks

(Ahmed et al., 2010). In this paper I restrict my attention to the simplest representative of this class of

models: a single hidden-layer feed-forward artificial neural network. It can be mathematically represented

as follows:

ŷt = f

( J∑
j=1

ν̂jg(ω̂
′

jxt)

)
(1)

where x
′

t = (1, x1,t, . . . , xn,t)
′
are explanatory (input) variables at time t, ω̂T

j = (ω̂1,j , . . . , ω̂n+1,j) is the

vector of estimated weights connecting the input variables with the jth hidden node, j = (1, . . . , J),

ν̂1, . . . , ν̂J are the estimated weights for the output node and ŷt is the network output at time t. The

functions g and f represent the bounded activation function for the neurons in the hidden and the output

layer, respectively. Naturally, more complex structures exist (e.g Schmidhuber, 2015; Prieto et al., 2016),

but they remain beyond the scope of interest of this paper.

Using the neural network terminology, the architecture of the model is constituted by the number of

layers and neurons (nodes, units) grouped in each layer. A single hidden-layer feed-forward artificial neural

network consists of three layers: the input layer (with the number of neurons corresponding to the number

of explanatory variables), the hidden layer (with the neurons transforming the incoming information most

often via a continuous, monotonic and differentiable activation function) and the output layer (with the

number of neurons corresponding to the number of dependent variables). The flexibility of the model

and the ability to reproduce non-linear patterns is determined by the hidden layer. Hornik et al. (1989)

show that under mild conditions one hidden layer with a sufficient number of neurons in the hidden layer

provides an approximation to any piecewise continuous function to any desired level of precision.

In a single hidden-layer feed-forward artificial neural network all neurons are fully connected between

layers by directed arcs. As a result, information runs exclusively from the input to the output layer (hence

the network is feed-forward). The weights determine the relative importance of the flowing information by

attenuating or amplifying the flowing signal. They are estimated in an iterative process with the use of the

training algorithms, so that the network is said to learn the relationship between the presented patterns.

During the learning process the information is propagated through the network with initially randomized

weights. In the output layer the predicted outcome is compared with the target value and the parameters

are adjusted in the direction that minimizes the chosen cost function. Next, the modified weights are

used to recalculate the predicted value and compare it again with the target value. The learning process

continues until the network reaches a specified criterion.

The tremendous surge in the research activities studying the applications of the artificial neural

networks for forecasting financial and macroeconomic variables has been observed in the last decade

of the twentieth century. From the forecasting perspective, Zhang et al. (1998) provide an extensive

summary on the theoretical considerations regarding the construction of the neural networks, highlight key

uncertainties connected with the modelling process as well as summarize numerous empirical applications

in forecasting. The authors stress that some unique characteristics of the artificial neural networks –

non-linearity, flexibility and adaptability – make them suitable for forecasting purposes. However, they

underline that their predictive performance remains inconclusive and may be problem-specific. They

state that in order to properly utilize this class of models, some key limitations have to be acknowledged.

These shortcomings include a large degree of uncertainty in the modelling phase since choosing proper

network architecture and learning parameters is often based on a trial-and-error methodology, the poor

interpretability of the results due to their highly non-linear nature (though Refenes et al. (1994) propose

a sensitivity analysis for the weights aimed at understanding the relative importance of the network’s

inputs) and issues of overfitting and local convergence (Goffe et al., 1994) connected with the necessity

to estimate a large number of parameters. They conclude, however, that artificial neural networks are a

promising alternative to traditional linear methods. A more general perspective on the artificial neural
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networks, including also recent developments in this field, provide Prieto et al. (2016).

The overall verdict regarding the accuracy of the inflation forecasts generated by the artificial neural

networks remains ambiguous. However, several empirical applications confirm that these models can

generate competitive forecasts in comparison to the traditional approaches, especially for longer horizons

or in periods of significant structural change and uncertainty.

Several applications point to the superior predictive accuracy of these models. Swanson and White

(1997) conclude that the artificial neural networks appear to be a useful alternative to less flexible,

fixed specifications linear models, particularly at forecast horizons greater than one-step-ahead. Moshiri

et al. (1999) compare forecasts from three artificial neural network models (feed-forward, recurrent

and radial-basis neural network) with the econometric time-series approaches and conclude that the

non-linear models outperform the linear benchmarks especially at the 12-month horizon. Among the

non-linear models, a simple feed-forward artificial neural network tends to perform the best. Moshiri and

Cameron (2000) provide further evidence claiming that a simple backpropagation neural network delivers

as accurate forecasts as its traditional competitors – a structural, a vector autoregressive and Bayesian

vector autoregressive model – and in some cases they are able to outperform them. Again, the performance

of the non-linear model is best for the twelve-month-ahead horizon. Chen et al. (2001) examine the

forecasting performance of the stylized Phillips curve models and the semiparametric autoregressive neural

network with exogenous variables for the U.S. inflation. They find that the latter models outperform

linear models in one-step-ahead forecast competition. Nakamura (2005) concludes that the artificial neural

network outperforms the univariate autoregressive models for forecast horizons not larger than 3 quarter.

The author highlights that not accounting for the risk of overfitting of the artificial neural network by

implementing early stopping mechanism can severely compromise the predictive accuracy of the model.

McAdam and McNelis (2005) show that a neural network-based thick model based on the Phillips curve

formulation outperforms the linear models for the real-time and bootstrap forecasts. They claim that

the pay-off of utilizing the artificial neural networks in the thick modelling framework is visible in the

period of structural change and uncertainty. Binner et al. (2005) investigate the relative performance of

the Euro area inflation forecasts generated by the artificial neural networks and the linear univariate and

multivariate models. They conclude that both the within-sample and the out-of-sample performance of

non-linear models is superior.

Contrary evidence is also present in the empirical literature. Teräsvirta et al. (2005) show overall mixed

results for the forecasting performance of inflation and other macroeconomic variables in seven economies

by the single hidden-layer artificial neural networks. However, they conclude that at long horizons the

forecast accuracy improves. Moreover, they claim that combining non-linear models (smooth threshold

autoregressive models with artificial neural networks) with uneven performance leads to remarkably good

inflation forecasts. Binner et al. (2006) provide evidence that non-linearities in the U.S. inflation rate in

the short-term are accounted equally well by a Markov-switching model and a combination of recurrent

neural networks, but in the long-term the Markov-switching approach is preferred. Kock and Teräsvirta

(2013) find that artificial neural networks do not outperform a linear autoregressive approach at any

horizon for the Finnish inflation rate. However, they utilize only automated techniques.

Not limiting the review of the artificial neural network applications to inflation forecasts, Ahmed

et al. (2010) show in a large-scale comparison based on the M3 time-series competition data that the most

popular artificial neural networks – single hidden-layer feed-forward models – outperform other common

machine learning methods. They highlight that different preprocessing methods significantly impact the

performance of the model. Furthermore, Andrawis et al. (2011) conclude that a simple average forecast

combination of the best linear and non-linear approaches delivers superior results.

Taking into account the advantages as well as the caveats of the artificial neural networks, in this

paper I combine several methods of improving the predictive ability put forward in the literature with the

artificial neural networks and examine their joint accuracy in forecasting the Polish inflation rate in a

period of systematically falling and persistently low inflation.

6



9NBP Working Paper No. 262

Chapter 3

networks, including also recent developments in this field, provide Prieto et al. (2016).

The overall verdict regarding the accuracy of the inflation forecasts generated by the artificial neural

networks remains ambiguous. However, several empirical applications confirm that these models can

generate competitive forecasts in comparison to the traditional approaches, especially for longer horizons

or in periods of significant structural change and uncertainty.

Several applications point to the superior predictive accuracy of these models. Swanson and White

(1997) conclude that the artificial neural networks appear to be a useful alternative to less flexible,

fixed specifications linear models, particularly at forecast horizons greater than one-step-ahead. Moshiri

et al. (1999) compare forecasts from three artificial neural network models (feed-forward, recurrent

and radial-basis neural network) with the econometric time-series approaches and conclude that the

non-linear models outperform the linear benchmarks especially at the 12-month horizon. Among the

non-linear models, a simple feed-forward artificial neural network tends to perform the best. Moshiri and

Cameron (2000) provide further evidence claiming that a simple backpropagation neural network delivers

as accurate forecasts as its traditional competitors – a structural, a vector autoregressive and Bayesian

vector autoregressive model – and in some cases they are able to outperform them. Again, the performance

of the non-linear model is best for the twelve-month-ahead horizon. Chen et al. (2001) examine the

forecasting performance of the stylized Phillips curve models and the semiparametric autoregressive neural

network with exogenous variables for the U.S. inflation. They find that the latter models outperform

linear models in one-step-ahead forecast competition. Nakamura (2005) concludes that the artificial neural

network outperforms the univariate autoregressive models for forecast horizons not larger than 3 quarter.

The author highlights that not accounting for the risk of overfitting of the artificial neural network by

implementing early stopping mechanism can severely compromise the predictive accuracy of the model.

McAdam and McNelis (2005) show that a neural network-based thick model based on the Phillips curve

formulation outperforms the linear models for the real-time and bootstrap forecasts. They claim that

the pay-off of utilizing the artificial neural networks in the thick modelling framework is visible in the

period of structural change and uncertainty. Binner et al. (2005) investigate the relative performance of

the Euro area inflation forecasts generated by the artificial neural networks and the linear univariate and

multivariate models. They conclude that both the within-sample and the out-of-sample performance of

non-linear models is superior.

Contrary evidence is also present in the empirical literature. Teräsvirta et al. (2005) show overall mixed

results for the forecasting performance of inflation and other macroeconomic variables in seven economies

by the single hidden-layer artificial neural networks. However, they conclude that at long horizons the

forecast accuracy improves. Moreover, they claim that combining non-linear models (smooth threshold

autoregressive models with artificial neural networks) with uneven performance leads to remarkably good

inflation forecasts. Binner et al. (2006) provide evidence that non-linearities in the U.S. inflation rate in

the short-term are accounted equally well by a Markov-switching model and a combination of recurrent

neural networks, but in the long-term the Markov-switching approach is preferred. Kock and Teräsvirta

(2013) find that artificial neural networks do not outperform a linear autoregressive approach at any

horizon for the Finnish inflation rate. However, they utilize only automated techniques.

Not limiting the review of the artificial neural network applications to inflation forecasts, Ahmed

et al. (2010) show in a large-scale comparison based on the M3 time-series competition data that the most

popular artificial neural networks – single hidden-layer feed-forward models – outperform other common

machine learning methods. They highlight that different preprocessing methods significantly impact the

performance of the model. Furthermore, Andrawis et al. (2011) conclude that a simple average forecast

combination of the best linear and non-linear approaches delivers superior results.

Taking into account the advantages as well as the caveats of the artificial neural networks, in this

paper I combine several methods of improving the predictive ability put forward in the literature with the

artificial neural networks and examine their joint accuracy in forecasting the Polish inflation rate in a

period of systematically falling and persistently low inflation.

6

3. The model and the data

This section provides the description of my forecasting exercise. Firstly, I present the specification of

the non-linear model employed throughout the paper: a single hidden-layer feed-forward artificial neural

network. Secondly, I describe the vintage dataset and the preprocessing step. Next, I discuss the learning

procedure which comprises of employing bootstrap aggregating and a specific learning algorithm. Then I

establish several simple methods used to obtain the combination forecast, introduce shortly a round-up of

competing models utilized for comparison purposes and discuss the forecast evaluation criteria. I end this

section by presenting a number of alternative specifications of the model considered as a robustness check.

3.1. The model

As outlined in the previous section, a considerable strand of literature suggests that a single hidden-

layer artificial neural network provides the most accurate forecasts. Therefore, in this paper I focus my

attention on this class of non-linear models. Equation (2) presents its mathematical representation:

yt = h

( q∑
j=1

βjg
(
β0j +

p∑
i=1

βijxi,t

))
+ εt (2)

where: the output of the artificial neural network yt at time t depends on the set of explanatory variables

xt = (x1,t, . . . , xp,t), the bias (intercept) of the jth hidden layer neurons β0j , the model connection

weights βj , j = (1, . . . , q) and βij , i = (1, . . . , p), j = (1, . . . , q) corresponding to the arcs (synapses)

between neurons (units). In this framework p is the number of the input nodes equal to the number of the

explanatory variables, q denotes the number of the hidden units, g is the bounded activation function in

each neuron of the hidden layer and h is the activation function of the output layer. The error term εt

is assumed to be IID(0, σ2). In this particular exercise y denotes the monthly headline inflation rate in

Poland.

Building an artificial neural network requires determining its architecture. At the beginning, explana-

tory (input) variables have to be selected. I discuss this choice in section 3.2. Secondly, one has to choose

the number of neurons (nodes) in the hidden layer and their activation (squashing) function. Although

some algorithms have been proposed in the literature (e.g. Zhang et al., 1998; Moshiri and Cameron, 2000;

Teräsvirta et al., 2005), the choice of the number of neurons in the hidden layer remains problematic and

normally is a subject to a rule-of-thumb methodology and tedious, time-consuming experiments. Most

authors examine different specifications and select the one yielding the best results, which may introduce

subjectivity into the discussion of the outcomes. In this paper I present a thick modelling approach by

estimating a large number of artificial neural networks. This framework allows me to remain agnostic

about the number of the neurons in the hidden layer. Instead, I account for the uncertainty regarding the

optimal number of the neurons in the hidden layer by assuming that it is a random variable following a

zero-truncated Poisson (Ztp) distribution:

ZTP (J) = P (Q = q |Q > 0) =
λq

(eλ − 1)q!
(3)

with the expected value equal to:

γ = E[Q] =
λ

1− e−λ
(4)

where λ is the parameter of the standard Poisson distribution. This choice is motivated twofold. First, I

want to restrict all artificial neural networks entering the thick model to be non-linear. Hence, each model

must possess at least one unit in the hidden layer. Second, as the number of the neurons in the hidden

layer increases, the necessity to estimate a large number of weights (parameters) arises. This may lead

to the loss of generalization properties and overfitting problems. Hence I favour models that are rather

parsimonious and choose a rightly skewed distribution. In the baseline specification of the model I choose

7



Narodowy Bank Polski10

γ = 3. In the paper I examine how different values of the parameter γ governing the expected size of the

artificial neural network influence the forecasting ability of the model.

The information in each neuron of the hidden layer is transformed by an activation function g, which

ideally should be continuous, non-decreasing and differentiable. Popularly, a logistic function is chosen.

However, since inflation may take negative values, I follow the approach of Binner et al. (2005) as well

as Nakamura (2005) and utilize the hyperbolic tangent to process the linear combination of explanatory

variables entering each hidden layer neuron. Moreover, Bishop (1995) states that this function gives rise to

faster convergence of the learning algorithms. Therefore, the linear combination ûj,t = β̂0j +
∑p

i=1 β̂ijxi,t

of input variables and weights entering the jth unit of the hidden layer is transformed according to the

following equation:

tanh(ûj,t) =
e2ûj,t − 1

e2ûj,t + 1
(5)

For the output unit I consider the identity function: h(
∑q

j=1 β̂jg(ûj,t)) =
∑q

j=1 β̂jg(ûj,t).

3.2. The data and the preprocessing stage

My specific forecasting experiment concerns the Polish headline inflation. For that purpose I utilize

the real-time dataset of 188 potential predictors spanning the period from January 1999 to December

2016. During the exercise I generate a total number of 72 quasi real-time forecasts in a recursive manner

starting in January 2011. I asses inflation forecast accuracy over the maximal horizon of 12 months.

The vintage database consists of monthly time series used in the study of forecasting inflation with

the dynamic factor model by Baranowski et al. (2010). For clarification purposes, let me here denote the

data available in each vintage by Xv = {xit}, i = 1, . . . , N , t = 1, · · · , Tv and v = 1, . . . , 72, where N = 188

stands for the number of all potential explanatory variables and Tv denotes the size of the vth vintage.

I apply a recursive strategy using an expanding estimation window. Therefore, the first (last) vintage

of data spans the period 1999:01-2010:12 (1999:01-2016:12) and contains 144 (216) observations. The

utilized variables depict a broad illustration of the domestic and foreign stance of the economy and can be

categorized into the following groups: market conditions in trade, industrial production and construction

(48), foreign trade (10), exchange rates (4), money market and bond yields (7), stock exchange indices

(8), money supply (6), official reserve assets (3), consolidated balances of the monetary institutions (11),

PPI indices (9), labour market indices (10), public finance indices (4), international commodity prices

(15), fuel prices (3), domestic agriculture products prices (6), CPI indices (36) and miscellaneous (8). A

detailed list of all variables used in the analysis is available on request.

Preprocessing of the data is often found to be crucial for the forecasting performance of the artificial

neural networks and is commonly adopted in the literature (e.g. Zhang et al., 1998; McAdam and McNelis,

2005; Ahmed et al., 2010). Preprocessed data decrease the risk of computational problems and make

the training process more efficient (Zhang et al., 1998). Moreover, utilizing all potential predictors is

improbable due to a large number of weights requiring estimation.

Taking this into consideration, I assume that the information in each vintage can be effectively

compressed to several (r � N) common factors. Following the frequent practice (e.g. Stock and Watson,

1999) in the first step I seasonally adjust all variables in the quasi real-time. This is done to avoid extracting

a common for explanatory variables seasonal pattern which can significantly depart from the seasonal

pattern of the headline inflation (Baranowski et al., 2010). Moreover, though artificial neural networks

should be able to learn non-linear patterns, Nelson et al. (1999) state that using seasonally adjusted data

improves the overall forecast accuracy of the neural networks.

In the next step, I vertically align the data due to their different publication lags which results

in the so-call ragged-edge problem. Thirdly, I derive a small number (r � N) of the largest factors

f̂t = (f̂1,t, . . . , f̂r,t) using the principal components analysis on the standardised data and treat them

as the explanatory (input) variables. Moreover, since the principal components are estimated on the

8
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γ = 3. In the paper I examine how different values of the parameter γ governing the expected size of the

artificial neural network influence the forecasting ability of the model.

The information in each neuron of the hidden layer is transformed by an activation function g, which

ideally should be continuous, non-decreasing and differentiable. Popularly, a logistic function is chosen.

However, since inflation may take negative values, I follow the approach of Binner et al. (2005) as well

as Nakamura (2005) and utilize the hyperbolic tangent to process the linear combination of explanatory

variables entering each hidden layer neuron. Moreover, Bishop (1995) states that this function gives rise to

faster convergence of the learning algorithms. Therefore, the linear combination ûj,t = β̂0j +
∑p

i=1 β̂ijxi,t

of input variables and weights entering the jth unit of the hidden layer is transformed according to the

following equation:

tanh(ûj,t) =
e2ûj,t − 1

e2ûj,t + 1
(5)

For the output unit I consider the identity function: h(
∑q

j=1 β̂jg(ûj,t)) =
∑q

j=1 β̂jg(ûj,t).

3.2. The data and the preprocessing stage

My specific forecasting experiment concerns the Polish headline inflation. For that purpose I utilize

the real-time dataset of 188 potential predictors spanning the period from January 1999 to December

2016. During the exercise I generate a total number of 72 quasi real-time forecasts in a recursive manner

starting in January 2011. I asses inflation forecast accuracy over the maximal horizon of 12 months.

The vintage database consists of monthly time series used in the study of forecasting inflation with

the dynamic factor model by Baranowski et al. (2010). For clarification purposes, let me here denote the

data available in each vintage by Xv = {xit}, i = 1, . . . , N , t = 1, · · · , Tv and v = 1, . . . , 72, where N = 188

stands for the number of all potential explanatory variables and Tv denotes the size of the vth vintage.

I apply a recursive strategy using an expanding estimation window. Therefore, the first (last) vintage

of data spans the period 1999:01-2010:12 (1999:01-2016:12) and contains 144 (216) observations. The

utilized variables depict a broad illustration of the domestic and foreign stance of the economy and can be

categorized into the following groups: market conditions in trade, industrial production and construction

(48), foreign trade (10), exchange rates (4), money market and bond yields (7), stock exchange indices

(8), money supply (6), official reserve assets (3), consolidated balances of the monetary institutions (11),

PPI indices (9), labour market indices (10), public finance indices (4), international commodity prices

(15), fuel prices (3), domestic agriculture products prices (6), CPI indices (36) and miscellaneous (8). A

detailed list of all variables used in the analysis is available on request.

Preprocessing of the data is often found to be crucial for the forecasting performance of the artificial

neural networks and is commonly adopted in the literature (e.g. Zhang et al., 1998; McAdam and McNelis,

2005; Ahmed et al., 2010). Preprocessed data decrease the risk of computational problems and make

the training process more efficient (Zhang et al., 1998). Moreover, utilizing all potential predictors is

improbable due to a large number of weights requiring estimation.

Taking this into consideration, I assume that the information in each vintage can be effectively

compressed to several (r � N) common factors. Following the frequent practice (e.g. Stock and Watson,

1999) in the first step I seasonally adjust all variables in the quasi real-time. This is done to avoid extracting

a common for explanatory variables seasonal pattern which can significantly depart from the seasonal

pattern of the headline inflation (Baranowski et al., 2010). Moreover, though artificial neural networks

should be able to learn non-linear patterns, Nelson et al. (1999) state that using seasonally adjusted data

improves the overall forecast accuracy of the neural networks.

In the next step, I vertically align the data due to their different publication lags which results

in the so-call ragged-edge problem. Thirdly, I derive a small number (r � N) of the largest factors

f̂t = (f̂1,t, . . . , f̂r,t) using the principal components analysis on the standardised data and treat them

as the explanatory (input) variables. Moreover, since the principal components are estimated on the
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seasonally-adjusted data and the dependent variable reveals a clear seasonal pattern, I extract the seasonal

component st from the monthly headline inflation using a X-13-Arima-Seats filter and add the estimates

of the seasonal pattern to the set of explanatory variables in order to account for the seasonality in the

dependent variable. Finally, following McAdam and McNelis (2005) as well as Ahmed et al. (2010) I scale

all variables (the dependent variable, the common factors and the seasonal pattern), adjusting them to

the range [0÷ 1] according to the following formula:

υ∗
k,t =

υk,t −min(υk)

max(υk)−min(υk)
(6)

Here υ denotes the variable of interest, υ ∈ {y, f, s}.

3.3. Estimation

In this section I discuss in detail the estimation methodology. Firstly, I outline the bootstrap

aggregating procedure used in my framework. Secondly, I describe the learning algorithm.

3.3.1. Bootstrap aggregating

Considerable uncertainty regarding the proper architecture of the artificial neural network as well as

the serious risk of overfitting non-linear models motivates me to use the thick modelling approach (Granger

and Jeon, 2004). In simple terms, I utilize a substantial number of alternative specifications instead of

focusing my attention on a dominant model and discarding other potential specifications. Thick modelling

in the context of artificial neural networks has been successfully adopted by McAdam and McNelis (2005)

who combine forecasts of twenty neural networks with different architectures. They conclude that pooling

the forecast even from a rather small set of models can have superior predictive accuracy. This approach

can be easily extended to account for a wider variety of specifications which I study in this paper.

I introduce thick modelling in my framework by employing bootstrap aggregation (Breiman, 1996).

In short, bagging consists of perturbing the learning sample, estimating the model on several pseudo-new

bootstrap samples, peforming the forecasts and averaging over all obtained outcomes. Breiman (1996)

shows that bagging reduces the variance of the full model and greatly improves the accuracy of methods for

which the outcomes heavily depend on the particular observed sample. Since artificial neural networks are

data-driven and can suffer high variance in the estimation (Zhang et al., 1998), bagging may substantially

increase their predictive performance and reduce the forecast dispersion.

Several applications of bagging reveal that this approach can significantly decrease the mean squared-

errors of predictions. Inoue and Kilian (2008) show that regression-based bagged models can deliver

substantial increase (up to around 40%) in the forecasting accuracy of the U.S. inflation rate relative

to the autoregressive benchmark, especially at a 12-month horizon. However, the authors conclude that

other methods – the Bayesian shrinkage, the ridge regression, the iterated LASSO and the Bayesian model

average predictor – are capable of achieving similar gains in the forecast accuracy. Rapach and Strauss

(2010) claim that bagging forecasts are often more accurate than a variety of combination forecasts. They

suggest that a conjunction of bagging and combination forecasts can deliver further improvements in the

predictive accuracy. Khwaja et al. (2015) show that forecasts from bagged artificial neural networks are

characterized by lower forecast errors and variance in the forecast values than a variety of considered

models.

Before applying bagging, in order to achieve generalization properties, i.e a satisfactory performance

of the model on unseen data, in machine learning approaches the dataset is normally split into three

parts: the learning, the validation and the test sample. The neural network recognizes the relationship

between the input patterns and the target variable on the training sample. Its performance is evaluated

on the validation set disjoint from the training set. However, since early stopping is implemented to

avoid overfitting, the validation sample takes part indirectly in the learning process, as the training stops
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once the minimum error is reached on the validation set and not learning set. Therefore, to obtain an

unbiased estimate of the generalization capacity of the artificial neural network forecasts on the test set

are necessary.

To apply bootstrap aggregating, I start by arranging the data in the vth vintage in a set of tuples

{yt, f
′

t , st}. They form a matrix of dimension Tv × r + 2:

y1 f̂
′

1 s1
...

...
...

yTv f̂
′

Tv
sTv

where: y denotes the dependent variable (seasonally unadjusted monthly headline inflation), f̂ denotes the

r × 1 factor estimates, s denotes the real-time estimate of the seasonal component of inflation derived

using an X-13-Arima-Seats, t = 1, . . . , Tv denotes time and Tv denotes the number of observation for a

vth vintage. Next, I follow a common practice in the machine learning approaches (Zhang et al., 1998)

and for a given vintage v I construct a learning set Lv and a validation set Vv by randomly distributing

the tuples. In the baseline specification of the model, the learning set contains δ1 = 70% of all tuples

of a given vintage (the dimension of Lv is Ls × r + 2, Ls = δ1 × Tv and the validation set contains the

remaining 1− δ1 = δ2 = 30% of all tuples (the dimension of Vv is Vs × r + 2, Vs = δ2 × Tv. The test set

includes the forecasting period and its dimension is H × r + 2, H = 12.

The training set Lv for the vth vintage is then bagged. Breiman (1996) shows that the gain from

the use of bagging stabilizes if the number of bootstrap pseudo-samples B exceeds 25, but Inoue and

Kilian (2008) as well as Rapach and Strauss (2010) use 100 replicates instead. I follow their approach

and generate B = 100 bootstrap pseudo-new learning sets of size Ls equal to the initial learning set Lv

by sampling uniformly with replacement. This guarantees the independence between samples with the

probability of selecting a particular tuple to the training set amounting to around 63% (Breiman, 1996).

Each bagged training set Lv,i, i = 1, · · · , B for a given vintage v is a matrix of dimension Ls × r + 2 and

has the following structure:

y∗1 f̂
′∗
1 s∗1

...
...

...

y∗Ls
f̂

′∗
Ls

s∗Ls

In the baseline specification of the model, for each of the pseudo-new bootstrapped learning sets Lv,i I

estimate D = 100 models defined by equation (2) with varying architectures determined by the realization

of the random variable Q. As a results, in total I obtain B × D = 10 000 estimated artificial neural

networks.

The validation set is not bagged in order to assess the out-of-sample quality on the historical data of

all neural networks estimated on all generated training samples. Therefore, it has the following structure:

y∗∗1 f̂
′∗∗
1 s∗∗1

...
...

...

y∗∗Vs
f̂

′∗∗
Vs

s∗∗Vs

I evaluate the quality for the jth artificial neural network on the validation set using a simple mean squared

error statistic: MSEj =
∑Vs

i=1(y
∗∗
i − ŷ∗∗i,j), where ŷ∗∗i,j denotes the prediction implied by the estimated jth

model using the historical data in the validation set.

The test set consists of the predicted factors and the predicted seasonal component. To obtain

estimates for the test set I assume that the r common factors ft are generated by the following multivariate

autoregressive process in the spirit of Bernanke et al. (2005):

f̂t = µ0 +

pf∑
j=1

µj f̂t−j + νt (7)
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once the minimum error is reached on the validation set and not learning set. Therefore, to obtain an

unbiased estimate of the generalization capacity of the artificial neural network forecasts on the test set

are necessary.

To apply bootstrap aggregating, I start by arranging the data in the vth vintage in a set of tuples

{yt, f
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t , st}. They form a matrix of dimension Tv × r + 2:

y1 f̂
′
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yTv f̂
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sTv

where: y denotes the dependent variable (seasonally unadjusted monthly headline inflation), f̂ denotes the

r × 1 factor estimates, s denotes the real-time estimate of the seasonal component of inflation derived

using an X-13-Arima-Seats, t = 1, . . . , Tv denotes time and Tv denotes the number of observation for a

vth vintage. Next, I follow a common practice in the machine learning approaches (Zhang et al., 1998)

and for a given vintage v I construct a learning set Lv and a validation set Vv by randomly distributing

the tuples. In the baseline specification of the model, the learning set contains δ1 = 70% of all tuples

of a given vintage (the dimension of Lv is Ls × r + 2, Ls = δ1 × Tv and the validation set contains the

remaining 1− δ1 = δ2 = 30% of all tuples (the dimension of Vv is Vs × r + 2, Vs = δ2 × Tv. The test set

includes the forecasting period and its dimension is H × r + 2, H = 12.

The training set Lv for the vth vintage is then bagged. Breiman (1996) shows that the gain from

the use of bagging stabilizes if the number of bootstrap pseudo-samples B exceeds 25, but Inoue and

Kilian (2008) as well as Rapach and Strauss (2010) use 100 replicates instead. I follow their approach

and generate B = 100 bootstrap pseudo-new learning sets of size Ls equal to the initial learning set Lv

by sampling uniformly with replacement. This guarantees the independence between samples with the

probability of selecting a particular tuple to the training set amounting to around 63% (Breiman, 1996).

Each bagged training set Lv,i, i = 1, · · · , B for a given vintage v is a matrix of dimension Ls × r + 2 and

has the following structure:

y∗1 f̂
′∗
1 s∗1

...
...

...

y∗Ls
f̂

′∗
Ls

s∗Ls

In the baseline specification of the model, for each of the pseudo-new bootstrapped learning sets Lv,i I

estimate D = 100 models defined by equation (2) with varying architectures determined by the realization

of the random variable Q. As a results, in total I obtain B × D = 10 000 estimated artificial neural

networks.

The validation set is not bagged in order to assess the out-of-sample quality on the historical data of

all neural networks estimated on all generated training samples. Therefore, it has the following structure:

y∗∗1 f̂
′∗∗
1 s∗∗1

...
...

...

y∗∗Vs
f̂

′∗∗
Vs

s∗∗Vs

I evaluate the quality for the jth artificial neural network on the validation set using a simple mean squared

error statistic: MSEj =
∑Vs

i=1(y
∗∗
i − ŷ∗∗i,j), where ŷ∗∗i,j denotes the prediction implied by the estimated jth

model using the historical data in the validation set.

The test set consists of the predicted factors and the predicted seasonal component. To obtain

estimates for the test set I assume that the r common factors ft are generated by the following multivariate

autoregressive process in the spirit of Bernanke et al. (2005):

f̂t = µ0 +

pf∑
j=1

µj f̂t−j + νt (7)
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where: the maximal lag pf is determined using the Bic criterion. The model is estimated on the stationary

data before any data splitting. Next, I generate forecasts of the common factors in an iterative manner:

f̂t+h = µ̂0 +

pf∑
j=1

µ̂j f̂t+h−1 (8)

The seasonal component is estimated using the X-13-Arima-Seats decomposition of the predicted

monthly headline inflation in the forecast period. As the forecast is an out-of-sample experiment, the test

set does not contain the historical realization of inflation. Instead, only the theoretical values implied by

the Favar model and the seasonal model enter the test set:

f̂
′P
1 sP1
...

...

f̂
′P
12 sP12

Each of the trained artificial neural network is utilized to generate a forecast of inflation in a twelve-month

horizon yTv+h, h = 1, . . . , 12. The out-of-sample forecast of each of the 10 000 artificial neural network

is performed by treating the theoretical values from the test set as explanatory variables in the forecast

period, feeding them to the model (2) and calculating the output using the estimated weights.

3.3.2. Learning procedure

In order to determine the weights, a training algorithm needs to be employed. For each artificial

neural network I use the resilient propagation algorithm proposed by Riedmiller and Braun (1993). It is a

robust, fast and stable adaptive gradient-based optimization technique used for the supervised learning

(Igel and Hüsken, 2003). It eliminates the harmful influence of the size of the partial derivative on the

weight step and considers instead only the sign of the derivative as an indication of the direction of the

weight update. Moreover, it allows me to evade the arbitrary choice of the learning and momentum rates,

which are present in other standard learning algorithms.

Supervised learning algorithm relies on the numerical optimization of the artificial neural network’s

weights in order to minimize an error function, which commonly takes into account the sum of squared

differences between the theoretical and empirical values. In simple terms, the input pattern (the explanatory

variables) is presented to the network, propagated forward until it reaches the output layer where the

outcome of the network (the theoretical or the predicted values) is compared with the teaching input (the

empirical values). The error of the model is then either accepted or rejected, in which case the connection

weights are updated and the procedure is repeated.

In order to mitigate the risk of overfitting, in the paper I establish a composite error function that

accounts for an additional ingredient – a regularisation component that is aimed at balancing between

the recognition and generalization ability of the artificial neural network. It penalizes the model with

exceptionally large weights which results in better generalization properties. I use a fairly standard error

function defined as a sum of the squared residuals and the penalty term:

E =

Ls∑
i=1

(ŷ∗i − y∗i )
2 + 10−θ

( q∑
j=1

p∑
i=0

β2
ij +

q∑
j=1

β2
j

)
(9)

where l = 1, . . . , Ls indexes the number of observations in the considered training sample and ŷ∗, y∗, θ,

βij , βj denote the predicted values of the model, the empirical values, the regularization decay parameter,

the weights between the ith input and the jth hidden neuron of the network and the weights between the

jth hidden neuron and the output, respectively.

For simplification purposes, let me assume for now that βij denotes the weight between the ith and

the jth neuron (unit), irrespective of the layer. For each single hidden-layer feed-forward artificial neural

network, I initialize the learning process by randomizing the weights βij of the network assigned to all arcs
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between all neurons in the range [−0.5÷ 0.5]. During the learning process each weight βij determining

the strength of the signal flowing from the ith to the jth neuron is iteratively modified according to the

following equation:

β
(k+1)
ij = β

(k)
ij +∆β

(k)
ij (10)

where k and ∆βij denote the learning iteration and the individual update for weight βij , respectively.

In the resilient propagation, the sign of the update depends on the sign of the partial with respect to

the weight derivative of the error measure E. For increasing (decreasing) errors the weights is decreased

(increased) with the update value. However, if the partial derivative changes sign, the previous weight-

update is reverted. Hence, the update value takes the form:

∆β
(k)
ij =




−∆
(k)
ij if ∂E(k)

∂βij
> 0

+∆
(k)
ij if ∂E(k)

∂βij
< 0

0 else

(11)

The individual step-size ∆ij is calculated as follows:

∆
(k)
ij =




min(η+ ∗∆(k−1)
ij ,∆max) if ∂E(k−1)

∂βij
∗ ∂E(k)

∂βij
> 0

max(η− ∗∆(k−1)
ij ,∆min) if ∂E(k−1)

∂βij
∗ ∂E(k)

∂βij
< 0

∆
(k−1)
ij else

(12)

where 0 < η− < 1 < η+. The adaptation rule takes into account whether the partial derivative with

respect to the weight βij changes its sign in the consecutive steps. If so, the step-size is decreased by the

factor η− as the previous update could have been too large resulting in missing the local minimum. If

not, the step size is increased by factor η+ to accelerate the speed of convergence. The adjustment of the

step-size ∆ij is bounded by the parameters ∆min and ∆max.

The learning process of the artificial neural network stops and the model becomes trained once a

certain termination criterion is fulfilled (e.g. the number of the iterations exceeds a predefined value, the

early-stopping is implemented or the relative error tolerance on the training or the validation set is met).

In the baseline specification of the model I specify the starting values of the parameters in accordance

with the Riedmiller and Braun (1993) approach. Hence, the individual step-size is ∆ij = 0.1, the boundary

parameters equal ∆min = 1e−6 and ∆max = 50, η+ and η− are fixed for the learning algorithm to 1.2 and

0.5, respectively. The authors claim that the choice of this parameters is not critical and does not influence

the convergence time. As the error measure includes a regularisation component, the decay parameter θ is

set to 2. In the robustness check I also consider alternative values of the parameters ∆ij and θ.

3.4. Forecast combinations

To further improve the forecasting accuracy I combine the point forecast from all individual models

using several simple methods. A significant strand of literature points to the superiority of the forecast

combinations over the predictions from the thin modelling framework (Timmermann, 2006). Moreover,

numerous empirical studies exemplify the phenomenon of the forecast combination puzzle stating that

simple combination schemes disregarding the correlation between forecast errors are often superior in

comparison to refined methods estimating the theoretically optimal combination weights. To name an

example, in a comprehensive study Stock and Watson (2004) conclude that forecasts generated with the

use of simple combination schemes, i.e. arithmetic mean, median, weights based on inverse mean squared

forecast error or weights experiencing a very little time variation provide largest gains in accuracy. Broadly

speaking, equal weights set a surprisingly difficult benchmark to beat (Timmermann, 2006), but the reason

for it is not entirely understood at the current juncture.

I perform forecast averaging on the test set. Following the key results from the empirical literature,

in my paper I do not compare elaborate forecast combination schemes. Instead I focus on five simple
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between all neurons in the range [−0.5÷ 0.5]. During the learning process each weight βij determining
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where k and ∆βij denote the learning iteration and the individual update for weight βij , respectively.

In the resilient propagation, the sign of the update depends on the sign of the partial with respect to

the weight derivative of the error measure E. For increasing (decreasing) errors the weights is decreased
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where 0 < η− < 1 < η+. The adaptation rule takes into account whether the partial derivative with

respect to the weight βij changes its sign in the consecutive steps. If so, the step-size is decreased by the

factor η− as the previous update could have been too large resulting in missing the local minimum. If

not, the step size is increased by factor η+ to accelerate the speed of convergence. The adjustment of the

step-size ∆ij is bounded by the parameters ∆min and ∆max.

The learning process of the artificial neural network stops and the model becomes trained once a

certain termination criterion is fulfilled (e.g. the number of the iterations exceeds a predefined value, the

early-stopping is implemented or the relative error tolerance on the training or the validation set is met).

In the baseline specification of the model I specify the starting values of the parameters in accordance

with the Riedmiller and Braun (1993) approach. Hence, the individual step-size is ∆ij = 0.1, the boundary

parameters equal ∆min = 1e−6 and ∆max = 50, η+ and η− are fixed for the learning algorithm to 1.2 and

0.5, respectively. The authors claim that the choice of this parameters is not critical and does not influence

the convergence time. As the error measure includes a regularisation component, the decay parameter θ is

set to 2. In the robustness check I also consider alternative values of the parameters ∆ij and θ.

3.4. Forecast combinations

To further improve the forecasting accuracy I combine the point forecast from all individual models

using several simple methods. A significant strand of literature points to the superiority of the forecast

combinations over the predictions from the thin modelling framework (Timmermann, 2006). Moreover,

numerous empirical studies exemplify the phenomenon of the forecast combination puzzle stating that

simple combination schemes disregarding the correlation between forecast errors are often superior in

comparison to refined methods estimating the theoretically optimal combination weights. To name an

example, in a comprehensive study Stock and Watson (2004) conclude that forecasts generated with the

use of simple combination schemes, i.e. arithmetic mean, median, weights based on inverse mean squared

forecast error or weights experiencing a very little time variation provide largest gains in accuracy. Broadly

speaking, equal weights set a surprisingly difficult benchmark to beat (Timmermann, 2006), but the reason

for it is not entirely understood at the current juncture.

I perform forecast averaging on the test set. Following the key results from the empirical literature,

in my paper I do not compare elaborate forecast combination schemes. Instead I focus on five simple
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methods of pooling individual forecasts of all single hidden-layer feed-forward artificial neural networks

for a given vintage. These include the mean forecast ŷM , median forecast ŷMD, trimmed mean forecast

ŷTM and forecast with weights depending inversely on the performance of each individual model on the

learning set ŷL and the validation set ŷV . Hence, the combination schemes are given by:

ŷMTv+h =
1

n

n∑
j=1

ŷjTv+h (13)

ŷMD
Tv+h = median{ŷ(1)Tv+h, . . . , ŷ

(n)
Tv+h} (14)

ŷTM
Tv+h =

1

n− 2k
(ŷTv+h,k+1 + ŷTv+h,k+2 . . . ŷTv+h,n−k) (15)

ŷLTv+h =

n∑
j=1

wL
j ŷ

j
Tv+h (16)

ŷVTv+h =

n∑
j=1

wV
j ŷjTv+h (17)

where ŷj is the forecast from the individual, jth model, n = B ×D, h is the forecast horizon, k denotes

the 5% symmetric trimming following Stock and Watson (2003) and the weights wL
j and wV

j based on the

relative performance on the training and the validation set and are calculated as follows:

wL
j =

m−1
j,L∑n

j=1 m
−1
j,L

(18)

wV
j =

m−1
j,V∑n

j=1 m
−1
j,V

(19)

mj,L =
∑Ls

i=1(y
∗
i − ŷ∗i,j) and mj,V =

∑Vs

i=1(y
∗∗
i − ŷ∗∗i,j). The combination forecasts are then compared with

traditional linear approaches.

3.5. A round-up of forecasting models

To establish the performance of the proposed model, I compare its prediction accuracy across horizons

with a battery of the short-term Polish headline inflation forecast from the univariate and multivariate,

linear and non-linear models. As forecast combinations can have superior predictive accuracy compared

to their constituent parts I also combine the best performing alternative approaches with equal weights

to obtain a combined forecast and examine, if pooling the predictions from several different approaches

delivers further gains in the forecast accuracy. The monthly and the yearly headline inflation is denoted as

yt and yyyt , respectively. The following list summarizes the models competing in the forecasting horse race:

1. The pure random walk model for the seasonally adjusted monthly headline inflation (RW). The

forecast for horizon h is obtained using the following rule: yTv+h = yTv
.

2. The random walk model for the monthly headline inflation closely related to the Atkeson and

Ohanian (2001) specification (AO). The forecast for horizon h is generated by the following rule:

yTv+h = 1
12

∑12
j=1 yTv−j+1.

3. The recursive autoregressive process of order one (AR1). The model has the following form: yt =

ρ0 + ρ1yt−1 + εt and is estimated using the whole information for the seasonally adjusted headline

inflation in the vth vintage. The forecast is constructed by iterating in the recursive manner the

one-step-ahead forecasts.

4. The autoregressive process of order twelve (AR12). The model has the following form: yt =

ρ0 +
∑12

i=1 ρiyt−i + εt and is estimated using the whole information for the headline inflation in the

vth vintage. Similarly to the AR1 model, the forecast is constructed using an iterative process to

obtain the prediction for h periods ahead.
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5. The seasonal autoregressive moving average model (BS). The specification of the model is as follows:

φ(L)Φ(Ls)(1− L)d(1− Ls)Dyt = c+ θ(L)Θ(Ls)εt, where: yt is the monthly headline inflation, c is

the mean term, εt is the independent disturbance, L is the backshift operator, s is the seasonal cycle,

φ(L) and Φ(Ls) are the lag polynomials for the autoregressive part and the seasonal autoregressive

part, θ(L) and Θ(Ls) are the lag polynomials for the moving average and the seasonal moving

average, (1 − L)d and (1 − Ls)D are the differencing operators. The exact specification of the

ARIMA(p, d, q)(P,D,Q)s model in each vintage is optimized using the Bic. The model is estimated

on all available information for the headline inflation in the vth vintage. The forecast is a dynamic

out-of-sample.

6. The factor augmented autoregression (FAV). The model has the following representation: ξt =

ν0+
∑pf

j=1 νjξt−j+ςst+εt, where ξt = (yt, f̂1,t, . . . , f̂r,t)
′
, {f̂i,t}ri=1 are the first r principal components

of Xv with standardized predictors, st denotes the seasonal component of the monthly headline

inflation extracted using X-13-Arima-Seats and pf is selected using the Bic. As my intention here

is to compare the linear and non-linear approach based on the same information set, I restrict the

number of common factors entering this model to r = 3. I iterate this model forward to provide

predictions of yt+h.

7. The judgement forecast (JD). The forecasts are prepared by the professional forecasters surveyed

on a monthly basis by Bloomberg. Commonly, the forecasts are prepared for the following quarters

and not months. Therefore I use a Denton-Cholette temporal disaggregation (Dagum and Cholette,

2006) to obtain forecasts at the monthly frequency. For each vintage v I check the latest available

information regarding the headline inflation at the time of preparing the forecast by the professional

forecaster and use it as the first boundary value. The last boundary value is the forecast for the

last quarter in the forecasting horizon. By using the Denton-Cholette method I disaggregate the

quarterly data into monthly frequency. This approach is motivated by the findings of Faust and

Wright (2013) stating that choosing two boundary values and interpolating between them is often

found to have superior predictive ability. A visual inspection of these disaggregated series indicates

that these are in fact smooth transitions between the initial and final boundary values.

8. The dynamic factor model (DFM). This model is described in Stelmasiak and Szafrański (2016b).

Within this model the information set as in Baranowski et al. (2010) is reduced from a large number

of variables to several unobserved factors. The model is estimated using the the two-step procedure

of Doz et al. (2011). The forecast is obtained by iterating the model forward.

9. The Bayesian vector autoregressive model with the Sims-Zha priors (SZ). The specification of the

model is described in Stelmasiak and Szafrański (2016a) and assumes that inflation is driven by

a small number of variables. The model in the structural form contains twelve lags and includes

deterministic seasonal dummies with loose priors. The forecast is obtained by iterating the model

forward.

10. The Bayesian vector autoregressive model with the Villani steady-state prior (VI). The specification

of the non-linear model is described in Stelmasiak and Szafrański (2016a). The model is a stationary

reduced-form BVAR defined for deviations from the seasonal means with the very tight prior on the

unconditional mean. The forecast is obtained by iterating the model forward.

11. The forecast combination of the bagged single hidden-layer feed-forward artificial neural networks

described in this paper (ANN).

12. The combination of the two best performing models (CB1). The combination is derived after the

monthly forecasts are annualized using equal weights.

13. A convolution of the two best performing models and the ANN model (CB2). The combination is

derived after the monthly forecasts are annualized using equal weights.

With the exception of the judgement forecasts, all models are estimated on a monthly basis using the

information set not larger than Xv available at the time of preparing the forecast. Since I conduct the
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The model  and the data
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information regarding the headline inflation at the time of preparing the forecast by the professional
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quarterly data into monthly frequency. This approach is motivated by the findings of Faust and

Wright (2013) stating that choosing two boundary values and interpolating between them is often

found to have superior predictive ability. A visual inspection of these disaggregated series indicates

that these are in fact smooth transitions between the initial and final boundary values.

8. The dynamic factor model (DFM). This model is described in Stelmasiak and Szafrański (2016b).

Within this model the information set as in Baranowski et al. (2010) is reduced from a large number

of variables to several unobserved factors. The model is estimated using the the two-step procedure

of Doz et al. (2011). The forecast is obtained by iterating the model forward.

9. The Bayesian vector autoregressive model with the Sims-Zha priors (SZ). The specification of the

model is described in Stelmasiak and Szafrański (2016a) and assumes that inflation is driven by

a small number of variables. The model in the structural form contains twelve lags and includes

deterministic seasonal dummies with loose priors. The forecast is obtained by iterating the model

forward.

10. The Bayesian vector autoregressive model with the Villani steady-state prior (VI). The specification

of the non-linear model is described in Stelmasiak and Szafrański (2016a). The model is a stationary

reduced-form BVAR defined for deviations from the seasonal means with the very tight prior on the

unconditional mean. The forecast is obtained by iterating the model forward.

11. The forecast combination of the bagged single hidden-layer feed-forward artificial neural networks

described in this paper (ANN).

12. The combination of the two best performing models (CB1). The combination is derived after the

monthly forecasts are annualized using equal weights.

13. A convolution of the two best performing models and the ANN model (CB2). The combination is

derived after the monthly forecasts are annualized using equal weights.

With the exception of the judgement forecasts, all models are estimated on a monthly basis using the

information set not larger than Xv available at the time of preparing the forecast. Since I conduct the
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evaluation of forecasts using the yearly CPI measure, I compute the annual inflation rate throughout the

forecasting period based on the forecasts of the monthly headline inflation in the following manner1:

ŷyyt+h =



∏h

i=1(1 +
ŷt+i

100 )
∏12−h

j=1 (1 +
yt−j+1

100 ) if h < 12
∏h

i=1(1 +
ŷt+i

100 ) if h = 12
(20)

3.6. Forecast evaluation criteria

In the paper I perform two separate forecast comparisons. Firstly, in order to formally compare the

accuracy of the point forecasts of the benchmark models and the artificial neural network’s combined

forecast, I use two most common evaluation criteria, namely the mean forecasting error (Mfe) and the

mean square root forecasting error (Rmsfe). These statistics calculated for the yearly headline inflation

are given as follows:

MFEh =
1

Kh

2016:12∑
t=2010:12

(yyyt+h − yyyt+h|t) (21)

RMSFEh =

[
1

Kh

2016:12∑
t=2010:12

(yyyt+h − yyyt+h|t)
2

] 1
2

(22)

where: Kh is the total number of out-of-sample inflation forecasts for a given horizon, h is the forecast

horizon, yyyt+h|t is the yearly headline inflation forecast of a given model at time t and yyyt is the realization.

In my specific study Kh varies from 72 to 61, depending on the forecast horizon h.

In order to assess the statistical significance between the accuracy of the forecasts I perform the test

of unconditional predictive accuracy (Giacomini and White, 2006). The null hypothesis states that the

average loss from the competing models is equal H0 : E[Lt+h(et+h,MA
)]−E[Lt+h(et+h,MB

)] = 0. I utilize a

common quadratic loss function, hence the null hypothesis can be simplified to: H0 : e2t+h,MA
−e2t+h,MB

= 0.

The test statistic follows the Chi-squared distribution.

Secondly, I compare the quasi-distributions of different specifications of the artificial neural network

models given by all point forecasts. For that purpose, I employ a kernel density estimation to approximate

the density of all point forecasts for a given horizon. Following Groen et al. (2013) I use continuous ranked

probability score – a strictly proper scoring rule that provides summary measure for the evaluation of

probabilistic forecast (Gneiting and Raftery, 2007). Moreover, it is shown to reward forecast realization

that are close to the middle of the forecast density. I resign to compare the logarithmic scores as they can

be severely low for events with a very low probability, may take negative values and are more sensitive to

outliers. The Crps is given by the following equation:

CRPS(F, yyyt+h) =

∫ ∞

−∞
[F (yyyt+h|t)− {yyy

t+h≤yyy
t+h|t}

]2dyyyt+h (23)

where: F (yyyt+h|t) denotes the cumulative distribution function of a density forecast for yyyt+h,t and yyyt+h

denotes the realization of the forecast variable. I approximate the predictive density as well as the cumulative

distribution function using the kernel distribution estimator. Due to the non-normal distribution of the

quasi-densities, I apply numerical methods to calculate this measure.

3.7. Robustness check

In order to check whether the forecasting performance of the model is sensitive to the key assumptions

regarding the parameters I perform an extensive robustness check and provide results for different

1As the weights in the CPI basket in Poland are revised on a yearly basis, I include minor corrections for the realized

values used for annualizing the monthly CPI inflation in order to prevent making errors resulting from this aggregation

method.
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specifications of my approach. Since experimenting over the whole parameter space is computationally

infeasible I estimate thirteen alternative specifications that differ from the baseline model with respect to

the amount of information included in the training set δ1, the complexity of the single neural network’s

architecture, i.e. the number of common factors treated as explanatory variables r and the expected

extension of the hidden layer γ as well as the the key parameter of the learning algorithm ∆ij and θ.

Additionally, I also check whether the number of the generated bootstrap samples B influences the quality

of the forecasts. In the limiting scenario bootstrap aggregating is not employed. As I insist on having

10 000 point forecasts for combination, decreasing B urges to increase the number of the neural networks D

estimated for a given bootstrap pseudo-new learning set. Table 1 summarizes all considered specifications

of my proposed forecasting approach. Throughout the paper, I treat specification I as the baseline model.

Table 1: The baseline and alternative specifications of the model

Specification

Parameter I II III IV V VI VII VIII IX X XI XII XIII XIV

δ1 0,7 0,6 0,8 0,7 0,7 0,7 0,7 0,7 0,7 0,7 0,7 0,7 0,7 0,7

r 3 3 3 5 7-8 [*] 3 3 3 3 3 3 3 3 3

γ 3 3 3 3 3 6 9 3 3 3 3 3 3 3

∆ij 0,1 0,1 0,1 0,1 0,1 0,1 0,1 0,2 0,1 0,1 0,1 0,1 0,1 0,1

θ 2 2 2 2 2 2 2 2 1 3 2 2 2 2

B 100 100 100 100 100 100 100 100 100 100 50 25 10 0

D 100 100 100 100 100 100 100 100 100 100 200 400 1000 10000

Note: The table presents different specifications of the model considered in the paper. Specification I is treated as the baseline model. Sensitivity

analysis is conducted by comparing the inflation forecasts from the baseline model and the alternative specifications (II-XIV) and concerns the

amount of information fed to the training sample and to the whole model, the average complexity of the hidden layer, the parameters of the resilient

propagation algorithm as well as the extent and the necessity of employing bootstrap aggregation. For each specification the changed parameter is

reported in the table in bold. Source: own calculations.
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Chapter 4
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4. Results

In this section I present the results of the forecasting horse race conducted in the paper. Firstly, I

assess the relative accuracy of all models using the whole out-of-sample period (2011:01-2016:12). For this

purpose I present the RMSFE and the MFE statistics and report the outcomes of the Giacomini and White

(2006) test of unconditional predictive ability. Secondly, in the analogous way I present the results for the

excessive disinflation period (2012:01-2016:12). I single out this period deliberately due to the particular,

uncommon behaviour of the headline inflation that has posed a demanding challenge for all forecasting

models. I analyse the forecasting accuracy of the competing models and provide and explanation regarding

the changes in their predictive accuracy in this period compared to the whole out-of-sample evaluation

period. Lastly, I present the outcomes for the robustness analysis by presenting the errors statistics and the

comparison of the ranked continuous probability scores in the two distinguished periods across considered

specifications.

4.1. The full sample

I start the analysis of the results by reporting the RMSFE and the MFE statistics for all examined

models. These measures are calculated using the whole out-of-sample evaluation period. In the second

column of the table 2 I present the errors for the forecast combination of the bagged single hidden-layer

feed-forward artificial neural network (ANN). In the next columns, I report the RMSFE statistics as the

ratios of the RMSFE of the competing approach and the RSMFE of the ANN model. The ratio above one

indicates that the competing model is characterized by lower forecast accuracy in comparison to the ANN.

The biases of all examined models are included in the parentheses.

The general assessment of the ANN forecasts’ quality is satisfactory. In the pairwise comparison the

accuracy of the ANN forecast as measured by the RMSFE is higher in 95 out of 144 cases. Moreover, the

bias of the forecast throughout the forecast horizon is only slightly negative and among the lowest for all

examined models. To be precise, for horizon h = 12 it amounts to −0.2 pp. indicating that on average

headline inflation in the whole period has been mildly overestimated.

The largest gain in the predictive accuracy is observed in comparison to the linear equivalent of

the ANN model – the factor augmented vector autoregressive model estimated on the same information

employed in the non-linear framework. Thus the only thing distinguishing these two approaches is the

estimation method. As can be observed, the combination of random sampling, bootstrap aggregating and

forecast pooling delivers substantial increase in the predictive accuracy. This considerable disproportion

stems from the fact, that the FAV model is defined as a stationary process and as a results its forecast

converges to the long-term mean throughout the forecast horizon. In the period of declining and persistently

low headline inflation the overall accuracy of this model is poor and the forecast becomes severely biased,

especially in the long-horizons. The ANN model on the other hand is not constrained by the stationarity

requirement and produces forecast that do not account for the long-term mean but better predict the

local price dynamics.

The ANN model outperforms also several other approaches. Not surprisingly, simple time-series

models produce inferior forecasts. For more sophisticated approaches, the situation becomes more diverse.

The DFM model becomes less accurate as the forecast horizon rises and for h = 12 it produces around

30% larger errors than the ANN model. There is also a weak evidence of more accurate forecasts for

the short-term horizons of the ANN model in comparison to the VAR models estimated in a Bayesian

fashion. Finally, the accuracy of the predictions prepared by the professional forecasters is quite low.

Interestingly, these forecasts are also characterized by a substantial negative bias which can be explained

by the anchoring of inflation expectations – a strong belief that the central bank will adjust the monetary

policy to systematically bring back inflation towards its target.

There are, however, several cases for which the forecast from the ANN model is less accurate. Firstly,
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the DFM model outperforms the ANN model by a large margin (around 14%) for the nowcast of the

headline inflation (h = 1) and remains more accurate for horizons h ≤ 6. Secondly, the small VARs with a

long lag polynomial estimated using Bayesian methods improve upon the ANN forecast quite substantially

for longer horizons. In particular, the RMSFE for the VI model with a highly restrictive prior on the

steady state is lower by around 10% for horizons h > 5. Finally, the equal weight forecast combination

of the two best performing alternative models (CB1) delivers significant improvement in the forecast

accuracy throughout the whole forecast horizon, even though they are both slightly worse for horizon

h = 3 than the ANN model. By combining the linear and non-linear BVAR model the forecast accuracy is

greater, especially in the longer-term (the decrease in the RMSFE amounts to around 10-15% for forecast

horizon h ≥ 6). The combination forecast also yields greater accuracy for horizons h = {3, 4}, for which
both models considered separately present inferior accuracy.

The superior predictive performance of the CB1 model can undermine the mostly positive results.

However, to every cloud there is a silver lining. By combining further the CB1 and the ANN forecasts, the

accuracy rises still for all considered horizons. This indicates that by pooling forecasts from various linear

and non-linear approaches one can achieve further gains in the predictive accuracy.

An important question remains whether the relative improvements in the forecast accuracy of the

examined models are statistically significant. To address this issue I employ the Giacomini and White

(2006) test of unconditional superior accuracy. Following a common approach, I utilize a quadratic loss

function, hence the test hypothesis can be simplified to e2t+h,MA
− e2t+h,MB

= 0. I denote here the forecast

from the artificial neural networks as MA and the forecast from the competing model as MB .

Table 3 presents the test statistic, its sign in parentheses (indicating if model MA generates larger or

smaller average loss denoted as ’+’ or ’−’, respectively), and the p-value corresponding to the calculated

test statistic (in square brackets). To facilitate the analysis of the reported test results, I report the cases

where the ANN model is statistically better (worse) than the forecast from the competing model in bold

(italics). The significance is checked at α = 0.1 significance level.

On the one hand, among the 95 cases, in which the ANN model beats the competing model in terms of

the forecast accuracy, 44 turn out to be statistically significant. The ANN model significantly outperforms

the standard RW for all horizons and the AR1 as well as the FAV model for horizons h ≥ 2, but for the

nowcast the forecasts appear to have comparable accuracy. It appears also that the judgement forecast is

significantly worse both for short and longer-term. Lastly, the ANN model is statistically more accurate

than the DFM model only for h = 12.

On the other hand, the forecast accuracy of the ANN model is significantly inferior only in 9 cases.

These include the nowcast of the DFM model (probably due to the fact, that the DFM model includes the

expectation maximization algorithm for missing data, whereas the ragged edges in this paper are simply

vertically aligned) and the CB1 model. Moreover, the combination of the three best performing linear and

non-linear models prove more accurate for horizons h = {5, . . . , 11} and only marginally insignificant for

h = 12. This is an interesting conclusion indicating that in order to deliver statistically superior forecasts

one should consider several linear and non-linear approaches with various forecast accuracy over the

forecast horizon.

The results for the whole sample can be perceived overall as satisfactory once the test for the difference

of the average loss is applied. The combination of the bagged single hidden-layer feed-forward artificial

neural networks provides an improvement in the forecast accuracy in the majority of cases and generally

is characterized by a relatively small forecast bias. Moreover, by combining several different approaches,

further statistically significant gains in the forecast accuracy are observed. However, two flies in the

ointment need a short commentary. First, in the majority of cases (91 to be precise) the predictive ability

of the proposed and competing model is comparable despite the fact that in the majority of cases the

RMSFE of the ANN is lower in comparison to the competing approaches. Second, the non-linear model

fails to beat the Atkeson and Ohanian (2001) specification of the random walk, though it provides around

20% increase in the accuracy as measured by the RMSFE at h = 12 and generally is characterized by a
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Results

the DFM model outperforms the ANN model by a large margin (around 14%) for the nowcast of the
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for longer horizons. In particular, the RMSFE for the VI model with a highly restrictive prior on the
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accuracy throughout the whole forecast horizon, even though they are both slightly worse for horizon
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greater, especially in the longer-term (the decrease in the RMSFE amounts to around 10-15% for forecast
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The superior predictive performance of the CB1 model can undermine the mostly positive results.

However, to every cloud there is a silver lining. By combining further the CB1 and the ANN forecasts, the

accuracy rises still for all considered horizons. This indicates that by pooling forecasts from various linear

and non-linear approaches one can achieve further gains in the predictive accuracy.

An important question remains whether the relative improvements in the forecast accuracy of the

examined models are statistically significant. To address this issue I employ the Giacomini and White

(2006) test of unconditional superior accuracy. Following a common approach, I utilize a quadratic loss

function, hence the test hypothesis can be simplified to e2t+h,MA
− e2t+h,MB

= 0. I denote here the forecast

from the artificial neural networks as MA and the forecast from the competing model as MB .

Table 3 presents the test statistic, its sign in parentheses (indicating if model MA generates larger or

smaller average loss denoted as ’+’ or ’−’, respectively), and the p-value corresponding to the calculated

test statistic (in square brackets). To facilitate the analysis of the reported test results, I report the cases

where the ANN model is statistically better (worse) than the forecast from the competing model in bold

(italics). The significance is checked at α = 0.1 significance level.

On the one hand, among the 95 cases, in which the ANN model beats the competing model in terms of

the forecast accuracy, 44 turn out to be statistically significant. The ANN model significantly outperforms

the standard RW for all horizons and the AR1 as well as the FAV model for horizons h ≥ 2, but for the

nowcast the forecasts appear to have comparable accuracy. It appears also that the judgement forecast is

significantly worse both for short and longer-term. Lastly, the ANN model is statistically more accurate

than the DFM model only for h = 12.

On the other hand, the forecast accuracy of the ANN model is significantly inferior only in 9 cases.

These include the nowcast of the DFM model (probably due to the fact, that the DFM model includes the

expectation maximization algorithm for missing data, whereas the ragged edges in this paper are simply

vertically aligned) and the CB1 model. Moreover, the combination of the three best performing linear and

non-linear models prove more accurate for horizons h = {5, . . . , 11} and only marginally insignificant for

h = 12. This is an interesting conclusion indicating that in order to deliver statistically superior forecasts

one should consider several linear and non-linear approaches with various forecast accuracy over the

forecast horizon.

The results for the whole sample can be perceived overall as satisfactory once the test for the difference

of the average loss is applied. The combination of the bagged single hidden-layer feed-forward artificial

neural networks provides an improvement in the forecast accuracy in the majority of cases and generally

is characterized by a relatively small forecast bias. Moreover, by combining several different approaches,

further statistically significant gains in the forecast accuracy are observed. However, two flies in the

ointment need a short commentary. First, in the majority of cases (91 to be precise) the predictive ability

of the proposed and competing model is comparable despite the fact that in the majority of cases the

RMSFE of the ANN is lower in comparison to the competing approaches. Second, the non-linear model

fails to beat the Atkeson and Ohanian (2001) specification of the random walk, though it provides around

20% increase in the accuracy as measured by the RMSFE at h = 12 and generally is characterized by a
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much smaller bias. This result corroborates the thesis that the majority of more sophisticated models fails

to improve in a statistically significant manner upon this simple benchmark.

In the next section I address the question whether the conclusions change after the analysis of the

out-of-sample forecasts evaluation is restricted to the period of systematically falling and persistently low

inflation.

4.2. The excessive disinflation period

The price development in Poland after 2011 has followed an unorthodox – yet common for the

majority of the economies during this time period – phenomenon of excessive disinflation (Constâncio,

2015). Starting in the first quarter of 2012, the headline inflation has abruptly fallen from 4.3% y-o-y in

January 2012 to -1.6% in January 2016. It has remained persistently low and negative throughout the

2016, which is baffling considering the developments in the domestic real activity. Since then headline

inflation has quite vigorously rebounded driven by the developments in the external factors.

The peculiar behaviour of headline inflation in this time period has created a difficult challenge for

both forecasting models and professional forecasters alike. On the one hand, most of the traditional,

stationary models has produced forecasts converging to the unconditional mean throughout the forecast

horizon. On the other hand, the forecasts prepared by financial analysts revealed a strong belief that the

central bank will eventually adjust its monetary policy to bring inflation gradually back to its desired

target. As a result, both approaches overestimated inflation quite considerably for a long period of time.

In this section I evaluate the accuracy of the competing models in this slightly restricted out-of-sample

time period (2012:01-2016:12). In particular, I want to examine whether the non-linear approaches are

able to better approximate the inflation developments in this period.

Table 4 presents the RMSFE and the MFE of the examined models in an analogous fashion to

the table 2. Additionally, for this out-of-sample period I also assess the statistical significance of the

unconditional predictive accuracy of the models by utilizing the same specification of the Giacomini and

White (2006) test. Table 5 presents the results of this procedure in an analogous way to the table 3.

In the pairwise comparison of the point forecast accuracy, the ANN model outperforms a competing

benchmark in 95 cases, similarly as in the case of the whole out-of-sample evaluation period. The accuracy

of the ANN model in this sample slightly rises, which is opposite for most of the other competing models.

This is an important conclusion – a structural change in the development of prices in Poland has not

affected the quality of the forecasts, most probably due to the employed thick modelling framework. As a

result, the Giacomini and White (2006) test statistics points to the superiority of the forecasts generated

by the ANN model in 56 pairwise comparisons (increase from 44 in the whole out-of-sample evaluation

period). Across the examined models, the superior predictive ability is observed mainly for longer horizons.

The forecast from this model is consistently better than the RW, AR1, FAV and JD forecasts.

The distinguished outliers are again the SZ and VI models estimated using the Bayesian methods.

Both these frameworks are able to increase the forecast accuracy of the ANN forecast for the majority

of examined horizons. Moreover, the VI model is statistically more accurate than the ANN model for

horizons h = {7, 8, 9, 10} which is an aftermath of the very tight prior imposed on the unconditional mean.

As a result, the model accounts for the slowly evolving local mean of inflation.

Finally, the increase in the forecast accuracy of the CB1 model amounts to around 22%, but is

insufficient to be statistically significant. However, once the forecasts from the SZ, the VI and the ANN

model are pooled together, the increase in the accuracy of the combined forecasts is statistically significant

for horizons h ≤ 10. This corroborates the previous finding stating that a careful combination of models

diversified both in terms of employed methods as well as quality across horizons should provide further

gains in accuracy in comparison to the individual models.
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Results

much smaller bias. This result corroborates the thesis that the majority of more sophisticated models fails

to improve in a statistically significant manner upon this simple benchmark.

In the next section I address the question whether the conclusions change after the analysis of the

out-of-sample forecasts evaluation is restricted to the period of systematically falling and persistently low

inflation.

4.2. The excessive disinflation period

The price development in Poland after 2011 has followed an unorthodox – yet common for the

majority of the economies during this time period – phenomenon of excessive disinflation (Constâncio,

2015). Starting in the first quarter of 2012, the headline inflation has abruptly fallen from 4.3% y-o-y in

January 2012 to -1.6% in January 2016. It has remained persistently low and negative throughout the

2016, which is baffling considering the developments in the domestic real activity. Since then headline

inflation has quite vigorously rebounded driven by the developments in the external factors.

The peculiar behaviour of headline inflation in this time period has created a difficult challenge for

both forecasting models and professional forecasters alike. On the one hand, most of the traditional,

stationary models has produced forecasts converging to the unconditional mean throughout the forecast

horizon. On the other hand, the forecasts prepared by financial analysts revealed a strong belief that the

central bank will eventually adjust its monetary policy to bring inflation gradually back to its desired

target. As a result, both approaches overestimated inflation quite considerably for a long period of time.

In this section I evaluate the accuracy of the competing models in this slightly restricted out-of-sample

time period (2012:01-2016:12). In particular, I want to examine whether the non-linear approaches are

able to better approximate the inflation developments in this period.

Table 4 presents the RMSFE and the MFE of the examined models in an analogous fashion to

the table 2. Additionally, for this out-of-sample period I also assess the statistical significance of the

unconditional predictive accuracy of the models by utilizing the same specification of the Giacomini and

White (2006) test. Table 5 presents the results of this procedure in an analogous way to the table 3.

In the pairwise comparison of the point forecast accuracy, the ANN model outperforms a competing

benchmark in 95 cases, similarly as in the case of the whole out-of-sample evaluation period. The accuracy

of the ANN model in this sample slightly rises, which is opposite for most of the other competing models.

This is an important conclusion – a structural change in the development of prices in Poland has not

affected the quality of the forecasts, most probably due to the employed thick modelling framework. As a

result, the Giacomini and White (2006) test statistics points to the superiority of the forecasts generated

by the ANN model in 56 pairwise comparisons (increase from 44 in the whole out-of-sample evaluation

period). Across the examined models, the superior predictive ability is observed mainly for longer horizons.

The forecast from this model is consistently better than the RW, AR1, FAV and JD forecasts.

The distinguished outliers are again the SZ and VI models estimated using the Bayesian methods.

Both these frameworks are able to increase the forecast accuracy of the ANN forecast for the majority

of examined horizons. Moreover, the VI model is statistically more accurate than the ANN model for

horizons h = {7, 8, 9, 10} which is an aftermath of the very tight prior imposed on the unconditional mean.

As a result, the model accounts for the slowly evolving local mean of inflation.

Finally, the increase in the forecast accuracy of the CB1 model amounts to around 22%, but is

insufficient to be statistically significant. However, once the forecasts from the SZ, the VI and the ANN

model are pooled together, the increase in the accuracy of the combined forecasts is statistically significant

for horizons h ≤ 10. This corroborates the previous finding stating that a careful combination of models

diversified both in terms of employed methods as well as quality across horizons should provide further

gains in accuracy in comparison to the individual models.
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Results

In this restricted out-of-sample evaluation period the ANN improves upon the AO benchmark

throughout the forecast horizon. However, the gain in the forecast accuracy is statistically insignificant

for h ≤ 11 and only marginally insignificant for h = 12. Moreover, the negative bias of the ANN model

remains considerably smaller than in the case of the AO model. Overall, once again the AO benchmark

has proved to be too hard to beat.

An important feature of the forecasts from the ANN model is that their accuracy and bias is not

affected by restricting the sample to a period of structural change. While the negative bias of the competing

models rises considerably indicating that a systematic error in these forecasts is present during the studied

period, the bias of the ANN model remains very low. Moreover, the accuracy of the forecasts as measured

by the RMSFE for all horizons even increases. For the nowcast, the forecast errors are 10% lower, whereas

throughout all the forecasting horizons the RMSFE statistics is on average 6% lower. It is safely to assume,

that the thick modelling combined with the use of bootstrap aggregating make the whole artificial neural

network model more immune to structural changes.

Lastly, given the fact that the combination forecast of several linear and non-linear frameworks delivers

further gains in the forecasting accuracy I examine the whether this combination produces statistically

significant small average loss. Hence, I apply the Giacomini and White (2006) test considering in the null

hypothesis the CB2 model as MA and a competing benchmark MB . In particular, I am interested whether

this combination supplies sufficiently better forecasts to beat the demanding AO benchmark. Table 6

and 7 present the results of this procedure in a respective manner to the table 3.

Ex-post I conclude that the combined model pooling the forecasts from the univariate and multivariate,

linear and non-linear beats the AO benchmark in the majority of cases for both the whole out-of-sample

evaluation period as well as the excessive disinflation period. Moreover, during the evaluation period

2012:01-2016:12 this combination is able to improve in a statistically significant manner over the considered

univariate approaches for almost all distinguished forecast horizons and for several cases outperforms also

multivariate approaches. The gains in the predictive accuracy are substantial.

I conclude that in order to obtain accurate inflation forecasts one should consider combining several

univariate and multivariate approaches with possibly diverse underlying assumptions. Let me underline

here that the models entering the CB2 specification have in fact very little in common. Firstly, the

ANN model is not constrained by stationarity assumption and its purpose is to recognize potentially

non-linear patterns between the explanatory variable and the dependent variable by estimating weights

using a specific gradient-based learning algorithm. Secondly, the SZ model implies that the priors on

the seasonal variables are loose letting the data decide whether seasonality plays an important role in

determining the development in the headline inflation. Thirdly, the VI model imposes a very tight prior

on the unconditional mean of the model which results in accounting for the slowly evolving local inflation

mean. When pooled together, the forecast accuracy of this model combination is superior in the majority

of cases.

4.3. Robustness check

In this section I present the results of the robustness analysis. I check whether changing one of the key

parameters of the studied model influences to a substantial extent the accuracy of the forecasts evaluated on

the whole out-of-sample period (2011:01-2016:12) and during the excessive disinflation (2012:01-2016:12).

Table 8 presents the RMSFE and the MFE (in parentheses) of the different specifications of the model

calculated for the whole evaluation period.

Several interesting conclusions arise. Firstly, no single specification delivers the most accurate forecasts

for all horizons as measured by the RMSFE and almost all specifications present small, negative bias

indicating that the forecast on average pointed to higher than actual inflation. Secondly, the examined

alternative specifications improve only marginally upon the baseline benchmark delivering a gain in

accuracy not larger than 4%. It is thus safely to assume that no alternative specification statistically
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outperforms the baseline model for any horizon. Thirdly, the performance of the model in the out-of-sample

period is insensitive to the amount of the information distributed to the learning set (as restricted by the

parameter δ1) and the initial parameter of the resilient propagation algorithm (∆ij). However, including

more common unobserved factors leads to a substantial deterioration in the forecast accuracy. The increase

in the RMSFE for h = 12 amounts to around 72% in comparison to the benchmark specification of the

model when five common factors are included. Interestingly, further increase in the common factors to the

amount which explains at least 80% of the variability of each vintage Xv increases marginally the accuracy

of the nowcast and reduces the bias of the forecast. Still, expect the forecast horizon h = 1, the increase

in the RMSFE statistic is substantial indicating the inferior predictive ability. Fourthly, small average

complexity of the hidden layer leads to satisfactory accuracy – increasing the parameter γ governing the

expected value in the Poisson distribution to augment the fraction of more complex non-linear artificial

neural networks improves only marginally the performance for several horizons (the reduction in the

RMSFE is not larger than 4%). Moreover, it appears that the regularization component has been set a

little too tight in the baseline specification – increasing θ to 3 delivers small increases in the accuracy for

almost all horizons and does not influence the average bias of the model. Diminishing the number of the

pseudo-new learning sets does not severely decreases the accuracy of the model (in the worst scenario the

increase in the RMSFE statistic for h = 12 equals to around 10%). However, there is one vital exception.

A distinctively inferior forecast delivers the specification XIV which assumes that there is neither

random distribution of observations between the learning set and the validation set nor bootstrap

aggregating. This specification and the results from this model need to be addressed here in more detail. In

this approach the first 70% of the observations in a given vintage form the learning set and the remaining

30% constitute the validation set (the time succession of the observations is not disturbed). In total 10 000

models on a single learning set are estimated which are then used to obtain forecasts.

This model’s forecast is supremely worse both in terms of the accuracy as measured by the RMSFE

as well as the bias. For horizon h = 12 the average root mean squared forecasting error is almost twice as

high and the bias is positive and substantial, indicating that on average the actual inflation has been much

higher than predicted by the model. Thorough inspection of all forecast paths leads to the conclusion

that the model is heavily overfitted and lost its generalization properties. The results for this specification

exemplify the necessity to include methods aimed at stabilizing unstable learning procedures.

Apart from analysing the accuracy measured by the combination forecast, I investigate the quasi

density of the point forecasts from all individual models for each horizon. Based on the individual point

forecasts from all bagged artificial neural networks I use a kernel density function to approximate the

density and evaluate it using the conditional ranked probability score. Table 9 presents the Crps of the

different specifications of the Ann.

The conclusions hold once the CRPS statistic is compared – the baseline specification delivers

competitive CRPS measures, whereas including more common factors or resigning from bagging deteriorates

severely the quality of the density forecast. The sensitivity of the model’s results with respect to changing

other key parameters is limited. Again, selecting a slightly higher θ that penalizes the weights less seem to

marginally improve the quality of the forecasts.

Interestingly, in the disinflation period the CRPS measure increases for horizons h ≤ 4 and decreases

sometimes quite substantially for further horizons. It indicates that during the disinflation period the

quality of the forecasts generated for longer horizons improved at the expense of marginally worse nowcasts.

As a result, these models appear to be an interesting supplement to the forecasting toolbox in the times

of unorthodox inflation developments.
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higher than predicted by the model. Thorough inspection of all forecast paths leads to the conclusion

that the model is heavily overfitted and lost its generalization properties. The results for this specification

exemplify the necessity to include methods aimed at stabilizing unstable learning procedures.

Apart from analysing the accuracy measured by the combination forecast, I investigate the quasi

density of the point forecasts from all individual models for each horizon. Based on the individual point

forecasts from all bagged artificial neural networks I use a kernel density function to approximate the

density and evaluate it using the conditional ranked probability score. Table 9 presents the Crps of the

different specifications of the Ann.

The conclusions hold once the CRPS statistic is compared – the baseline specification delivers

competitive CRPS measures, whereas including more common factors or resigning from bagging deteriorates

severely the quality of the density forecast. The sensitivity of the model’s results with respect to changing
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marginally improve the quality of the forecasts.

Interestingly, in the disinflation period the CRPS measure increases for horizons h ≤ 4 and decreases
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Chapter 5

Finally, I inspect whether the method of combining the point forecasts from individual artificial

neural networks influences the accuracy of the combination forecast. Table 10 presents the RMSFE and

the MFE statistics of the baseline model obtained using five examined forecast combination techniques. It

Table 10: The root mean squared forecasting errors and the mean forecasting errors of different

combination methods

Rmse

Horizon mean median trimmed mean weighted (1) weighted (2)

h=1 0,2862 (0,006) 0,9995 (0,005) 0,9998 (0,006) 0,9989 (0,006) 1,0002 (0,006)

h=2 0,4222 (0,006) 0,9993 (0,005) 0,9997 (0,006) 0,9984 (0,006) 0,9998 (0,007)

h=3 0,6002 (0,007) 0,9988 (0,005) 0,9995 (0,006) 0,9978 (0,006) 0,9998 (0,007)

h=4 0,7196 (-0,011) 0,9987 (-0,014) 0,9996 (-0,012) 0,9976 (-0,012) 1,0003 (-0,011)

h=5 0,8471 (-0,028) 0,9976 (-0,031) 0,9995 (-0,029) 0,9980 (-0,029) 1,0003 (-0,027)

h=6 0,9365 (-0,053) 0,9975 (-0,057) 0,9997 (-0,055) 0,9981 (-0,055) 1,0000 (-0,053)

h=7 1,0064 (-0,069) 0,9971 (-0,074) 0,9997 (-0,071) 0,9980 (-0,071) 0,9995 (-0,069)

h=8 1,0832 (-0,085) 0,9973 (-0,090) 0,9998 (-0,087) 0,9980 (-0,087) 0,9997 (-0,085)

h=9 1,1428 (-0,105) 0,9978 (-0,111) 1,0001 (-0,107) 0,9981 (-0,107) 0,9996 (-0,104)

h=10 1,1962 (-0,120) 0,9981 (-0,127) 1,0004 (-0,123) 0,9980 (-0,122) 0,9998 (-0,119)

h=11 1,2586 (-0,157) 0,9991 (-0,165) 1,0008 (-0,160) 0,9982 (-0,159) 0,9997 (-0,156)

h=12 1,3100 (-0,204) 1,0004 (-0,213) 1,0010 (-0,208) 0,9978 (-0,207) 1,0003 (-0,203)

Note: The table presents the root mean squared forecasting errors and the mean forecasting errors (in parentheses) for the studied combinations of

individual forecasts during the whole out-of-sample evaluation period. For the baseline model the error statistics are reported in levels. For the other

considered specifications the RMSFE is presented as a ratio of the alternative specification and the baseline model. A ratio greater than one indicates

that the competing combination scheme produces on average less accurate forecasts. For each horizon the lowest RMSFE error is reported in bold.

Source: own calculations.

appears that the model’s accuracy and bias is completely insensitive to the method of averaging point

forecasts from the individual artificial neural networks. The differences in the RMSFE as reported by the

ratio of the RMSFE from the model with equal weights to a selected alternative are negligible.

5. Conclusion and discussion

In this paper I have aimed at evaluating the accuracy of the inflation forecasts generated by a

combination of thousands of bagged single hidden-layer feed-forward artificial neural network. I have

proposed an approach heavily dependent on strictly non-linear models and methods commonly used in

the machine learning framework. I have contrasted the quality of the inflation forecasts from the proposed

model with a number of econometric approaches commonly employed for inflation forecasting purposes.

The forecasting experiment has been conducted using the large dataset of pseudo real-time data and

evaluated on the out-of-sample period of systematically falling and persistently low inflation.

Choosing the optimal architecture of the artificial neural network is normally a subject of tedious,

time-consuming experiments and subjectivity which may lead to dubious conclusion. The motivation of

this paper was to restrict the number of subjective assumptions to the absolute minimum and establish

the forecasting accuracy of the artificial neural networks by presenting an agnostic approach. To get

around the caveat of introducing substantial subjectivity, I utilize the thick modelling framework and

estimate a large number of simple hidden-layer feed forward artificial neural networks with the number of

the neurons in the hidden layer following a zero-truncated Poisson distribution. In order to prevent the

model from severe overfitting I have utilized bootstrap aggregating and considered a loss function with an

additional weight regularisation component in the learning algorithm. The point forecast of the model is

pooled from 10 000 generated specifications.

Several interesting conclusions can be adduced from the paper. First, a forecast combination of

bagged single hidden-layer artificial neural networks outperforms a number of competing models in the

established forecasting horse race. Importantly, for a considerable amount of cases the improvement upon

the competing benchmark is statistically significant. During the period of excessive inflation in Poland
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Conclusion and discussion

Finally, I inspect whether the method of combining the point forecasts from individual artificial

neural networks influences the accuracy of the combination forecast. Table 10 presents the RMSFE and

the MFE statistics of the baseline model obtained using five examined forecast combination techniques. It

Table 10: The root mean squared forecasting errors and the mean forecasting errors of different

combination methods

Rmse

Horizon mean median trimmed mean weighted (1) weighted (2)

h=1 0,2862 (0,006) 0,9995 (0,005) 0,9998 (0,006) 0,9989 (0,006) 1,0002 (0,006)

h=2 0,4222 (0,006) 0,9993 (0,005) 0,9997 (0,006) 0,9984 (0,006) 0,9998 (0,007)

h=3 0,6002 (0,007) 0,9988 (0,005) 0,9995 (0,006) 0,9978 (0,006) 0,9998 (0,007)

h=4 0,7196 (-0,011) 0,9987 (-0,014) 0,9996 (-0,012) 0,9976 (-0,012) 1,0003 (-0,011)

h=5 0,8471 (-0,028) 0,9976 (-0,031) 0,9995 (-0,029) 0,9980 (-0,029) 1,0003 (-0,027)

h=6 0,9365 (-0,053) 0,9975 (-0,057) 0,9997 (-0,055) 0,9981 (-0,055) 1,0000 (-0,053)

h=7 1,0064 (-0,069) 0,9971 (-0,074) 0,9997 (-0,071) 0,9980 (-0,071) 0,9995 (-0,069)

h=8 1,0832 (-0,085) 0,9973 (-0,090) 0,9998 (-0,087) 0,9980 (-0,087) 0,9997 (-0,085)

h=9 1,1428 (-0,105) 0,9978 (-0,111) 1,0001 (-0,107) 0,9981 (-0,107) 0,9996 (-0,104)

h=10 1,1962 (-0,120) 0,9981 (-0,127) 1,0004 (-0,123) 0,9980 (-0,122) 0,9998 (-0,119)

h=11 1,2586 (-0,157) 0,9991 (-0,165) 1,0008 (-0,160) 0,9982 (-0,159) 0,9997 (-0,156)

h=12 1,3100 (-0,204) 1,0004 (-0,213) 1,0010 (-0,208) 0,9978 (-0,207) 1,0003 (-0,203)

Note: The table presents the root mean squared forecasting errors and the mean forecasting errors (in parentheses) for the studied combinations of

individual forecasts during the whole out-of-sample evaluation period. For the baseline model the error statistics are reported in levels. For the other

considered specifications the RMSFE is presented as a ratio of the alternative specification and the baseline model. A ratio greater than one indicates

that the competing combination scheme produces on average less accurate forecasts. For each horizon the lowest RMSFE error is reported in bold.

Source: own calculations.

appears that the model’s accuracy and bias is completely insensitive to the method of averaging point

forecasts from the individual artificial neural networks. The differences in the RMSFE as reported by the

ratio of the RMSFE from the model with equal weights to a selected alternative are negligible.

5. Conclusion and discussion

In this paper I have aimed at evaluating the accuracy of the inflation forecasts generated by a

combination of thousands of bagged single hidden-layer feed-forward artificial neural network. I have

proposed an approach heavily dependent on strictly non-linear models and methods commonly used in

the machine learning framework. I have contrasted the quality of the inflation forecasts from the proposed

model with a number of econometric approaches commonly employed for inflation forecasting purposes.

The forecasting experiment has been conducted using the large dataset of pseudo real-time data and

evaluated on the out-of-sample period of systematically falling and persistently low inflation.

Choosing the optimal architecture of the artificial neural network is normally a subject of tedious,

time-consuming experiments and subjectivity which may lead to dubious conclusion. The motivation of

this paper was to restrict the number of subjective assumptions to the absolute minimum and establish

the forecasting accuracy of the artificial neural networks by presenting an agnostic approach. To get

around the caveat of introducing substantial subjectivity, I utilize the thick modelling framework and

estimate a large number of simple hidden-layer feed forward artificial neural networks with the number of

the neurons in the hidden layer following a zero-truncated Poisson distribution. In order to prevent the

model from severe overfitting I have utilized bootstrap aggregating and considered a loss function with an

additional weight regularisation component in the learning algorithm. The point forecast of the model is

pooled from 10 000 generated specifications.

Several interesting conclusions can be adduced from the paper. First, a forecast combination of

bagged single hidden-layer artificial neural networks outperforms a number of competing models in the

established forecasting horse race. Importantly, for a considerable amount of cases the improvement upon

the competing benchmark is statistically significant. During the period of excessive inflation in Poland
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their predictive accuracy has been affected and their bias remained stable which proves them a suitable

ingredient in the forecasting toolbox in times of considerable structural change. However, they have failed

to improve in a statistically significant manner upon the difficult benchmark proposed by Atkeson and

Ohanian (2001).

These results corroborate a universal consensus that a single model tailored to all problems does

not exist. However, the results indicate also that combining several linear and non-linear, univariate and

multivariate approaches differing with respect to the underlying assumptions, included information and the

relative performance across the forecasting horizon can prove most beneficial for the forecasting accuracy.

In the paper I have combined the linear BVAR with loose prior imposed on the seasonal dummies, the

non-linear BVAR with a tight prior imposed on the unconditional mean and the ANN not restricted

by the stationarity constraint. During both analysed periods this combination has outperformed in a

statistically significant manner a panel of competing benchmarks, including the Atkeson and Ohanian

(2001) benchmark.

Two final comments are in order. First, it has to be underlined that the proposed framework does

not take time explicitly into account. A common machine learning technique imposes that during the

preprocessing phase the data are distributed between the learning and the validation set based on the

random sampling (Zhang et al., 1998). Moreover, once bootstrap aggregating is employed, the set of

constructed tuples of the dependent and the explanatory variables is perturbed further. Obviously, certain

inference is lost. While this may raise criticism due to the fact that certain temporal relations are

disregarded in the modelling phase, I have outlined in the paper that resigning from these procedures

results in the serious overfitting of the combined model and severely compromises the accuracy of the

point forecast. Taking into consideration the relationships between observations in time has remained

beyond the scope of this paper and is a topic for future research.

Secondly, in contrast to the standard approaches, the interpretability of the combination of a large

number of highly non-linear individual models is non-existent and curse of the black-box prevails. It

remains a considerable hurdle for policy makers interested in understanding the reasons behind certain

price developments. Therefore, I argue that although such models should by no means play the first fiddle,

including them in the forecasting toolbox should prove useful and lead to the increase in the forecast

accuracy of the combination of utilized approaches, especially in the periods of structural changes.
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