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Abstract

We analyze the properties of a two-dimensional problem of factor-specific technology choice

subject to a technology menu – understood as the choice of the degree of factor augmenta-

tion by a producing firm or the choice of quality of goods demanded by a consumer. By

considering the problem in its generality, we are able to reach beyond the known results for

Cobb–Douglas, CES, Leontief (minimum) and maximum functions. We demonstrate that the

technology menu and the global function (envelope of local functions) are dual objects, in a

well-defined generalized sense of duality. In the optimum, partial elasticities of (i) the local

function, (ii) the technology menu and (iii) the global function are all equal and there exists a

clear-cut, economically interpretable relationship between their curvatures. Invoking Bergson’s

theorem, we also comment on the consequences of assuming homotheticity of the three objects,

with a particular focus on technology menus constructed as level curves of idea (unit factor

productivity) distributions.

Keywords: technology choice, technology menu, production function, utility function, duality,

envelope, homotheticity.

JEL codes: C62, D11, D21, E21, E23, O47.
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1 Introduction

The purpose of this article is to provide a detailed treatment of a static, two-dimensional

problem of optimal factor-specific technology choice. In such a problem, the decision maker

faces a menu of local technologies which depend on the quantity of the two factors and their

respective quality (i.e., unit productivity). The menu features a trade-off insofar as choos-

ing higher quality of one factor comes at the cost of reducing the quality of the other one.

The decision maker is allowed to select her preferred technology, in order to maximize total

output/profit/utility, for all configurations of factor quantities. The global function is then

constructed as an envelope of local functions, as in Figure 1.

Figure 1: Construction of the global function from local functions by incorporating the optimal
factor-specific technology choices.
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Decision problems with this structure may arise in firms which contemplate not just about

the demand for production factors – such as capital and labor – but also about the degree of

their technological augmentation (see e.g. Atkinson and Stiglitz, 1969; Basu and Weil, 1998;

Caselli and Coleman, 2006). Mathematically equivalent problems are also faced by (i) con-

sumers who are allowed to decide both about the quantity and quality of the demanded goods,

(ii) workers (or managers) who allocate their limited endowments of time/effort across two

alternative tasks, as well as (iii) consumers who decide over their demand for two goods charac-

teristics (Lancaster, 1966) and are also allowed to choose their attitudes towards these charac-

teristics optimally from a behavior menu (Matveenko, 2016).1 Hence, despite being motivated

primarily by the earlier contributions to the theory of economic growth and factor-augmenting

technical change (e.g., Basu and Weil, 1998; Acemoglu, 2003; Jones, 2005; Caselli and Cole-

1The last interpretation suggests that the considered problem may also be viewed as a special case of
multi-attribute utility theory (Dyer, 2005), as long as the consumer is allowed to optimize over the weights of
attributes.
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man, 2006, as well as the closely related studies listed below), the appeal of the current paper

is in fact much broader. The class of problems which we solve here has applications both in

micro- and macroeconomics, and they can be viewed both as producer and consumer problems.

Factor-specific technology choice problems of the type studied here are useful, in particular, for

addressing issues related to natural resources,2 human capital and capital–skill complementar-

ity,3 industrial organization, international trade, labor markets, sectoral change, consumption

patterns, social welfare, and so on.

Interesting results have already been obtained for certain specific cases of the factor-specific

technology choice problem. First, it has been demonstrated that when the technology menu

has the Cobb–Douglas form (which may arise, among other cases, if factor-specific ideas are

independently Pareto–distributed; Jones, 2005) or if the local function is of such form (Growiec,

2008a), then the global function must also be of the Cobb–Douglas type. Second, combining

a local function of a CES or a minimum (Leontief) form with a CES technology menu yields

a global CES function (Growiec, 2008b; Matveenko, 2010; Growiec, 2013; León-Ledesma and

Satchi, 2016).4 Third, detailed treatment of the properties of factor-specific technology choice

problems with a minimum (Leontief) local function, including their intriguing duality proper-

ties, has been provided by Rubinov and Glover (1998); Matveenko (1997, 2010); Matveenko

and Matveenko (2015).5 The minimum function is however an extreme case, which may be

viewed as both instructive and problematic. Fourth, a few promising results for the general

factor-specific technology choice problem with an implicitly specified technology menu have

also been provided in section 2.3 of León-Ledesma and Satchi (2016).

Notwithstanding these important special cases, the literature thus far has not devised a

general theoretical framework allowing to analyze the factor-specific technology choice problem

in its generality. The key contribution of this article is to put forward such a general theory

– one which would frame all these earlier results in a unique encompassing structure. We find

that a unique optimal factor-specific technology choice exists for any homothetic local function

F and technology menu G. Plugging this choice into the local function F leads to a unique

homogeneous (constant returns to scale) global function Φ, which may then be transformed

to a homothetic form by an arbitrary monotone transformation. We also find that (i) the

shape of the global function Φ depends non-trivially both on F and G unless one of them is

of the Cobb–Douglas form, and (ii) the global function Φ offers more substitution possibilities

(i.e., has less curvature) than the local function F unless the optimal technology choice is

independent of factor endowments, which happens only if F is Cobb–Douglas or G follows a

2Factor-specific technology choice problems arise naturally when studying the substitutability between ex-
haustible resources and accumulable physical capital (or renewable resources, cf. Dasgupta and Heal, 1979;
Bretschger and Smulders, 2012) as well as human capital (or quality-adjusted labor, cf. Smulders and de Nooij,
2003).

3The choice of degree of factor augmentation becomes an important issue once one acknowledges that
skilled and unskilled labor are imperfectly substitutable (e.g., Caselli and Coleman, 2006) and potentially
complementary to capital (Krusell, Ohanian, Ŕıos-Rull, and Violante, 2000; Duffy, Papageorgiou, and Perez-
Sebastian, 2004).

4The implications of factor-specific technology choice in the CES case have been also studied by Nakamura
and Nakamura (2008); Nakamura (2009).

5See also the book by Rubinov (2000).
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maximum function.

Our second contribution is to construct and solve the dual problem (in a well-defined

generalized sense of duality) where, for every technology, the decision maker maximizes out-

put/profit/utility subject to a requirement of producing a predefined quantity with the global

technology Φ. Then, by plugging these optimal factor choices into the local function F , we

obtain the technology menu G as an envelope. The results are fully analogous.6

The duality property allows us to provide an additional contribution. We find that in the

optimum, partial elasticities of all three objects – the local function F , the technology menu

G and the global function Φ – are all equal. We then identify a clear-cut, economically inter-

pretable relationship between their curvatures, giving rise to interesting qualitative implications

on concavity/convexity and gross complementarity/substitutability along the three functions

(see Section 4).7

The assumption of homotheticity which we make throughout the analysis, while shared by

bulk of the associated literature, does not come without costs. The key limitation is due to

Bergson’s theorem (Bergson{Burk}, 1936) which states that every homothetic function that is

also additively separable (either directly or after a monotone transformation) must be either

of the Cobb–Douglas or CES functional form. Hence, when one wants to go beyond the CES

framework, one must either give up homotheticity (e.g., Zhelobodko, Kokovin, Parenti, and

Thisse, 2012) or additive separability (e.g., Revankar, 1971; Growiec and Mućk, 2016, this

paper). It follows that all the non-CES cases which are covered by the current study but have

not been discussed before, cannot be written down as additively separable.

Finally, we devote a separate section of the paper to study the link between the technology

menu and distributions of ideas. Indeed, part of the associated literature derives the technology

menu as a level curve of a certain joint distribution of ideas (unit factor productivities) where

the marginal idea distributions are either independent (Jones, 2005; Growiec, 2008b) or depen-

dent following a certain copula (Growiec, 2008a). Extending these studies, we show that such

“probabilistic” construction of the technology menu often places a restriction on the considered

class of functions G, potentially reducing them to the Cobb–Douglas or CES form because

of their homotheticity and additive separability (after a monotone transformation). To show

this, we adapt Bergson’s theorem (Bergson{Burk}, 1936) to the case of copulas, particularly

Archimedean ones.

The paper is structured as follows. Section 2 presents the setup of the considered problem.

In Section 3 we derive the optimal technology choice. In Section 4 we plug it into the local

production function and thus build the envelope. Section 5 discusses the most instructive spe-

6That is, a unique optimal technology-specific factor choice exists for any homothetic local function F and
global function Φ. Plugging this choice into the local function F leads to a unique homogeneous technology
menu G, which may then be transformed to a homothetic form by an arbitrary monotone transformation. The
shape of the technology menu G depends non-trivially both on F and Φ unless one of them is of the Cobb–
Douglas form. Finally, the technology menu G offers more substitution possibilities (i.e., has less curvature)
than the local function F unless the optimal factor choice is independent of technology, which happens only if
F is Cobb–Douglas or Φ follows a maximum function.

7Our findings also underscore that the case with a Cobb–Douglas technology menu and a Cobb–Douglas
global function, studied in detail by Jones (2005) and León-Ledesma and Satchi (2016), is in fact very special
and not well suited for drawing general conclusions.
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cial cases known from the literature. Section 6 presents the similarities and differences between

the homogeneous and the homothetic case. Section 7 studies the link between the technology

menu and distributions of ideas. Section 8 concludes. A discussion of the relationships between

our setup and the problem of output/utility maximization subject to a budget constraint, as

well as the literature on factor-augmenting technical change, can be found in Appendix A.
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2 The Primal and Dual Optimization Problem

For the clarity of exposition, we shall first consider the case where the local function F , the

technology menu G and the global function Φ are homogeneous. A generalization to the

homothetic case is delegated to Section 6.

2.1 The Primal Problem

In the primal problem, the decision maker (the output- or profit-maximizing firm, the utility-

maximizing consumer) maximizes a local function F (BK,AL) with respect to the technology

pair (B,A) taken from a level curve of the technology menu G(B,A), taking K > 0 and L > 0

as given.8 The global function Φ(K,L) is obtained as an envelope, by plugging the optimal

choices (B∗(K,L), A∗(K,L)) into the local function. Formally, we write:

Φ(K,L) = max
(B,A)∈ΩG

F (BK,AL) s.t. ΩG = {(B,A) ∈ R2
+ : G(B,A) = 1}. (1)

In the basic treatment of the static problem (1), it is assumed that the local function F : R2
+ →

R+ is increasing, twice continuously differentiable and homogeneous (constant-returns-to-scale,

CRS). Homogeneity permits to rewrite F in its intensive form, F (BK,AL) = F
(
BK
AL , 1

)
AL =

f(bk)AL, where b = B/A and k = K/L. The local function F is interpreted as the local

(short-run, exogenous-technology) production function faced by a firm or utility function of a

consumer. Each of its arguments is a product of a quantity (K or L) and its quality multiplier,

i.e., unit factor productivity (B or A, respectively). Finally, while mathematically this is not

necessary, economic interpretation of the local function implies that in typical applications, it

should be concave in each of its arguments.

Symmetrically, we also assume that the technology menu G : R2
+ → R+ is increasing, twice

continuously differentiable and homogeneous. Analogously, we rewrite G in its intensive form,

G(B,A) = G
(
B
A , 1

)
A = g(b)A. The technology menu G is a function which maps factor-

specific quality levels to a scalar, interpreted as an overall “technology level” of the economy

as faced by the decision maker. Under the production function interpretation, we say that the

larger is the value of G, the more can be produced from given inputs; under the utility function

function interpretation, the value of G scales total utility attainable from the given endowment

of goods.

2.2 The Dual Problem

In the dual problem, the decision maker maximizes a local function F (BK,AL) with respect to

the quantities (K,L), subject to maintaining a predefined level of output/utility given by the

8We denote the quantities K and L so that they are easily recognized as “capital” and “labor”, in line
with the production function interpretation of the discussed framework. However, this is done only to keep
the discussion close to the associated literature. In fact, the theory can be applied just as well to utility
maximization problems, where K and L are understood as quantities of two goods demanded by a consumer,
as well as to production functions with any other pair of inputs.
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global function Φ(K,L), and taking the factor-specific technologies B > 0 and A > 0 as given.

The technology menu G(B,A) is obtained as an envelope, by plugging the optimal choices

(K∗(B,A), L∗(B,A)) into the local function. Formally, we write:

G(B,A) = max
(K,L)∈ΩΦ

F (BK,AL) s.t. ΩΦ = {(K,L) ∈ R2
+ : Φ(K,L) = 1}. (2)

In the basic treatment of the static problem (2), it is assumed that – alike the local function F

– the global function Φ : R2
+ → R+ is increasing, twice continuously differentiable and homo-

geneous. Due to homogeneity, we may rewrite Φ in its intensive form, Φ(K,L) = Φ
(
K
L , 1

)
L =

φ(k)L.

The difference between the local function F and the global function Φ is that the former

maps the quantities of inputs into output keeping factor-specific technologies fixed, whereas

the latter allows them to be chosen optimally. Under the production function interpretation,

it is therefore natural to think of the local function as a short-run production function, and

of the global function – as a long-run one (León-Ledesma and Satchi, 2016). Analogously,

under the utility function interpretation the local function is a short-run utility function which

takes attitudes towards goods characteristics as given, whereas the global function is a long-

run utility function which also accounts for endogenous behavior formation (Matveenko, 2016).

Again, economic interpretation of the global function implies that in typical applications, it

should be concave in each of its arguments.

2.3 Homotheticity, Additive Separability and Bergson’s Theorem

Homotheticity of the considered functions has profound consequences. Importantly, ever since

Bergson{Burk} (1936) we know that every homothetic and additively separable function must

be either of the Cobb–Douglas or of the CES form. In the symbols of our current study,

Bergson’s theorem can be stated as follows:

Theorem 1 (Bergson{Burk} (1936)) Let Fh : R2
+ → R be a homothetic function which

can be written as additively separable after a monotone transformation:

∃(fh : R+ → R, F : R2
+ → R+) Fh(x, y) = fh(F (x, y)), (3)

∃(fs : R+ → R, Dx, Dy : R+ → R) Fh(x, y) = fs(Dx(x) +Dy(y)), (4)

where fh, fs, Dx, Dy are monotone differentiable functions and F is an increasing, twice dif-

ferentiable homogeneous function. Then either

Dx(x) = α lnx+ cx, Dy(y) = β ln y + cy ⇒ F (x, y) = c · x α
α+β y

β
α+β , (5)

where α, β, cx, cy are arbitrary constants and c = exp
(

cx+cy
α+β

)
, or

Dx(x) = αxρ + cx, Dy(y) = βyρ + cy ⇒ F (x, y) = (αxρ + βyρ)
1
ρ , (6)

8
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where α, β, cx, cy are arbitrary constants and ρ �= 0.

Proof. See Bergson{Burk} (1936) or Rader (1972), Theorem 8, page 212. �

Bergson’s theorem is the fundamental analytical cause why studies aiming at generalizing

the CES framework must either give up homotheticity (e.g., Zhelobodko, Kokovin, Parenti,

and Thisse, 2012) or additive separability (e.g., Revankar, 1971; Growiec and Mućk, 2016, this

paper). It follows that in all the non-CES cases covered by the current study, the functions

F,G and Φ cannot be written down as additively separable after any monotone transformation,

a property shared among others by isoelastic elasticity of substitution (IEES) functions defined

in Growiec and Mućk (2016).

Bergson’s theorem is also the decisive reason why technology choice problems where the

technology menu is constructed from independent idea distributions are necessarily limited to

the Cobb–Douglas and CES cases (Growiec, 2008b, Proposition 3). Extending this result, in

the current paper we apply Bergson’s theorem to a much broader class of cases where the idea

distributions are allowed to be dependent but the dependence is modeled with an Archimedean

copula. A thorough discussion of this issue will be provided in Section 7. Here, it suffices to

say that all non-trivial generalizations of existing results which will be provided in this paper,

for which the technology menu G is constructed as a level curve of a certain joint distribution,

require that the dependence between the dimensions is not modeled by any Archimedean

copula.

2.4 Discussions and Clarifications

Let us clarify a few important concepts before we present our main results.

Generalized duality. Problems (1) and (2) are dual to one another, although not in the

standard, linear sense of duality. Instead they are dual when taking the local function F

as a (typically non-linear) linking function. This generalized form of duality (“F -duality”)

encompasses linear duality as a special case (after a switch from maximization to minimization

in the dual problem). At the same time, it also generalizes idempotent duality, where the linking

function is a minimum function (Rubinov and Glover, 1998; Matveenko and Matveenko, 2015).9

The latter case can be viewed as a limiting case of F -duality.

Partial elasticities. Partial elasticities of homogeneous functions F , G and Φ with respect

9The term “idempotent duality” belongs to the realm of tropical mathematics. I am grateful to Matveenko
and Matveenko (2015) for acquainting me with this notion. I was however deeply disappointed when I learned
that tropical mathematics has nothing to do with polar coordinates.
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to their first arguments are defined as:

πF (bk) =
∂F

∂(BK)
(BK,AL)

BK

F (BK,AL)
=

f ′(bk)bk
f(bk)

> 0, (7)

πG(b) =
∂G

∂B
(B,A)

B

G(B,A)
=

g′(b)b
g(b)

> 0, (8)

πΦ(k) =
∂Φ

∂K
(K,L)

K

Φ̃(K,L)
=

φ′(k)k
φ(k)

> 0. (9)

Homogeneity implies that π ∈ [0, 1] for all three functions and that partial elasticities with

respect to their second arguments are equal to 1 − π. It is also useful to define the relative

elasticities Π, strictly increasing in π, as

ΠF (bk) =
πF (bk)

1− πF (bk)
> 0, ΠG(b) =

πG(b)

1− πG(b)
> 0, ΠΦ(bk) =

πΦ(k)

1− πΦ(k)
> 0. (10)

If one also assumed that factor markets were perfectly competitive, partial elasticities π and

1− π would also be equal to the respective factors’ shares of output.

Curvature. We define the curvature of homogeneous functions F , G and Φ as:

θF (bk) = −f ′′(bk)bk
f ′(bk)

, θG(bk) = −g′′(b)b
g′(b)

, θΦ(k) = −φ′′(k)k
φ′(k)

. (11)

Hence, our measure of curvature is the Arrow–Pratt coefficient of relative risk aversion, also

called the relative love of variety (Zhelobodko, Kokovin, Parenti, and Thisse, 2012). The

curvature θ(x) is positively linked to the partial elasticity 1− π(x) and inversely linked to the

elasticity of substitution σ(x), as in

θ(x) =
1− π(x)

σ(x)
. (12)

As compared to the elasticity of substitution, the curvature θ(x) is relatively better suited

to the simultaneous analysis of concave as well as convex functions: the curvature is always

positive (θ(x) > 0 for all x) for concave functions, always negative (θ(x) < 0 for all x) for

convex functions, and the curvature of linear functions is zero.10 Hence, when we think of

concave production or utility functions, we ought to consider the case where θ(x) > 0 in the

entire domain.

Normalization. We carry out our analysis in normalized units. Production function nor-

malization has been shown to be crucial for obtaining clean identification of the role of each

parameter of the CES function (de La Grandville, 1989; Klump and de La Grandville, 2000;

Klump, McAdam, and Willman, 2012). Its usefulness has also been demonstrated beyond the

CES class (Growiec and Mućk, 2016) as well as for factor-specific technology choice problems

(Growiec, 2013).

10See Matveenko and Matveenko (2014) for a more detailed discussion of the relationship between θ(x) and
σ(x).

10

Narodowy Bank Polski12



To maintain normalization while economizing on notation, we assume that K,L,B,A, k

and b are already given in normalized units11:

K =
K̃

K̃0

, L =
L̃

L̃0

, B =
B̃

B̃0

, A =
Ã

Ã0

, k =
k̃

k̃0
, b =

b̃

b̃0
. (13)

Output is normalized in the same way as the inputs. We posit that G̃(B̃0, Ã0) = G0 ⇐⇒
G(1, 1) = 1 as well as Φ̃(K̃0, L̃0) = Φ0 ⇐⇒ Φ(1, 1) = 1. Thus the level curves are

ΩG = {(B,A) ∈ R2
+ : G(B,A) = 1} = {(B̃, Ã) ∈ R2

+ : G̃(B̃, Ã) = G0}, (14)

ΩΦ = {(K,L) ∈ R2
+ : Φ(K,L) = 1} = {(K̃, L̃) ∈ R2

+ : Φ̃(K̃, L̃) = Φ0}. (15)

We also normalize the partial elasticities of the considered functions F , G and Φ:

π0F ≡ ∂F̃

∂(B̃K̃)
(B̃0K̃0, Ã0L̃0)

B̃0K̃0

F̃ (B̃0K̃0, Ã0L̃0)
=

f ′(1) · 1
f(1)

= f ′(1), (16)

π0G ≡ ∂G̃

∂B̃
(B̃0, Ã0)

B̃0

G̃(B̃0, Ã0)
=

g′(1) · 1
g(1)

= g′(1), (17)

π0Φ ≡ ∂Φ̃

∂K̃
(K̃0, L̃0)

K̃0

Φ̃(K̃0, L̃0)
=

φ′(1) · 1
φ(1)

= φ′(1). (18)

In our discussion of examples, we will pay special attention to the case π0F = π0G = π0Φ.

Such coincidence cannot be guaranteed for arbitrary functions, but it leads to particularly

transparent outcomes whenever it happens to hold.

11In empirical studies, variables are often normalized around sample means (Klump, McAdam, and Willman,
2007, 2012).
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3 Optimal Technology Choice

3.1 The Primal Problem

To solve the primal optimization problem for a given pair (K,L), we set up the following

Lagrangian LP :

LP (B,A) = F (BK,AL) + λ(G(B,A)− 1). (19)

We find that as long as the curvature of the local function F exceeds the curvature of the tech-

nology menu G (i.e., there are relatively few substitution possibilities along the local function),

there exists a unique interior solution to the problem which equalizes partial elasticities of the

local function and the technology menu. We also find that the optimal technology choice is

biased towards the abundant factor (∂b
∗(k)
∂k > 0) if factors are gross substitutes along a con-

cave local function or if the local function is convex (1− πF (bk)− θF (bk) > 0, which requires

that σF (bk) > 1 or σF (bk) < 0). Otherwise, optimal technology choice is biased towards the

scarce factor (∂b
∗(k)
∂k < 0). Then factors are gross complements along a concave local function

(σF (bk) ∈ (0, 1)). In the intermediate, knife-edge case where the local technology is Cobb–

Douglas (σF (bk) = 1), optimal technology choice does not depend on factor endowments, i.e.,

b∗(k) is constant.

Theorem 2 Let F,G : R2
+ → R+ be increasing, twice continuously differentiable homogeneous

functions satisfying θF (b
∗(k)k) > θG(b

∗(k)) for a given pair (K,L) ∈ R2
+, and excluding the

case where both of them are Cobb–Douglas functions. Then the problem (1) allows a unique

interior maximum where

ΠF (b
∗(k)k) = ΠG(b

∗(k)), (20)

and

B∗(k) =
b∗(k)

g(b∗(k))
, A∗(k) =

1

g(b∗(k))
. (21)

The partial elasticity of the optimal technology choice b∗(k) equals:

∂b∗(k)
∂k

k

b∗(k)
=

1− πF (bk)− θF (bk)

θF (bk)− θG(b)
. (22)

Proof. See Appendix. �

3.2 The Dual Problem

The construction of the dual problem is similar to its primal counterpart, so the results are

alike as well. To solve the dual optimization problem for a given pair (B,A), we set up the

following Lagrangian LD:

LD(K,L) = F (BK,AL) + λ(Φ(K,L)− 1). (23)
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Fully analogously to the primal case, we find that as long as the curvature of the local function

F exceeds the curvature of the global function Φ (i.e., there are less substitution possibilities

locally than globally), there exists a unique interior solution to the problem which equalizes

partial elasticities of the local and the global function. We also find that the choice of the factor

ratio is biased towards the more productive factor (or factor with superior quality, ∂k∗(b)
∂b > 0)

if factors are gross substitutes along a concave local function or if the local function is convex.

Conversely, if factors are gross complements along a concave local function, factor choice is

biased towards the less productive factor. If the local technology is Cobb–Douglas then the

optimal factor choice does not depend on the technology endowment, i.e., k∗(b) is constant.

Proof of the following theorem is fully symmetric to the proof of Theorem 2 and therefore

has been omitted.

Theorem 3 Let F,Φ : R2
+ → R+ be increasing, twice continuously differentiable homogeneous

functions satisfying θF (bk
∗(b)) > θΦ(k

∗(b)) for a given pair (B,A) ∈ R2
+, and excluding the

case where both of them are Cobb–Douglas functions. Then the problem (2) allows a unique

interior maximum where

ΠF (bk
∗(b)) = ΠΦ(k

∗(b)), (24)

and

K∗(b) =
k∗(b)

φ(k∗(b))
, L∗(b) =

1

φ(k∗(b))
. (25)

The partial elasticity of the optimal factor choice k∗(b) equals:

∂k∗(b)
∂b

b

k∗(b)
=

1− πF (bk)− θF (bk)

θF (bk)− θΦ(k)
. (26)

Having identified the optimal choices in the primal and dual problem, we are now in a

position to insert them into the local function and thus to construct the appropriate envelopes.
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4 The Global Function and the Technology Menu: Con-

struction and Duality

As stated above, the global function Φ is constructed as an envelope of local functions by

inserting the optimal technology choices from the primal problem, as derived in Theorem 2,

into the local function F . Symmetrically, the technology menu G is constructed as an envelope

of local functions by inserting the optimal factor choices from the dual problem, as derived in

Theorem 3. The domains of both envelopes include all arguments for which interior optimal

choices exist, i.e., all arguments for which the curvature of the local function exceeds the one

of the constraint. The resultant envelopes have the following properties.

Theorem 4 Let DΦ = {(K,L) ∈ R2
+ : θF (b

∗(k)k) > θG(b
∗(k))} and DG = {(B,A) ∈ R2

+ :

θF (bk
∗(b)) > θΦ(k

∗(b))} where b∗(k) solves (20) and k∗(b) solves (24). Then there exists a

unique increasing homogeneous global function Φ : DΦ → R+ solving problem (1) as well as

a unique increasing homogeneous technology menu G : DG → R+ solving problem (2). Their

respective intensive forms are given by:

φ(k) =
f(b∗(k)k)
g(b∗(k))

, g(b) =
f(bk∗(b))
φ(k∗(b))

. (27)

Proof. See Appendix. �
Please note that while both functions g and φ are increasing in their arguments, the optimal

choices b∗(k) and k∗(b) do not have to be monotone (and hence, bijective). Therefore the mutual

duality (“F -duality”) of the global function and the technology menu must be limited to the

domain where the optimal choices can be inverted.

It is no surprise that the global function and the technology menu are dual to one another,

and thus both equalities in (27) hold simultaneously, only on intervals where b∗(k) and k∗(b)

are monotone, and thus can be inverted, so that k = k∗(b∗(k)) and b = b∗(k∗(b)), as well as:

φ(k) =
f(b∗(k)k)
g(b∗(k))

=
f(b∗(k)k∗(b∗(k)))

g(b∗(k))
=

f(b∗(k)k∗(b∗(k)))
f(b∗(k)k∗(b∗(k)))

φ(k∗(b∗(k)))

= φ(k∗(b∗(k))), (28)

g(b) =
f(bk∗(b))
φ(k∗(b))

=
f(b∗(k∗(b))k∗(b))

φ(k∗(b))
=

f(b∗(k∗(b))k∗(b))
f(b∗(k∗(b))k∗(b))

g(b∗(k∗(b)))

= g(b∗(k∗(b))). (29)

Interestingly, however, these intervals coincide precisely with the domain in which both inputs

are either (i) gross complements along a concave local function (with σF (bk) ∈ (0, 1) and 1−
πF (bk)−θF (bk) < 0), or (ii) gross substitutes along a concave local function with the additional

possibility of a convex local function (i.e., the case where 1 − πF (bk) − θF (bk) > 0, requiring

that either σF (bk) > 1 or σF (bk) < 0). Most of the production function studies thus far

concentrated on the former possibility (e.g., Rubinov and Glover, 1998; Jones, 2005; Growiec,

2013; Matveenko and Matveenko, 2015) and assumed that factors are always gross complements

along the local production function. We generalize these studies by accommodating both
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variants.

Theorem 5 Let Ω = {(k, b) ∈ DΦ ×DG : 1− πF (bk)− θF (bk) �= 0}. Then for each connected

subset of Ω, both equalities in (27) hold simultaneously and partial elasticities of F,G and Φ

are equal:

π = πF (bk) = πG(b) = πΦ(k). (30)

For all (k, b) ∈ Ω it also holds that 1 − π − θG(b) = 0 ⇐⇒ 1 − π − θΦ(k) = 0 and otherwise

the curvatures of the three functions are linked12 via

1

1− π − θF (bk)
=

1

1− π − θG(b)
+

1

1− π − θΦ(k)
. (31)

Proof. See Appendix. �
Equation (31) is a precise quantitative description of the relationship between the curvatures

of the local function, the technology menu and the global function. It also has some very

intuitive properties. First, we have that θF (bk) always exceeds both θG(b) and θΦ(k). Hence,

factor-specific technology choice always adds more flexibility to the local function, thereby

decreasing its curvature (and thus, under concavity, increasing its elasticity of substitution

(Growiec, 2013)).13

Second, it is instructive to evaluate the signs of both sides of (31). If the left-hand side is

negative, meaning that factors are gross complements along the local function (by all means the

usual case in the production function literature), then 1−π− θG(b) and 1−π− θΦ(k) must be

of opposing signs. Hence, it must be that either the technologies are gross substitutes along the

technology menu but the factors are gross complements along the global function, or vice versa,

the technologies are gross complements along the technology menu and the factors are gross

substitutes along the global function. Intuitively, if the technologies b are easily substituted

with one another then their choice is of relatively minor importance for the effective input

ratio bk; then the substitutability of inputs k must remain low. Conversely, if the technologies

come in almost fixed proportions then even small changes in b will exert a major impact on

bk. In such a case, optimal technology choice is a potent force, able to make inputs k easily

substitutable along the global function.

The remaining possibility is that the left-hand side of (31) is positive, so that the factors

are gross substitutes already along the local function. In such a situation, both 1− π − θG(b)

and 1 − π − θΦ(k) must be positive as well, encompassing the cases of gross substitutability

and convexity.

12For more intuition, note that Ω could also be understood as the set of arguments for which F has non-
unitary elasticity of substitution, σF (bk) �= 1. Moreover, the statement 1−π−θG(b) = 0 ⇐⇒ 1−π−θΦ(k) = 0
is equivalent to σG(b) = 1 ⇐⇒ σΦ(k) = 1, representing the case where both G and Φ have a locally unitary
elasticity of substitution.

13A similar relationship has also been derived by León-Ledesma and Satchi (2016) in their equation (15).
Their equation is however somewhat less transparent because they use an implicit specification of the technology
menu and solve the primal problem only.
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5 Notable Special Cases

Several special parametrizations of the above general setup have already been discussed in

the literature. We shall now provide an overview of these cases, thus underscoring the wide

applicability of our general theorems. Most notably, under certain assumptions they can be

used as microfoundation for global Cobb–Douglas and CES production/utility functions.

5.1 The Cobb–Douglas Function

The primal problem with a Cobb–Douglas technology menu has been studied by, among others,

Jones (2005) and León-Ledesma and Satchi (2016). Its variant with a Cobb–Douglas local

function has been reviewed as an example in Growiec (2008a). The appendix to Growiec

(2013) has also considered the case of a continuum of factors. Here we reproduce these results

as special cases of our general theory as well as elucidate certain important problems which

may arise in the primal and dual problems under this particular parametrization.

Cobb–Douglas local function. If the local function is of the homogeneous, normalized

Cobb–Douglas form, then:

F (BK,AL) = (BK)π0F (AL)1−π0F , f(bk) = (bk)π0F . (32)

Assuming that G is not Cobb–Douglas and that θG(b) < 1−π0F , from (20) we obtain that the

optimal technology choice is independent of k:

Π0F = ΠG(b) ⇒ b∗(k) ≡ b∗ = Π−1
G (Π0F ). (33)

Inserting this choice for all (K,L) ∈ R2
+, from (27) we obtain:

φ(k) =
f(b∗k)
g(b∗)

=

(
(b∗)π0F

g(b∗)

)
kπ0F ⇒ Φ(K,L) =

(
(b∗)π0F

g(b∗)

)
Kπ0FL1−π0F . (34)

It means that irrespective of the shape of G, the global function must be Cobb–Douglas with

the same exponent π0F as the local function. The shape of G affects only the multiplicative

constant, i.e., total factor productivity (TFP).

If, additionally, π0F = π0G then b∗ = 1 and hence the constant becomes equal to unity,

implying Φ(K,L) = Kπ0FL1−π0F .

A fully symmetric result is obtained when solving the dual problem with a Cobb–Douglas

local function. In that case, assuming that Φ is not Cobb–Douglas and that θΦ(k) < 1− π0F ,

from (24) we obtain that the optimal factor choice is independent of b:

Π0F = ΠΦ(k) ⇒ k∗(b) ≡ k∗ = Π−1
Φ (Π0F ). (35)
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Inserting this choice for all (B,A) ∈ R2
+, from (27) we obtain:

g(b) =
f(bk∗)
φ(k∗)

=

(
(k∗)π0F

φ(k∗)

)
bπ0F ⇒ G(B,A) =

(
(k∗)π0F

φ(k∗)

)
Bπ0FA1−π0F . (36)

Again, if additionally π0F = π0Φ then k∗ = 1 and hence G(B,A) = Bπ0FA1−π0F .

While intuitive, the case of Cobb–Douglas local functions is pathological in the sense that

the technology menu and the global function cannot be viewed as dual objects because the

optimal choice is constant and thus not invertible. Indeed, trying to solve the primal problem

when F and G are both Cobb–Douglas functions with the same exponent π0F , immediately

leads to indeterminacy:

max
(B,A)∈R2

+

F (BK,AL) = (BK)π0F (AL)1−π0F s.t. G(B,A) = Bπ0FA1−π0F = 1 (37)

implies maximizing Kπ0FL1−π0F which does not depend on B and A. Indeterminacy would

also follow if we tried to solve the dual problem when F and Φ are both Cobb–Douglas with

the same exponent π0F .

This pathological outcome is a direct consequence of violation of the curvature assumption

in Theorem 2 (when solving the primal problem while assuming that F and G are Cobb–

Douglas functions with the same exponent) or in Theorem 3 (when making this assumption

for F and Φ in the dual problem).

Cobb–Douglas technology menu. Let us now consider the case where the technology menu

G is Cobb–Douglas with an exponent π0G:

G(B,A) = Bπ0GA1−π0G , g(b) = bπ0G (38)

and the local function exhibits more curvature, θF (bk) > 1 − π0G. In this case, the optimal

technology choice is monotone and thus duality is present again. From (20) we obtain

ΠF (b
∗(k)k) = Π0G ⇒ b∗(k) =

Π−1
F (Π0G)

k
. (39)

Inserting this choice for all (K,L) ∈ R2
+, from (27) we obtain:

φ(k) =
f(b∗(k)k)
g(b∗(k))

=

(
f(Π−1

F (Π0G))

(Π−1
F (Π0G))π0G

)
kπ0G ⇒ Φ(K,L) =

(
f(Π−1

F (Π0G))

(Π−1
F (Π0G))π0G

)
Kπ0GL1−π0G .

(40)

It means that irrespective of the shape of F , the global function must be Cobb–Douglas with

the same exponent π0G as the technology menu. The shape of F affects only the multiplicative

constant, i.e., total factor productivity (TFP). If, additionally, π0F = π0G then b∗(k) = 1/k

and hence the constant becomes equal to unity, implying Φ(K,L) = Kπ0GL1−π0G .

Cobb–Douglas global function. The dual problem for a Cobb–Douglas global function
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Φ(K,L) = Kπ0ΦL1−π0Φ is solved analogously. From (24) we obtain

ΠF (bk
∗(b)) = Π0Φ ⇒ k∗(b) =

Π−1
F (Π0Φ)

b
. (41)

Inserting this choice for all (K,L) ∈ R2
+, from (27) we obtain:

g(b) =
f(bk∗(b))
φ(k∗(b))

=

(
f(Π−1

F (Π0Φ))

(Π−1
F (Π0Φ))π0Φ

)
bπ0Φ ⇒ G(B,A) =

(
f(Π−1

F (Π0Φ))

(Π−1
F (Π0Φ))π0Φ

)
Bπ0ΦA1−π0Φ .

(42)

It means that irrespective of the shape of F , the technology menu must be Cobb–Douglas with

the same exponent π0Φ as the global function. The shape of F affects only the multiplicative

constant, i.e., the overall technology level in the economy. If, additionally, π0F = π0Φ then

k∗(b) = 1/b and hence the constant becomes equal to unity, implying G(B,A) = Bπ0GA1−π0G .

5.2 The CES Function

The primal problem with a CES local function and a CES technology menu has been analyzed

by, among others, Growiec (2008b, 2013). The former study also touched upon the dual

problem, whereas the appendix to the latter considered the more general case of a continuum

of factors.

It turns out that with a CES (or Leontief) local function, a CES technology menu is dual

to a CES global function – and vice versa. Let us now briefly review this case as a specific

application of our general theory.

Formally, for the primal problem let us assume that

F (BK,AL) = (π0F (BK)ρ + (1− π0F )(AL)ρ)
1
ρ , G(B,A) = (π0GB

α + (1− π0G)A
α)

1
α ,

(43)

with ρ �= 0 and α �= 0 as well as ρ < α which implies θF (bk) > θG(b). From (20) we obtain:

Π0F (bk)
ρ = Π0Gb

α ⇒ b∗(k) =
(
Π0F

Π0G

) 1
α−ρ

k
ρ

α−ρ . (44)

Inserting this choice for all (K,L) ∈ R2
+, from (27) we obtain:

φ(k) =
f(b∗(k)k)
g(b∗(k))

=

(
π0F (

Π0F

Π0G
)

ρ
α−ρ k

αρ
α−ρ + (1− π0F )

) 1
ρ

(
π0G(

Π0F

Π0G
)

α
α−ρ k

αρ
α−ρ + (1− π0G)

) 1
α

= ζ · (π0Φk
ξ + (1− π0Φ)

) 1
ξ , (45)

where ξ = αρ
α−ρ denotes the elasticity parameter of the resultant global function (linked to its

elasticity of substitution via σΦ = 1
1−ξ ), the multiplicative constant equals ζ = (1− π0F )

1
ρ (1−

π0G)
− 1

α (1 − π0Φ)
− 1

ξ , and π0Φ is the partial elasticity of the global function at the point of
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normalization which satisfies:

Π
1
ρ

0F = Π
1
α

0GΠ
1
ξ

0Φ ⇐⇒
(

π0F

1− π0F

) 1
ρ

=

(
π0G

1− π0G

) 1
α
(

π0Φ

1− π0Φ

) 1
ξ

. (46)

We also observe that in the special case where π0F = π0G = π0Φ, the optimal technology choice

simplifies to b∗(k) = k
ρ

α−ρ with ζ = 1.

Hence, indeed the global function is CES. Moreover, as follows from Theorem 5, the curva-

ture of the global function is indeed lower than of its local counterpart (cf. Growiec, 2013).

For the dual problem we assume that

F (BK,AL) = (π0F (BK)ρ + (1− π0F )(AL)ρ)
1
ρ , Φ(K,L) =

(
π0ΦK

ξ + (1− π0Φ)L
ξ
) 1

ξ ,

(47)

with ρ �= 0 and ξ �= 0 as well as ρ < ξ which implies θF (bk) > θΦ(k). From (24) we obtain:

Π0F (bk)
ρ = Π0Φk

ξ ⇒ k∗(b) =
(
Π0F

Π0Φ

) 1
ξ−ρ

b
ρ

ξ−ρ . (48)

Inserting this choice for all (B,A) ∈ R2
+, from (27) we obtain:

g(b) =
f(bk∗(b))
φ(k∗(b))

=

(
π0F (

Π0F

Π0Φ
)

ρ
ξ−ρ b

ξρ
ξ−ρ + (1− π0F )

) 1
ρ

(
π0Φ(

Π0F

Π0Φ
)

ξ
ξ−ρ b

ξρ
ξ−ρ + (1− π0Φ)

) 1
ξ

= ζ · (π0Gb
α + (1− π0G))

1
α , (49)

where the elasticity parameter of the resultant technology menu is equal to α = ξρ
ξ−ρ , consis-

tently with ξ = αρ
α−ρ from the primal problem. Even more transparently, we obtain the following

relationship between the three functions’ elasticities of substitution (in line with equation (31)):

1

ρ
=

1

α
+

1

ξ
⇐⇒ σF

σF − 1
=

σG

σG − 1
+

σΦ

σΦ − 1
. (50)

The multiplicative constant of the derived technology menu is the same ζ as the constant

in the primal problem, and π0G, the partial elasticity of the technology menu at the point

of normalization, again satisfies (46). All these findings underscore that the CES technology

menu and the CES global function are mutually dual.

We also find again that in the special case where π0F = π0G = π0Φ, we have that k∗(b) =

b
ρ

ξ−ρ and ζ = 1.

5.3 The Minimum and Maximum Functions

Mutual duality between the technology menu and the global function subject to a minimum

(Leontief) local function, along which the factors are perfectly complementary (i.e., idempo-

tent duality), has already been identified and thoroughly discussed by Rubinov and Glover

(1998); Matveenko (1997, 2010); Matveenko and Matveenko (2015). These studies have also

extended this case into n dimensions. For completeness, here we also present the case where
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the technology menu or the global function is specified as a maximum function.

Leontief local function. The case where the local function is Leontief is very closely related

to our Theorems 2–5 but, strictly speaking, cannot be considered as their special case. The

reason is that, contrary to our assumptions, the minimum (Leontief) function:

F (BK,AL) = min{BK,AL}, f(bk) = min{bk, 1}, (51)

is not differentiable at the point where BK = AL. Nevertheless, the results obtained here

can still be conveniently characterized as a limiting case of our setup, where the curvature

of the local function tends to infinity at the “kink” (i.e., at the ray from the origin satisfying

BK = AL). Second order conditions are then automatically verified.

Assuming that the curvature of the technology menu is finite, the first order condition for

the primal problem implies bk = 1 (and thus b∗(k) = 1/k) as well as f(bk) = bk = 1. Inserting

this choice into the local function for all (K,L) ∈ R2
+ we obtain:

φ(k) =
1

g(1/k)
, (52)

which is fully in line with (27). Consequently, in line with (30) we obtain that:

π = πG(1/k) = πΦ(k), (53)

and in line with (31),
1

1− π − θG(1/k)
= − 1

1− π − θΦ(k)
. (54)

The solution of the dual problem is fully analogous and implies k∗(b) = 1/b and a technology

menu satisfying g(b) = 1
φ(1/b) . Equations (53)–(54) are also obtained again, only that one has

now to substitute 1/b for k.

Furthermore, as demonstrated e.g. by Matveenko and Matveenko (2015), when the local

function is Leontief, a Cobb–Douglas technology menu is dual to a Cobb–Douglas global func-

tion (and their exponents coincide), in line with (40) and (42). Moreover, a CES technology

menu is also dual to a CES global function (and their elasticity parameters are mutually inverse,

α = −ξ, as in (45) and (49) when taking ρ → −∞).

Technology menu specified as a maximum function. It is also interesting to consider

the primal problem under the extreme assumption that the technology menu is given by a

maximum function,

G(B,A) = max{B,A}, g(b) = max{b, 1}. (55)

This function, not differentiable at b = 1, represents a case where the overall level of technology

in the economy is pinned down by the best of the available factor-specific technologies. It rep-

resents a technology menu of a traditional society where goods, factors, or their characteristics

are always used in strictly definite proportions. It is also the limit of a sequence of cases where
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the trade-off between the quality (unit productivity) of the respective factors, very small for

highly convex technology menus, gradually disappears.

The current case can be conveniently characterized as a limiting case of our general setup,

where the curvature of the technology menu tends to minus infinity at the “kink” (i.e., the ray

from the origin where B = A). Second order conditions are then automatically verified.

Assuming that the curvature of the local function is finite, the first order condition for the

primal problem implies b∗ = 1 for all k as well as f(bk) = f(k). Inserting this choice into the

local function for all (K,L) ∈ R2
+ we obtain:

φ(k) =
f(k)

g(1)
= f(k), (56)

in line with (27). Consequently, in line with (30) we obtain that πF (k) = πΦ(k), and in line

with (31), that θF (k) = θΦ(k).

Global function specified as a maximum function. Symmetrically, the solution to the

dual problem with a maximum global function:

Φ(K,L) = max{K,L}, φ(k) = max{k, 1}, (57)

is fully analogous and implies k∗ = 1 for all b and a technology menu satisfying g(b) = f(b)
φ(1) =

f(b), and thus also the partial elasticities and curvatures of the technology menu and the local

function are equalized.

Comments. First, the maximum function may look a bit strange as a technology menu

and very strange as a global production or utility function. Indeed, we typically expect these

functions to be concave and the maximum function represents extreme convexity. Therefore the

economic applications of the above examples, and especially the dual problem, are likely to be

limited. They may nevertheless be useful as “cautionary” examples indicating the consequences

of assuming that the global function or the technology menu have the same functional form

as the local function. Namely, the local and global functions can have the same (non–Cobb–

Douglas) form only if the technology menu is a maximum function, i.e., there is no trade-off

between the qualities of the respective factors. Analogously, the local function can have the

same (non–Cobb–Douglas) form as the technology menu only if the global function is specified

as a maximum function.

Second, the maximum case is pathological in the same sense as is the case with a Cobb–

Douglas local function – namely that the technology menu and the global function are not

mutually dual here because the technology choice is always constant and thus not invertible.

Indeed, trying to solve the dual problem with F = Φ,

max
(K,L)∈R2

+

F (BK,AL) s.t. F (K,L) = 1, (58)
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leads to a first order condition of form ΠF (bk) = ΠF (k) for any given b. This holds either if

F is a Cobb–Douglas function, or otherwise only if b = 1. The former case has been discussed

previously (and flagged as pathological), whereas the latter implies that for b = 1 the optimal

factor choice is indeterminate, and for b �= 1 there is no interior stationary point. A similar

problem is encountered when solving the primal problem for F = G. This pathological outcome

is a direct consequence of violation of the curvature assumption in Theorem 2 (when solving

the primal problem while assuming that F and G have exactly the same functional form) or

in Theorem 3 (when making this assumption for F and Φ in the dual problem).
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6 The Homothetic Case

As a generalization of the primal and dual optimization problems (1) and (2), we will now

replace homogeneous functions F , G and Φ with their homothetic counterparts, respectively

Fh = fh ◦F , Gh = gh ◦G and Φh = φh ◦Φ, where fh, gh, φh : R+ → R are monotone (typically

increasing) and twice continuously differentiable transformations. This additional degree of

freedom is particularly useful in the analysis of utility which is often viewed as an ordinal

rather than cardinal concept.

We find that when the local function, the technology menu and the global function are not

homogeneous but only homothetic then the respective solutions to (1) and (2) still exist and

are still mutually dual – as long as the optimal technology choice is invertible – but they are

specified only up to a monotone transformation and thus are no longer unique.

Optimal technology choice. Theorems 2–3 can be straightforwardly generalized to the case

of homothetic functions, yielding exactly the same outcomes. Intuitively, this is due to the

fact that level curves of any function have exactly the same shape whether or not it has been

subjected to a monotone transformation.

Theorem 6 Let Fh, Gh : R2
+ → R+ be increasing, twice continuously differentiable homothetic

functions such that Fh = fh ◦ F and Gh = gh ◦G where fh, gh : R+ → R are increasing, twice

continuously differentiable functions, and F and G are as in Theorem 2. Then the problem

Φh(K,L) = max
(B,A)∈ΩG

Fh(BK,AL) s.t. ΩG = {(B,A) ∈ R2
+ : Gh(B,A) = gh(1)}. (59)

allows a unique interior maximum satisfying (20), (21) and (22).

Proof. First, we observe that Gh(B,A) = gh(G(B,A)) = gh(1) ⇐⇒ G(B,A) = 1. Thus

the technology menu is exactly the same as in (1). We then repeat all the steps of proof of

Theorem 2 and observe that all terms related to f �
h(·) and f ��

h (·) cancel out in the first and

second order conditions, respectively. �

Theorem 7 Let Fh,Φh : R2
+ → R+ be increasing, twice continuously differentiable homothetic

functions such that Fh = fh ◦ F and Φh = φh ◦ Φ where fh, φh : R+ → R are increasing, twice

continuously differentiable functions, and F and Φ are as in Theorem 3. Then the problem

Gh(B,A) = max
(K,L)∈ΩΦ

Fh(BK,AL) s.t. ΩΦ = {(K,L) ∈ R2
+ : Φh(K,L) = φh(1)}. (60)

allows a unique interior maximum satisfying (24), (25) and (26).

Proof. Fully analogous to the proof of Theorem 6. �
Propositions analogous to Theorems 6–7 can be formulated also for the case where some of

the functions fh, gh, φh are decreasing, with exactly the same outcomes. The only caveat is that

when fh is decreasing, maximization in (59) and (60) should be replaced with minimization.
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Construction of the envelopes. From Theorems 6 and 7 we know that maxima of the primal

and dual technology choice problem are invariant under monotone transformations. Building

on this result, we shall now extend Theorems 4–5 to homothetic functions. We find that the

flipside of allowing for arbitrary monotone transformations is that the resultant envelopes are

no longer unique.

More precisely, for every homothetic function Fh = fh ◦F , where fh : R+ → R is monotone

and twice continuously differentiable and F : R2
+ → R+ is increasing, twice continuously

differentiable and homogeneous, from (27) we obtain that

Φ̃h(K,L) = Fh(B
∗(k)K,A∗(k)L) = fh(f(b

∗(k)k)A∗(k)L) = fh

(
f(b∗(k)k)
g(b∗(k))

L

)
= fh(Φ(K,L)), (61)

G̃h(B,A) = Fh(BK∗(b), AL∗(b)) = fh(f(bk
∗(b))AL∗(b)) = fh

(
f(bk∗(b))
φ(k∗(b))

A

)
= fh(G(B,A)). (62)

This leads to the construction of Φ̃h = fh ◦ Φ from problem (1) and of G̃h = fh ◦ G from

problem (2). Clearly, both functions are homothetic. They are also dual to one another in the

sense that maximizing Fh(BK,AL) subject to gh(G(B,A)) = gh(1) leads to the construction

of Φ̃h(K,L) for any monotone function gh : R+ → R, and maximizing Fh(BK,AL) subject

to φh(Φ(K,L)) = φh(1) leads to the construction of G̃h(B,A) for any monotone function

φh : R+ → R.
However, inclusion of gh and φh in the above formulas underscores that allowing for mono-

tone transformations of the homogeneous functions F,G,Φ compromises uniqueness of the

resulting functions. Indeed, the results are unchanged also when we replace Φ̃h with Φh (i.e.,

fh with an arbitrary φh) or G̃h with Gh (i.e., fh with an arbitrary gh). Therefore the slope and

curvature properties of the dual objects – the technology menu and the global function – are

best characterized when they are expressed in their homogeneous form as in Theorems 4–5.

The Cobb–Douglas example. Extending the Cobb–Douglas example discussed in Section

5, we shall now consider a homothetic local function:

Fh(BK,AL) = ln
(
(BK)π0F (AL)1−π0F

)
= π0F ln(BK) + (1− π0F ) ln(AL). (63)

This monotone transformation of a Cobb–Douglas local function is particularly often used in the

modeling of consumer choices, where it represents additively separable logarithmic preferences.

As argued above, the optimal technology choices here are the same as for an untransformed

Cobb–Douglas local function, (33) and (35). Hence, while analytically convenient, such a

specification is also very restrictive and in fact represents a pathological case where the optimal

technology choice is independent of factor endowments and thus the technology menu and the

global function are not mutually dual.

The CES example. Extending the CES example discussed in Section 5, we may consider a
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homothetic local function:

Fh(BK,AL) = π0F

(
(BK)ρ − 1

ρ

)
+ (1− π0F )

(
(AL)ρ − 1

ρ

)
. (64)

This monotone transformation of a CES local function (which uses the formula fh(x) =
xρ−1

ρ )

is often used in the modeling of consumer choices, where it represents additively separable

CRRA (constant relative risk aversion) preferences. As argued above, the optimal technology

choices here are the same as for an untransformed CES local function, (44) and (48).

We also note that due to Bergson’s theorem (Theorem 1), preferences given by (63) and

(64) are in fact the only specifications which are both homothetic and additively separable with

respect to BK and AL.
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7 The Technology Menu and Distributions of Ideas

Having solved the optimal factor-specific technology choice problem in its generality, let us

now comment on one of its particular economic interpretations. Namely, instead of viewing

the technology menu as a primitive concept, we shall posit that it has been derived from a

certain probabilistic model.

In line with this interpretation, the technology menu G(B,A) has been sometimes viewed

as a level curve of a certain two-dimensional complementary cumulative distribution function

of (stochastic) factor-specific ideas (unit factor productivities, Jones, 2005; Growiec, 2008a,b).

Taking this perspective, our above results pose a range of useful corollaries.

To begin, let us recall that from Sklar’s theorem for complementary cumulative distribu-

tion functions (ccdfs, see Nelsen, 1999; McNeil and Nešlehová, 2009) we know that any joint

distribution can be written as a composition of marginal distributions and a copula:

F (x, y) = P(X > x, Y > y) = C(Fx(x), Fy(y)), (65)

where Fx, Fy : R+ → [0, 1] represent the marginal complementary cumulative distribution

functions (ccdfs),

Fx(x) = P(X > x), Fy(y) = P(Y > y), (66)

and C : [0, 1]2 → [0, 1] is the copula.

Given this notation, our key finding is that imposing that F should be homothetic heavily

narrows the range of distributions we may actually consider for any given copula C. In fact,

Bergson’s theorem (Theorem 1) can also be applied to copulas.

7.1 Bergson’s Theorem for Copulas

Similarly to the original Bergson’s theorem (Theorem 1), we find that if F is homothetic and the

underlying copula C can be monotonically transformed into an additively separable function,

then F – whose level curve is then the technology menu – must be of a very specific, Cobb–

Douglas or CES functional form. This form is then translated into very specific requirements

imposed on the marginal distributions. For example, as demonstrated in Growiec (2008b), if

the marginal distributions are assumed to be independent, homotheticity of the technology

menu implies that they must be of the Pareto or Weibull form.

Theorem 8 (Bergson’s theorem for copulas) Let Fh : R2
+ → [0, 1] be a homothetic bivari-

ate complementary cumulative distribution function (ccdf) satisfying Fh(x, y) = C(Fx(x), Fy(y)),

where Fx, Fy : R → [0, 1] are differentiable marginal ccdfs and C : [0, 1]2 → [0, 1] is a differen-

tiable copula which can be written as additively separable after a monotone transformation:

∃(fh : R+ → [0, 1], F : R2
+ → R+) Fh(x, y) = fh(F (x, y)), (67)

∃(fs : R → [0, 1], Du, Dv : [0, 1] → R) C(u, v) = fs(Du(u) +Dv(v)), (68)
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where fh, fs, Du, Dv are decreasing differentiable functions, and F is an increasing, differen-

tiable and homogeneous function. Then the technology menu is represented by

F (x, y) = c · x α
α+β y

β
α+β or F (x, y) = (αxρ + βyρ)

1
ρ , (69)

where α > 0, β > 0; cx, cy ∈ R are arbitrary constants, c = exp
(

cx+cy
α+β

)
, and ρ �= 0. Moreover,

marginal distributions must satisfy:

D�
u(Fx(x))F

�
x(x) = αxρ−1, D�

v(Fy(y))F
�
y(y) = βyρ−1. (70)

Proof. See Appendix. �

7.2 Application to Archimedean Copulas

Theorem 8 has quite broad applicability. It affects not only the case where both idea dis-

tributions are independent, but also the case where they are mutually dependent and their

dependence is modeled by some representative of the broad and widely applied Archimedean

class of copulas, e.g. Clayton, Gumbel, Ali-Mikhail-Haq, Frank, Joe, etc.

Indeed, by definition each bivariate Archimedean copula can be written as (McNeil and

Nešlehová, 2009):

C(u, v) = ψ(ψ−1(u) + ψ−1(v)), (71)

where ψ : R+ → [0, 1] is a decreasing, continuous function satisfying ψ(0) = 1 and limx→∞ ψ(x) =

0. The function ψ is called the Archimedean generator.

Hence, it suffices to take fs = ψ and Du = Dv = ψ−1 in the assumptions of Theorem

8 to observe that in fact all Archimedean copulas are subject to this theorem. Thus, when

we assume homotheticity of the joint idea distribution and model dependence of its marginal

distributions by the means of a specific Archimedean copula14, the technology menu must take

the Cobb–Douglas or CES form, implying that the shapes of the marginal distributions must

satisfy a very specific parametric condition which is unique for the given copula.

More precisely, for Archimedean copulas we obtain from (70):

∂

∂x
(ψ−1(Fx(x))) = αxρ−1,

∂

∂y
(ψ−1(Fy(y))) = βyρ−1, α > 0, β > 0, ρ ∈ R. (72)

Integrating, we obtain that Fx(x) and Fy(y) must necessarily follow the formula:

Fx(x) = ψ (cx + α lnx) if ρ = 0, Fy(y) = ψ (cy + β ln y) if ρ = 0, (73)

Fx(x) = ψ

(
cx +

α

ρ
xρ

)
if ρ �= 0, Fy(y) = ψ

(
cy +

β

ρ
yρ
)

if ρ �= 0, (74)

where cx, cy are arbitrary constants of integration.

14For example, Growiec (2008a) modeled the dependence of marginal idea distributions with a Clayton copula.
His study, however, did not assume homotheticity (apart from a few special cases).
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Owing to the properties of ψ, it is easily verified that Fx(x) and Fy(y) are indeed de-

creasing functions. Moreover, if ρ ≥ 0 then limx→∞ Fx(x) = limy→∞ Fy(y) = 0. Other

properties depend on the exact choice of the generator ψ and parameters. In particular, for

some parametrizations the supports of random variables X and Y may be limited. In such

a case, Fx or Fy should be set identically to zero for arguments exceeding the upper bound

of the support and to unity for arguments below the lower bound of the support. Then the

technology menu should also be defined only on this particular limited support.

Below we briefly review a few of the most common Archimedean copulas. In each case, we

derive the exact functional form that the marginal ccdfs must follow in order to be consistent

with homotheticity of the technology menu.

Independent marginal distributions. The independence copula takes the form C(u, v) =

uv. Hence, in the assumptions of Theorem 8 we should postulate fs(z) = ψ(z) = e−z, Du(u) =

ψ−1(u) = − lnu,Dv(v) = ψ−1(v) = − ln v. We then obtain:

Fx(x) = e−cxx−α if ρ = 0, Fy(y) = e−cyy−β if ρ = 0, (75)

Fx(x) = e−cxe−
α
ρ xρ

if ρ �= 0, Fy(y) = e−cye−
β
ρ yρ

if ρ �= 0. (76)

This means that, as found by Growiec (2008b), if the marginal distributions are independent,

homotheticity of the technology menu implies that these distributions must take either the

Pareto (75) or the Weibull form ((76) with ρ > 0). In the latter case, both marginal distribu-

tions must have equal exponents (i.e., shape parameters).

Clayton copula. Clayton copula takes the form C(u, v) = (max{0, uδ + vδ − 1}) 1
δ , with

δ ≤ 1 and δ �= 0. Hence, in the assumptions of Theorem 8 we should postulate fs(z) = ψ(z) =

(1− δz)
1
δ as well as Du(u) = ψ−1(u) = − 1

δ

(
uδ − 1

)
, Dv(v) = ψ−1(v) = − 1

δ

(
vδ − 1

)
. We then

obtain:

Fx(x) = (cx − αδ lnx)
1
δ if ρ = 0, Fy(y) = (cy − βδ ln y)

1
δ if ρ = 0, (77)

Fx(x) =

(
cx − αδ

ρ
xρ

) 1
δ

if ρ �= 0, Fy(y) =

(
cy − βδ

ρ
yρ
) 1

δ

if ρ �= 0, (78)

Of particular interest is the case (78) with cx = cy = 0 as well as δρ < 0. It implies that x

and y are Pareto distributed with equal exponents (shape parameters) ρ
δ (Growiec, 2008a).

Gumbel copula. Gumbel copula takes the form C(u, v) = exp
(
−((− lnu)δ + (− ln v)δ)

1
δ

)
,

with δ ≥ 1. Hence, in the assumptions of Theorem 8 we should postulate fs(z) = ψ(z) = e−z
1
δ

as well as Du(u) = ψ−1(u) = (− lnu)δ, Dv(v) = ψ−1(v) = (− ln v)δ. We then obtain:

Fx(x) = e−(cx+α ln x)
1
δ if ρ = 0, Fy(y) = e−(cy+β ln y)

1
δ if ρ = 0, (79)

Fx(x) = e−(cx+
α
ρ xρ)

1
δ
if ρ �= 0, Fy(y) = e−(cy+

β
ρ yρ)

1
δ
if ρ �= 0. (80)
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Of particular interest is the case (80) with cx = cy = 0 as well as δρ > 0. It implies that x

and y are Weibull distributed with equal exponents (shape parameters) ρ
δ .

Ali-Mikhail-Haq copula. Ali-Mikhail-Haq copula takes the form C(u, v) = uv
1−δ(1−u)(1−v) ,

with δ ∈ [−1, 1). Hence, in the assumptions of Theorem 8 we should postulate fs(z) = ψ(z) =

1−δ
ez−δ as well as Du(u) = ψ−1(u) = ln

(
1−δ(1−u)

u

)
, Dv(v) = ψ−1(v) = ln

(
1−δ(1−v)

v

)
. We then

obtain:

Fx(x) =
1− δ

xαecx − δ
if ρ = 0, Fy(y) =

1− δ

yβecy − δ
if ρ = 0, (81)

Fx(x) =
1− δ

e
α
ρ xρ

ecx − δ
if ρ �= 0, Fy(y) =

1− δ

e
β
ρ yρ

ecy − δ
if ρ �= 0. (82)

In sum, when the technology menu G(B,A) is viewed as a level curve of a certain two-

dimensional complementary cumulative distribution function of (stochastic) factor-specific ideas,

then the probabilistic structure of the underlying model imposes severe restrictions on the

range of available functional forms. In particular, if the marginal idea distributions are either

independent, or dependent according to some Archimedean copula, then – coupled with the ho-

motheticity assumption – this implies that the technology menu must take the Cobb–Douglas

or CES form.
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8 Conclusion

In this article, we have provided a detailed treatment of a static, two-dimensional problem of

factor-specific technology choice. At the core of this problem there is a local function F , along

which the factors are multiplied by their respective unit productivities, drawn from a certain

technology menu G. We have derived the optimal technology choices in such a setup and

constructed the global function Φ as an envelope of the local functions. We have also solved a

symmetric dual problem where Φ is given, and G – sought.

It turns out that the properties of this optimization problem can be characterized with the

use of a generalized notion of duality (“F -duality”). In the optimum, partial elasticities of F,G

and Φ are all equal, and there exists a clear-cut and economically interpretable relationship

between their curvatures.

Our results are marked by their generality and broad applicability. At the same time, how-

ever, they also underscore how restrictive the assumptions of homogeneity (constant returns to

scale) and homotheticity can be. Crucially, by the virtue of Bergson’s theorem (Bergson{Burk},
1936) homotheticity, when coupled with additive separability, implies the Cobb–Douglas or

CES functional form. As we have demonstrated, this result has most bite when one envisages

the technology menu as a level curve of a certain bivariate distribution of ideas (Jones, 2005;

Growiec, 2008a).

The current study can be extended in a variety of directions as well as applied in a variety

of contexts. The most needed theoretical extensions include accomodating non-homothetic

local functions and technology menus as well as increasing the dimensionality of the problem

by considering more than two factors. These tasks have already been accomplished for special

cases such as Cobb–Douglas, CES or Leontief functions. To be addressed in their generality,

however, they require the modeler to give up additive separability – a particular inconvenience

in higher dimensions – and to make certain decisions with regard to the preferred measures of

curvature in higher dimensions, which may just as well mean an opening of Pandora’s box.

The scope for applications of the discussed framework is even broader. Firstly, while thus

far optimal factor-specific technology choice has been studied predominantly in the context of

growth theory, it may just as well be incorporated in models of, e.g., industrial organization,

international trade, natural resources, sectoral change, consumption patterns, or social welfare.

Secondly, the static technology choice problem studied here could be given a dynamic edge by

assuming that the technology is fixed in the short run but not in the long run, and thus the

local function represents the short-run technology whereas the global function holds only in the

long run. León-Ledesma and Satchi (2016) are the first to formalize this idea, constructing a

model where capital and labor are gross complements in the short run but over the long run the

technology is Cobb–Douglas. In this way they circumvent the Steady State Growth Theorem

(Uzawa, 1961) and reconcile the long-run balanced growth requirement with the mounting

empirical evidence of gross complementarity of both factors and non-neutral technical change.

Their brilliant idea can clearly be taken further, with a wide range of potential extensions and

30

applications.
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A Appendix: Additional Comments and Proofs of Theo-

rems

Relation to the problem of output/utility maximization subject to a budget con-

straint. It can be noticed that the primal factor-specific technology choice problem (1) con-

sidered in the current study has a similar structure to the classic problem (Shephard, 1953;

Diewert, 1974; Fuss and McFadden, 1980) of output/utility maximization subject to a budget

constraint (which leads to the construction of an envelope cost function as in (83)), whereas our

dual problem (2) resembles the classic dual problem of cost minimization subject to a budget

constraint viewed as a function of the prices r and w, (84):

C(r, w) = max
(K,L)∈ΩB1

Y (K,L) s.t. ΩB1 = {(K,L) ∈ R2
+ : rK + wL = 1}, (83)

F (K,L) = min
(r,w)∈ΩB2

C(r, w) s.t. ΩB2 = {(r, w) ∈ R2
+ : rK + wL = 1}. (84)

There are however differences between both setups: (i) the function linking quantities and

prices (the budget constraint) is assumed to be linear here (and not an arbitrary local function

F as in our more general setup), (ii) in line with the different economic interpretation but

without any impact on the outcomes, the objectives and the constraints have switched places,

(iii) to maintain consistency with the economic interpretation, maximization is replaced with

minimization in the dual problem.

Although mathematically similar, both problems are “orthogonal” in the sense that the

factor-specific technology choice problem abstracts from factor prices and, symmetrically, the

standard output/utility maximization problem abstracts from factor quality. This orthogo-

nality property turns out to play a crucial role when we merge both problems into a unique

problem of simultaneous factor-specific technology choice and output/utility maximization:

C(r, w) = max
(K,L)∈ΩB1,(B,A)∈ΩG

F (BK,AL) s.t. ΩB1 = {(K,L) ∈ R2
+ : rK + wL = 1},(85)

ΩG = {(B,A) ∈ R2
+ : G(B,A) = 1}.

This is a problem where the decision maker is allowed to choose both her favorite technology

(subject to the given technology menu) and factor quantities (subject to the given budget

constraint) at the same time (cf. León-Ledesma and Satchi, 2016). Inserting these optimal

choices for all possible configurations of factor prices permits to construct – instead of the

global function taking factor quantities K and L as given – the envelope cost function which

depends, in turn, only on the prices r and w.

The associated dual problem can be written as:

G(B,A) = min
(K,L)∈ΩF ,(r,w)∈ΩC

rK + wL s.t. ΩF = {(K,L) ∈ R2
+ : F (BK,AL) = 1}, (86)

ΩC = {(r, w) ∈ R2
+ : C(r, w) = 1}.

35

Narodowy Bank Polski36

A Appendix



A Appendix: Additional Comments and Proofs of Theo-

rems
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Diewert, 1974; Fuss and McFadden, 1980) of output/utility maximization subject to a budget

constraint (which leads to the construction of an envelope cost function as in (83)), whereas our

dual problem (2) resembles the classic dual problem of cost minimization subject to a budget

constraint viewed as a function of the prices r and w, (84):

C(r, w) = max
(K,L)∈ΩB1

Y (K,L) s.t. ΩB1 = {(K,L) ∈ R2
+ : rK + wL = 1}, (83)

F (K,L) = min
(r,w)∈ΩB2

C(r, w) s.t. ΩB2 = {(r, w) ∈ R2
+ : rK + wL = 1}. (84)

There are however differences between both setups: (i) the function linking quantities and

prices (the budget constraint) is assumed to be linear here (and not an arbitrary local function

F as in our more general setup), (ii) in line with the different economic interpretation but

without any impact on the outcomes, the objectives and the constraints have switched places,

(iii) to maintain consistency with the economic interpretation, maximization is replaced with

minimization in the dual problem.

Although mathematically similar, both problems are “orthogonal” in the sense that the

factor-specific technology choice problem abstracts from factor prices and, symmetrically, the

standard output/utility maximization problem abstracts from factor quality. This orthogo-

nality property turns out to play a crucial role when we merge both problems into a unique

problem of simultaneous factor-specific technology choice and output/utility maximization:

C(r, w) = max
(K,L)∈ΩB1,(B,A)∈ΩG

F (BK,AL) s.t. ΩB1 = {(K,L) ∈ R2
+ : rK + wL = 1},(85)

ΩG = {(B,A) ∈ R2
+ : G(B,A) = 1}.

This is a problem where the decision maker is allowed to choose both her favorite technology

(subject to the given technology menu) and factor quantities (subject to the given budget

constraint) at the same time (cf. León-Ledesma and Satchi, 2016). Inserting these optimal

choices for all possible configurations of factor prices permits to construct – instead of the

global function taking factor quantities K and L as given – the envelope cost function which

depends, in turn, only on the prices r and w.

The associated dual problem can be written as:

G(B,A) = min
(K,L)∈ΩF ,(r,w)∈ΩC

rK + wL s.t. ΩF = {(K,L) ∈ R2
+ : F (BK,AL) = 1}, (86)

ΩC = {(r, w) ∈ R2
+ : C(r, w) = 1}.
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First order conditions for the joint and the separated optimization problems exactly coin-

cide, underscoring the aforementioned orthogonality property: factor-specific technology choice

and output/utility maximization, even when solved simultaneously, are not interdependent. It

follows that – as long as factor quality does not enter the budget constraint and factor prices do

not enter the technology menu – it is instructive to study the factor-specific technology choice

problem separately as we do below.15 Allowing for interdependence is left for future research.

Relation to the literature on factor-augmenting technical change. The discussed

setup is static and thus abstracts from technical change which – by definition – happens over

time. Moreover, the technological underpinnings of the economy are in fact not only constant

but also invisible because in the normalization procedure, the current overall Hicks-neutral

technology level of the economy has been conveniently incorporated in F0, G0 and Φ0, whereas

the current relative productivity of both factors has been included in πOF , π0G and π0Φ.

However, the possibility of explicit technical change can be incorporated as an extension of

our setup by conditioning at least two of the three functions F , G or Φ on time. In particular,

if one wants to consider factor-augmenting technical change (which can be decomposed into

Hicks-neutral technical change and the bias in technical change, working in favor of one of the

factors),16 one has to replace either:

• F (BK,AL) with F (λKBK,λLAL) = λLF (λkBK,AL), or

• G(B,A) with G(λKB, λLA) = λLG(λkB,A), or

• Φ(K,L) with Φ(λKK,λLL) = λLΦ(λkK,L),

where the variation in λK > 0 and λL > 0 over time represents capital- and labor-augmenting

technical change, respectively. Equivalently, changes in λL can be said to represent Hicks-

neutral technical change, and then λk = λK

λL
measures the capital bias in technical change.17

Adding a dynamic edge to the considered framework remains an important task which we leave

for further research.

Proof of Theorem 2. Equation (20) is obtained directly from the two first order conditions for

the Lagrangian by eliminating λ. Equation (21) follows from the fact that along the technology

menu, G(B,A) = g(b)A = 1.

15Additional second order conditions may be needed, however, to ensure the existence of an interior solution
to the joint problem (León-Ledesma and Satchi, 2016, Appendix A.2).

16See, e.g., Acemoglu (2002, 2003); Klump, McAdam, and Willman (2007); León-Ledesma, McAdam, and
Willman (2010).

17Growiec (2008a) studies factor-specific technology choice in a dynamic framework with Hicks-neutral tech-
nical change. Growiec (2013) allows for biased technical change and discusses the emerging possibility of a
difference between the direction of R&D (which only affects the shape of the technology menu G) and the
direction of technical change (which also incorporates firms’ optimal technology choices). Biased technical
change is also allowed within factor-specific technology choice frameworks studied by León-Ledesma and Satchi
(2016), an estimated business–cycle model with a short-run CES and a long-run Cobb–Douglas technology
which thus circumvents the Steady State Growth Theorem (Uzawa, 1961) and reconciles the long-run balanced
growth requirement with gross complementarity of both factors and non-neutral technical change; and Growiec,
McAdam, and Mućk (2015), a calibrated model of medium-to-long run swings of the labor share and other
macroeconomic variables.
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To ascertain that the found solution is indeed a maximum, we compute the second order

conditions, which imply that:

∂2LP

∂B2
=

K

A

(
f ��(bk)k − f �(bk)

g�(b)
g��(b)

)
, (87)

∂2LP

∂A2
=

b2K

A

(
f ��(bk)k − f �(bk)

g�(b)
g��(b)

)
, (88)

∂2LP

∂B∂A
= −bK

A

(
f ��(bk)k − f �(bk)

g�(b)
g��(b)

)
, (89)

and thus ∂2LP

∂K2 < 0 and ∂2LP

∂L2 < 0 if and only if θF (b
∗(k)k) > θG(b

∗(k)). Though the Hessian

is equal to zero because F and G are homogeneous functions (Moysan and Senouci, 2016),

concavity is guaranteed along the tangent to the constraint, i.e., along the line

{[
h1

h2

]
∈ R2 : [g�(b) g(b)− bg�(b)]

[
h1

h2

]
= 0

}
. (90)

Indeed, for all h1 �= 0 we obtain:

[
h1 − ΠG

b
h1

] [ ∂2LP

∂B2
∂2LP

∂B∂A

∂2LP

∂B∂A
∂2LP

∂A2

][
h1

−ΠG

b h1

]
= h2

1

K

A

(
f ��(bk)k − f �(bk)

g�(b)
g��(b)

)
(1+Π2

G) < 0.

(91)

Let us also rewrite (20) as:

XP (b, k) = ΠF (bk)−ΠG(b) = 0. (92)

Using the implicit function theorem and the equality π = πF (bk) = πG(b) (which follows from

(20)), we obtain:

∂b∗(k)
∂k

= −
∂XP

∂k
∂XP

∂b

=

∂ΠF

∂(bk)b

∂ΠG

∂b − ∂ΠF

∂(bk)k
=

f ′(bk)b
f(bk)

1−πF (bk)−θF (bk)
(1−πF (bk))2

g′(b)
g(b)

1−πG(b)−θG(b)
(1−πG(bk))2 − f ′(bk)k

f(bk)
1−πF (bk)−θF (bk)

(1−πF (bk))2

=

=
b

k

(
1− π − θF (bk)

θF (bk)− θG(b)

)
, (93)

or (22). Uniqueness of the optimum b∗(k) follows from the fact that (unless ∂ΠG

∂b = ∂ΠF

∂(bk) = 0

which happens only in the excluded case where F and G are Cobb–Douglas functions) the

denominator in (93) is positive. �

Proof of Theorem 4. Existence and uniqueness of Φ solving problem (1) follows from

Theorem 2. It also follows that

φ(k) =
Φ(K,L)

L
=

F (B∗(k)K,A∗(k)L)
L

= f(b∗(k)k)A∗(k) =
f(b∗(k)k)
g(b∗(k))

. (94)

Existence and uniqueness of G solving problem (2) follows from Theorem 3. It also follows
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To ascertain that the found solution is indeed a maximum, we compute the second order

conditions, which imply that:

∂2LP

∂B2
=

K

A

(
f ��(bk)k − f �(bk)

g�(b)
g��(b)

)
, (87)

∂2LP

∂A2
=

b2K

A

(
f ��(bk)k − f �(bk)

g�(b)
g��(b)

)
, (88)

∂2LP

∂B∂A
= −bK

A

(
f ��(bk)k − f �(bk)

g�(b)
g��(b)

)
, (89)

and thus ∂2LP

∂K2 < 0 and ∂2LP

∂L2 < 0 if and only if θF (b
∗(k)k) > θG(b

∗(k)). Though the Hessian

is equal to zero because F and G are homogeneous functions (Moysan and Senouci, 2016),

concavity is guaranteed along the tangent to the constraint, i.e., along the line

{[
h1

h2

]
∈ R2 : [g�(b) g(b)− bg�(b)]

[
h1

h2

]
= 0

}
. (90)

Indeed, for all h1 �= 0 we obtain:

[
h1 − ΠG

b
h1

] [ ∂2LP

∂B2
∂2LP

∂B∂A

∂2LP

∂B∂A
∂2LP

∂A2

][
h1

−ΠG

b h1

]
= h2

1

K

A

(
f ��(bk)k − f �(bk)

g�(b)
g��(b)

)
(1+Π2

G) < 0.

(91)

Let us also rewrite (20) as:

XP (b, k) = ΠF (bk)−ΠG(b) = 0. (92)

Using the implicit function theorem and the equality π = πF (bk) = πG(b) (which follows from

(20)), we obtain:

∂b∗(k)
∂k

= −
∂XP

∂k
∂XP

∂b

=

∂ΠF

∂(bk)b

∂ΠG

∂b − ∂ΠF

∂(bk)k
=

f ′(bk)b
f(bk)

1−πF (bk)−θF (bk)
(1−πF (bk))2

g′(b)
g(b)

1−πG(b)−θG(b)
(1−πG(bk))2 − f ′(bk)k

f(bk)
1−πF (bk)−θF (bk)

(1−πF (bk))2

=

=
b

k

(
1− π − θF (bk)

θF (bk)− θG(b)

)
, (93)

or (22). Uniqueness of the optimum b∗(k) follows from the fact that (unless ∂ΠG

∂b = ∂ΠF

∂(bk) = 0

which happens only in the excluded case where F and G are Cobb–Douglas functions) the

denominator in (93) is positive. �

Proof of Theorem 4. Existence and uniqueness of Φ solving problem (1) follows from

Theorem 2. It also follows that

φ(k) =
Φ(K,L)

L
=

F (B∗(k)K,A∗(k)L)
L

= f(b∗(k)k)A∗(k) =
f(b∗(k)k)
g(b∗(k))

. (94)

Existence and uniqueness of G solving problem (2) follows from Theorem 3. It also follows
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that

g(b) =
G(B,A)

A
=

F (BK∗(B,A), AL∗(B,A))

A
= f(bk∗(b))L∗(b) =

f(bk∗(b))
φ(k∗(b))

. (95)

Both functions are homogeneous by construction. Computing φ�(k) and g�(b) from (27), using

(20), (22), (24), (26) and rearranging we obtain:

φ�(k)
φ(k)

=
f �(bk)
f(bk)

(
∂b∗(k)
∂k

k + b∗(k)
)
− g�(b)

g(b)

∂b∗(k)
∂k

=
π

k
> 0, (96)

g�(b)
g(b)

=
f �(bk)
f(bk)

(
b
∂k∗(b)
∂b

+ k∗(b)
)
− φ�(k)

φ(k)

∂k∗(b)
∂b

=
π

b
> 0, (97)

where in each case the positivity of π follows from assumption that the other two functions are

increasing. Thus Φ and G are increasing. �

Proof of Theorem 5. Equation (30) follows from (20) and (24) in the case where both of

them hold at the same time. Moreover, when 1− πF (bk)− θF (bk) �= 0, we can insert (26) into

(22), use (30) and obtain:

1− π − θF (bk)

θF (bk)− θG(b)
=

θF (bk)− θΦ(k)

1− π − θF (bk)
, (98)

and hence,

(1−π−θG(b))(1−π−θΦ(k)) = (1−π−θF (bk))(1−π−θG(b))+(1−π−θF (bk))(1−π−θΦ(k)).

(99)

It follows that 1−π−θG(b) = 0 ⇐⇒ 1−π−θΦ(k) = 0 and if both terms are nonzero, then we

can divide both sides of equation (99) by (1− πF (bk)− θF (bk))(1− π− θG(b))(1− π− θΦ(k)),

yielding (31). �

Proof of Theorem 8. We begin by writing down the marginal rate of substitution of the

function Fh. On the one hand we have:

MRS = −
∂Fh

∂y

∂Fh

∂x

= −
∂F
∂y

∂F
∂x

≡ −H

(
x

y

)
. (100)

The function H depends on the x/y ratio only due to the homogeneity of F . On the other

hand, however, using the copula representation,

MRS = −
∂Fh

∂y

∂Fh

∂x

= −
∂C
∂v F

�
y(y)

∂C
∂u F

�
x(x)

= −D�
v(Fy(y))F

�
y(y)

D�
u(Fx(x))F �

x(x)
≡ −Hy(y)

Hx(x)
. (101)

Therefore H(xy ) =
Hy(y)
Hx(x)

for all x, y ∈ R+. Differentiating both sides of this functional equality
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with respect to x and y and eliminating H �(xy ), we obtain:

H �
x(x)x

Hx(x)
=

H �
y(y)y

Hy(y)
, for all x, y ∈ R. (102)

Therefore both sides of (102) must be constant. We denote this constant ρ − 1. Integrating,

we obtain:

Hx(x) = αxρ−1, Hy(y) = βyρ−1, (103)

for some α, β ∈ R. Substituting for Hx(x) and Hy(y) and observing the signs of respective

derivatives yields (70).

This also implies that H(xy ) =
β
α

(
x
y

)1−ρ

, and thus the homogeneous function F (x, y) must

take either the Cobb–Douglas or the CES form (69) (cf., Arrow, Chenery, Minhas, and Solow,

1961). �
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