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Abstract

This paper provides estimates of the aggregate elasticity of substitution between

labor and capital (σ) in developed economies. Our empirical strategy consists in es-

timating two- and three-equation supply-side systems which combine a normalized

CES production function and first order conditions for factors of production. Using

a panel of 12 advanced economies between 1980 and 2006, it is found that capital

and labor are gross complements and σ is on average around 0.7. Moreover, we

also document net labor-augmenting technical progress. Our main findings remain

robust to various assumptions on time-varying factor-augmenting technical change.

Furthermore, we replicate the benchmark results with two alternative datasets. To

strengthen these findings a systematic evidence of capital-labor substitution is pro-

vided at the country level. Although substantial cross-country variation in σ can be

found, a wide range of estimates confirms that labor and capital are gross comple-

ments and technical change is net labor-augmenting.

Keywords: normalized CES production function, elasticity of substitution between

labor and capital, factor-augmenting technical change, factor shares.

JEL Classification Numbers: C22, C23, E23, E25, O47.
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1 Introduction

The elasticity of substitution between labor and capital (σ) is one of the key charac-

teristics of supply side of the economy. As it has been synthesized by Klump et al.

(2012), it plays a crucial role in many fields of economics, e.g., economic growth, labor

market and public finance. For instance, high values of σ, i.e., above unity, might be

perceived as an engine of perpetual growth because then the scarce factor can be easily

substituted by the abundant one.

A natural environment to study σ is the Constant Elasticity of Substitution (hence-

forth, CES) production function which was introduced by Arrow et al. (1961). When

the elasticity of substitution equals unity then the CES production function nests the

Cobb-Douglas form which persists almost as a paradigm in modern macroeconomic

modelling. A critical value of σ is unity. If elasticity of substitution is above (below)

unity then factors are gross substitutes (complements).

The magnitude of the elasticity of substitution is important for understanding

trend in factor shares or, more generally, income inequality. Since Kaldor (1957)

has formulated his famous stylized facts a conventional wisdom in macroeconomics is

that the labor and capital share are stable over time. This fact motivates the Cobb-

Douglas aggregate production function assumption. However, Arpaia et al. (2009)

and Karabarbounis and Neiman (2014) document a secular downward tendency of

the labor share in advanced economies since the 1970s. Moreover, based on long US

time series Growiec et al. (2015) identify a hump-shaped long-run trajectory. These

empirical regularities can explained be jointly by non-unitary elasticity of substitution

and factor-augmenting technical change (Acemoglu, 2003).

Empirical identification of the elasticity of substitution between labor and capital

has challenged and fascinated many researchers. In their pioneering article, Arrow

et al. (1961) find that σ is below 0.6 in the United States over the period from 1909

to 1949. Later studies for the aggregate US economy have also documented gross

complementarity between labor and capital (Antràs, 2004; Klump et al., 2007, 2012).

Furthermore, the hypothesis that the elasticity of substitution is below unity is also

supported by empirical evidence at the sectoral (Young, 2013; Herrendorf et al., 2015;

Chirinko and Mallick, 2017) and at the firm level (Oberfield and Raval, 2014). In the

context of DSGE (dynamic stochastic general equilibrium) modelling, Cantore et al.

(2015) show that the scenario with σ below unity fits overwhelmingly better to the US

economy than Cobb-Douglas form.

Although there are numerous papers documenting that σ is below unity for the US

studies exploiting cross-country variation provide contradictory estimates of σ. Using

a panel for 82 countries over 28 years, Duffy and Papageorgiou (2000) find that the

elasticity of substitution is on average above unity. More recently, empirical evidence

provided by Karabarbounis and Neiman (2014) implies that σ is about 1.25. This

leaves some puzzle which seems to be unresolved.

In this paper, we attempt to shed new light on this puzzle. Using a panel for 12
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economies over 27 years we aim to provide robust estimates of the elasticity of substi-

tution for advanced economies. There are at least two reasons that motivate the above

choice. The first criterion is the availability of long-dated series on product, inputs and

their prices. Secondly, empirical studies allowing for cross-country variation in σ doc-

ument that this heterogeneity might be non-negligible (Duffy and Papageorgiou, 2000;

Mallick, 2012; Villacorta, 2016). From these reasons, our research focus is concentrated

only on advanced economies.

Our empirical strategy is as follows. Given the recent developments from the litera-

ture on normalized CES production function (Klump et al., 2012), we consider two- and

three-equation supply-side systems which combine this form of aggregate production

function with the standard first order conditions for the production factors. As pointed

by León-Ledesma et al. (2010), apart from intuitive boost in efficiency, joint system es-

timation outperforms standard single-equations approaches in terms of capturing deep

production and technology parameters. We also relax the assumption that technical

progress is Hicks-neutral in order to fit more flexible patterns of factor-augmenting

efficiency trends.

The main contribution of this paper to the literature is to provide robust evidence

on the magnitude of the elasticity of substitution. Our baseline results imply that

labor and capital are gross complements and a wide range of estimates indicates that

σ is about 0.7 in developed countries. Furthermore, net labor-augmenting technical

change is broadly documented. Apart from the theory-consistent growth in labor-

augmenting technical progress our comprehensive evidence documents a downward

trend in unobserved capital-augmenting efficiency.

The above findings pass a number of robustness tests. Firstly, we extensively in-

vestigate the pattern of factor-augmenting technical change. In particular we consider

(i) an abrupt break in the growth rates of factor augmentation, (ii) the Box-Cox trans-

formation, (iii) time dummies, and (iv) a trigonometric representation approximating

smooth structural breaks. Secondly, we also examine whether our benchmark results

are sensitive to presence of aggregate markups. Thirdly, we use two alternative dataset

in order to check whether it is possible to replicate the documented production char-

acteristics. All above robustness checks do not alter our main findings.

Finally, our empirical evidence at the country level confirms gross complementarity

between labor and capital. Despite a substantial variation in the estimates of σ across

advanced economies, gross complementarity between labor and capital can be found in

all of the cases. Importantly, even when we carefully take into account potentially non-

linear patterns of factor-augmenting technical change, then the below unitary elasticity

of substitution remarks very close to our baseline results.

In the current study we focus mostly on time variation. Due to normalization we

abstract from systematic cross-country level differences in factor endowments. Thus,

our estimates are able to explain the recent trends in factor shares. According to the

documented production characteristics, the recent decline in the labor share cannot

be associated with physical capital accumulation since labor and capital are gross

4
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complementary, i.e., σ < 1. Under gross complementarity, factor-augmenting technical

progress is the dominant process that explains the direction of recent trends in factor

shares.

The structure of the paper is as follows. Section 2 introduces panel normalized

supply-side system estimation. Section 3 discusses the data and their properties. In

section 4, our baseline results are presented. The robustness of main production char-

acteristics is broadly checked in section 5. Section 6 provides comprehensive empirical

evidence for fundamental production characteristics at the country level. Finally, sec-

tion 7 concludes.

5
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2 The normalized CES production function

In this section we introduce a panel approach that allows us to identify the elasticity

of substitution between labor and capital. Consider the following normalized CES

production function:

Yit = F
(
Kit, Lit,Γ

K
it ,Γ

L
it

)
= Yi0

[
πi0

(
ΓK
it

Kit

Ki0

)σ−1
σ

+ (1− πi0)

(
ΓL
it

Lit

Li0

)σ−1
σ

] σ
σ−1

,

(1)

where Yit is the real output, Kit and Lit stand for the capital stock and the labor input,

respectively. The parameter π0i denotes the capital share at the point of normalization.

The expressions ΓK
it and ΓL

it represent the capital- and labor-augmenting technical

progress, respectively. The index i denotes unit in a panel, i.e., country. Finally, the

parameter σ stands for the elasticity of substitution between labor and capital. In

general, the σ is defined as the elasticity of changes in factor proportion (Kit/Lit) in

reaction to a change in the marginal rate of technical substitution:

σ =
d ln (K/L)

d ln (FL/FK)
, (2)

where FL = ∂F/∂L and FL = ∂F/∂K.

The normalized CES production function nests other functional forms of the ag-

gregate production function. Note that (1) converges to the Cobb-Douglas function as

σ → 1, to a Leontief function with fixed factor proportions as σ → 0 and to a linear

function when σ tends to ∞. In intermediate case, factors of production are gross

complements (substitutes) if σ is below (above) unity.

Contrary to standard approach exploiting the normalized CES production function

for a single country (Klump et al., 2012), it is assumed that each unit of panel has

different normalization points, i.e., Yi0, Ki0, Li0 and πi0 varies over i. This strategy

seems to be attractive because it allows us to control unobserved heterogeneity in the

long-run properties of economies across countries included in panel.

Under the assumption of the CES production function (1) and perfect competing

markets, the standard profit maximization yields to the following first order conditions:

rit =
∂Yit
∂Kit

= πi0

(
Yi0
Ki0

ΓK
it

)σ−1
σ

(
Yit
Kit

) 1
σ

(3)
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∂Yit
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= (1− πi0)

(
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ΓL
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)σ−1
σ

(
Yit
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) 1
σ

(4)

where rit and wit stand for the user cost of capital and labor, respectively. The above

conditions imply that the relative factor income share is given by:

Θit =
ritKit

witLit
=

πi0
1− πi0

(
ΓK
it

ΓL
it

Kit

Ki0

Li0

Lit

)σ−1
σ

. (5)
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The above expression for capital-to-labor income highlights the essential role of the

elasticity of substitution as well as the factor-augmenting technical change in the dy-

namics of factor share. Note that if a Cobb-Douglas view of economy is true (σ = 1)

then any change in (relative) factor-augmenting technical change or capital-labor ratio

will not drive the factor shares and, as a result, these macroeconomic variables will

be stable over time. Otherwise, the factor share might display some persistence. For

instance, the recent decline in the labor share can be explained by fall in capital per

worker or/and rise in labor-saving technical progress if factors are gross complements,

i.e., σ < 1.

Finally, our estimation strategy consists in the first-order maximization conditions

and the normalized CES production function in the log form:

ln
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σ − 1
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ln

(
witLit

PY itYit

)
= ln

(
1− πi0
1 + μ

)
+

1− σ

σ

(
ln

(
Yit
Lit

Li0

Yi0

)
− ln(ξ)− ln

(
ΓL
it

))
, (8)

ln

(
ritKit

PY itYit

)
= ln

(
πi0

1 + μ

)
+

1− σ

σ

(
ln

(
Yit
Kit

Ki0

Yi0

)
− ln(ξ)− ln

(
ΓK
it

))
, (9)

where PY it represents the price deflator for output, ξ is the constant whose the expected

value is around unity and parameter μ captures an aggregate mark-up and under

perfect competition μ equals zero.

Based on the above expressions we will consider the following estimation both

single-equation approach and joint system estimation. First strategy consists in esti-

mating the underlying parameters of the linear equations for: the logged relative factor

income (eq. 7, henceforth FOCK/L), the logged capital share (eq. 9, FOCK) and the

logged labor share (eq. 8, FOCL). In the joint system estimation the linear equations

for (relative) factors shares are combined with the non-linear CES production function

(6). For a completeness, two systems will be considered (i) the two-equation (2eqs)

using (6) together with (7), and three-equation (3eqs) combining (8), (9) and (6). The

structural parameters will be estimated with an Iterated Feasible Generalized Nonlin-

ear Least Squares estimator. This choice stems out from the fact that the residuals

are expected to be correlated across equations.

Despite its nonlinear nature the system estimation offers some advantages in com-

parison to single approach (León-Ledesma et al., 2010). Prominent property of the

system estimation is a fact that it incorporates cross-equation constraints. As a re-

sults, this increase in the degrees of freedom leads to a boost in estimation efficiency.

Moreover, in single approach the production function is omitted and, therefore, iden-

tification of technical progress and elasticity of substitution might be substantially

deteriorated. For these reasons, two-equation system using linear equations for factor

shares, i.e., (8) and (9), is not appealing estimation form in the current study.
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3 Data

Our data source is EU KLEMS database. This choice is motivated by several reasons.

Firstly, the EU KLEMS offers long time series for many advanced economies. Secondly,

it offers the data on output, capital labor and factor share which are comparable

since methodology is common for various countries. Thirdly, the EU KLEMS provides

quality-adjusted series of labor and capital services. It is especially important because

most of advanced economies have witnessed the ongoing changes in labor and/or capital

composition.

Given the above motivation for using the EU KLEMS database, the detailed con-

struction of our variables is as follows. The real (nominal) output is measured as Gross

Value Added in constant (current) prices. As regards, we use quality-adjusted series

of labor and capital services in order to control the ongoing changes in composition

of these factors. The labor (capital) share is calculated as a simple relation of labor

(capital) compensation to nominal aggregate gross value added. Two points should be

mentioned here. Firstly, according to the EU KLEMS methodology, the remuneration

of labor is adjusted by both changes in quality of the labor force and a number of self-

employed.1 Secondly, the factor shares sum to unity and, consequently, an aggregate

mark-up could be ascribed to capital share.

For our baseline analysis, we use data for market economy instead of total economy.

Market economy in the EU KLEMS excludes public administration, other non-market

services and the real estate sector (O’Mahony and Timmer, 2009). This strategy is

consistent with an empirical practice to reduce an aggregate economy by government

and residential sectors (Klump et al., 2007). The reason for that is the measurement

problem in these sectors of economy (see O’Mahony and Timmer, 2009, for a general

discussion).

We also restrict the EU KLEMS dataset to have a balanced panel. This choice

seems to be reasonable because we use the normalized CES production function and

empirical estimates of the elasticity of substitution refer to normalization point(s).

Thus, by using an unbalanced panel one might expect the substantial bias arising from

an increased heterogeneity in the normalization points across countries.

With these restrictions, our baseline dataset covers the time span from 1980 and

2006 for 12 countries: Austria (abbreviated as AUT), Belgium, (BEL), Denmark

(DNK), Finland (FIN), France (FRA), Germany (DEU), Italy (ITA), Japan (JPN),

the Netherlands (NLD), Spain (ESP), the United Kingdom (GBR) and the United

States (USA).

Figure 1 portrays the relative factor shares, i.e. capital to labor renumeration, in

the developed countries in our sample. Eyeballing the data suggests a pronounced

upward trend. This empirical pattern corresponds with the broadly documented de-

cline in the labor share in developed economies since the 1970s (Arpaia et al., 2009;

1 For a general discussion of dealing with an ambiguous income earned by self-employed workers

see Mućk et al. (2015).
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Karabarbounis and Neiman, 2014) or, more general with complex dynamics of the

factor shares (Growiec et al., 2015; Mućk et al., 2015).

Figure 1: Relative factor shares (deviation from country-specific average)
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Table 1: Descriptive statistics

Cross-sectional dependence Panel Unit Root tests
avg ρ avg |ρ| CD IPS CIPS

(witLit)/(PY itYit) 0.398 0.468 16.780 [0.164] [0.321]
(ritKit)/(PY itYit) 0.398 0.468 16.780 [0.164] [0.321]
ln((ritKit)/(witLit)) 0.402 0.471 16.968 [0.107] [0.220]
ln(Kit/Lit) 0.984 0.984 41.554 [0.991] [0.651]
ln(Yit/Kit) 0.720 0.720 30.378 [1.000] [0.850]
ln(Yit/Lit) 0.950 0.950 40.117 [0.994] [0.519]

Note: avg ρ and avg |ρ| stand for the averaged and the averaged absolute correlation coefficient, re-

spectively. CD is the cross-sectional dependence test statistics. The expressions in squared brackets

stand for probability values corresponding to null hypothesis about unit root tests.

To corroborate our above visual inspection we move to panel stationarity tests.

Table 1 reports the results of panel unit root tests as well as measures of cross-sectional

dependence. Let us start with the cross-sectional dependence measure. For the factor

shares as well as the relative factor shares the averaged absolute correlation exceeds

0.45. Intuitively, these numbers indicate non-negligible cross-sectional dependence.

We also apply formal test statistics, denoted by CD, proposed by Pesaran (2004).2

The null about cross sectional independence is rejected at any reasonable significance

2Under the null hypothesis of cross-section independence the CD statistic is normally distributed,

i.e., CD ∼ N (0, 1).
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level. The detected moderate cross-sectional dependence might be critical for testing

a unit root. Thus, we use standard IPS test proposed Im et al. (2003) as well as CIPS

test proposed by Pesaran (2007) which is designed to take into account cross-sectional

dependence.3 However, the corresponding probability values reported in table 1 do

not allow us to reject the null about non-stationarity.

The last three rows of table 1 summarize main features of remaining variables.

Intuitively, the (logged) labor productivity, the (logged) capital productivity and the

(logged) capital-to-labor ratio are non-stationary and display substantial cross sectional

dependence.

As regards, country-specific normalization points are assumed. Intuitively, it al-

lows us to control the heterogeneity in the long-run properties of economies included

in panel. More precisely, our strategy to fixing the normalization points is quite stan-

dard, i.e., geometric averages are taken for non-stationary series (Yi0, K,0, Li0 ) while

arithmetic means are used for the capital shares (πi0).
4

3The null in both tests is about non-stationarity. The number of lags is determined by the BIC

criterion. The reported numbers refer to the case with only constant since it is consistent with the-

oretical definition. But the inclusion of a linear trend in the respective test regression does not alter

our findings.
4As discussed earlier, both capital and labor share display the pronounced trend in our sample.

However, taking πi0 as geometric mean does not change our results. This finding is in line with the

Monte Carlo results documented by León-Ledesma et al. (2015).
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4 Results

In this section, we provide baseline estimates of the elasticity of substitution between

labor and capital in developed countries. In our benchmark specification, it is assumed

that the rates of labor and capital augmentation, denoted by γli and γki, are constant

over time and varies between countries:

Γj
it = exp (γji (t− t0)) , (10)

where j ∈ {L,K}, t0 is the sample mean of t and t ∈ {1, . . . , T}. All our panel

estimation are conducted for two cases: (i) homogeneous growth rates of factor aug-

mentation, i.e., γji = γj , and (ii) heterogeneous γji. The potential heterogeneity in γj

will be captured by dummy variables.5

Let us start with the estimation results that based on single equation approach (ta-

ble 2). The first-order conditions for factors of production deliver opposite estimates

of σ. On the one hand, the equation for labor (8) predicts that factors are gross substi-

tutes because the estimated σ exceeds unity. At the same time, the estimated growth

rate of labor augmentation is surprisingly small (heterogeneous γl) or statistically in-

significant (homogeneous γl). This means that the widely documented decline in the

labor share can be directly explained by capital deepening while labor-biased technical

change only limits its effect. On the other hand, the first-order condition for capital

(9) implies that labor and capital are gross complements (σ < 1). Moreover, there

is strong evidence in favor of negative capital augmentation. Although the decline in

capital-augmenting unobserved efficiency is hardly interpretable this empirical regu-

larity is consistent with some empirical studies for the US (Antràs, 2004; Growiec and

Mućk, 2016). In accordance to these estimates, the explanation for the observed labor

share decline (capital share rise) under below unitary elasticity is net labor-augmenting

progress while physical capital accumulation limits this change.

The aforementioned inconsistency is resolved if one focuses on the equation for

relative factors (7). According to these estimates the elasticity of substitution lies in a

range given by above results but it is clearly below unity. Moreover, relatively fast pace

of net labor-augmenting technical change (γl/k = γl − γk ≈ 0.065) is straightforward

to observe. This fact confirms indirectly the previous negative growth rates of capital

augmentation. These characteristics imply that the decline in the labor share can be

explained by labor-biased technology changes.

Table 3 presents the estimation results for two- and three-equations systems. Irre-

spectively of the system specification the estimated elasticity of substitution is unam-

biguously below unity and ranges from 0.71 to 0.75. Furthermore, the Cobb-Douglas

hypothesis, i.e., σ = 1, can be rejected at any conventional significance level. The pa-

rameters γl and γk are in line with the estimates of equations for the (relative) factor

share. In particular, the growth rate of labor-augmenting is positive and varies from

5For brevity, we will present only averaged estimated growth rates of the factor-augmenting tech-

nical change. Corresponding standard errors will be calculated with the delta method.
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Table 2: Estimates of the elasticity of substitution - single equation approach

Homogeneous γ Heterogeneous γi
FOCL FOCK FOCK/L FOCL FOCK FOCK/L

equation (8) (9) (7) (8) (9) (7)

σ 1.182∗∗∗ 0.708∗∗∗ 0.752∗∗∗ 1.547∗∗∗ 0.553∗∗∗ 0.771∗∗∗
(0.050) (0.031) (0.044) (0.117) (0.048) (0.126)

ξ 0.995∗∗∗ 1.011∗∗∗ 0.998∗∗∗ 1.006∗∗∗
(0.011) (0.010) (0.004) (0.004)

γl 0.000 0.010∗∗∗
(0.005) (0.001)

γk −0.032∗∗∗ −0.023∗∗∗
(0.003) (0.002)

γl/k 0.063∗∗∗ 0.067∗∗∗
(0.008) (0.024)

H0 : σ = 1 [0.000] [0.000] [0.000] [0.000] [0.000] [0.069]
H0 : γ =

γi

[0.000] [0.000] [0.000]

Residuals diagnostics
avg ρ 0.067 0.091 0.096 0.111 0.192 0.152
avg |ρ| 0.324 0.347 0.326 0.300 0.302 0.323
CD 2.809 3.835 4.034 4.682 8.096 6.416
IPS [0.104] [0.135] [0.107] [0.003] [0.000] [0.001]
CIPS [0.650] [0.493] [0.537] [0.280] [0.039] [0.119]

Note: the superscripts ∗∗∗, ∗∗ and ∗ denote the rejection of null about parameters’ insignificance

at 1%, 5% and 10% significance level, respectively. The expressions in round and squared brackets

stand for standard errors and probability values corresponding to respective hypothesis, respec-

tively. The avg ρ and avg |ρ| stand for the averaged and the averaged absolute correlation coeffi-

cient, respectively. CD is the cross-sectional dependence test statistics. In the panel stationarity

test, i.e., IPS and CIPS, the null hypothesis is about unit root tests.

0.026 to 0.028. As it can be expected based on earlier results, unobserved capital-

augmenting efficiency shows a downward trend. Overall, these estimates imply that

the net growth rate of labor-biased is around 0.055 and, more importantly, the null

about Hicks-neutral progress can be reject at any reasonable significance level.

The bottom panel of the table 3 presents residuals diagnostics. Since both factor

shares and output have a unit root in our sample the residuals from the analyzed system

should be stationary. Here, the results of panel unit root tests are supportive only for

the specifications assuming heterogeneous growth rates in factor augmentation. It can

be also observed that the cross-sectional dependence observed in data (see table 1) is

substantially reduced but it is still significant.

The substantial persistence in the factor shares can be potentially a good candidate

explanation for the negative estimates of capital-augmenting technical progress. The

decline (rise) in the labor (capital) share has been pronounced and, under gross com-

plementarity, the identified growth rate of labor augmentation is not able to account

for this trend. Therefore, the empirical pattern in the factor shares is additionally

explained by the drop in capital-augmenting efficiency which is consistent with pro-

duction function due to cross-equation constraints in the joint system estimation.
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Table 3: Estimation of Normalized Supply-Side Systems – constant growth rate of

factor augmentation

Homogeneous γ Heterogeneous γi
2eqs 3eqs 2eqs 3eqs

equations: (7, 6) (8,9,6) (7, 6) (8,9,6)

σ 0.714∗∗∗ 0.755∗∗∗ 0.727∗∗∗ 0.713∗∗∗
(0.032) (0.003) (0.049) (0.004)

ξ 1.002∗∗∗ 0.998∗∗∗ 1.003∗∗∗ 1.002∗∗∗
(0.002) (0.002) (0.001) (0.001)

γl 0.026∗∗∗ 0.028∗∗∗ 0.026∗∗∗ 0.026∗∗∗
(0.001) (0.001) (0.002) (0.000)

γk −0.031∗∗∗ −0.034∗∗∗ −0.033∗∗∗ −0.032∗∗∗
(0.003) (0.001) (0.005) (0.001)

LL 816.217 2137.6 1104.78 2468.79

H0 : σ = 1 [0.000] [0.000] [0.000] [0.000]
H0 : γl,i = γk,i [0.000] [0.000]
H0 : γ = γi [0.000] [0.000] [0.000] [0.000]
H0 : γk,i = 0 [0.000] [0.000] [0.000] [0.000]
H0 : γl,i = 0 [0.000] [0.000] [0.000] [0.000]

Residuals diagnostics
equation (9) or (7)
avg ρ 0.095 0.101 0.153 0.156
avg |ρ| 0.322 0.336 0.322 0.299
CD 4.012 4.243 6.471 6.606
IPS [0.202] [0.088] [0.002] [0.002]
CIPS [0.576] [0.635] [0.212] [0.123]
equation (8)
avg ρ 0.077 0.146
avg |ρ| 0.357 0.337
CD 3.258 6.184
IPS [0.357] [0.003]
CIPS [0.880] [0.012]
equation (6)
avg ρ 0.023 0.033 0.147 0.138
avg |ρ| 0.558 0.584 0.341 0.333
CD 0.98 1.376 6.221 5.83
IPS [0.997] [0.998] [0.000] [0.000]
CIPS [1.000] [1.000] [0.070] [0.060]

Note: the superscripts ∗∗∗, ∗∗ and ∗ denote the rejection of null about parameters’ insignifi-

cance at 1%, 5% and 10% significance level, respectively. The expressions in round and squared

brackets stand for standard errors and probability values corresponding to respective hypothesis,

respectively. The avg ρ and avg |ρ| stand for the averaged and the averaged absolute correla-

tion coefficient, respectively. CD is the cross-sectional dependence test statistics. In the panel

stationarity test, i.e., IPS and CIPS, the null hypothesis is about unit root tests.
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5 Robustness checks

We now proceed to check whether our baseline results are robust. Our research interest

focuses on (i) time-varying technical change, (ii) non-zero mark-up level and, (iii)

alternative datasets.

5.1 Time-varying technical change

In the benchmark specification, it is assumed that the growth rates of factor-augmenting

technical change are constant over time. However, this textbook assumption seems to

be very restrictive since many researchers have documented structural breaks in labor

productivity or TFP. Therefore, we consider four additional specifications for factor-

augmenting technical change that allow for time dependence.

Firstly, an abrupt break in growth rate of factor augmentation is introduced:

Γj
it = exp

((
γij +DBjγijBj

)
(t− t0)

)
, (11)

where isDBj the dummy variable indicating a sharp change in the growth rate of factor-

augmenting technical progress, i.e., DBj = I(t > Bj), and the parameter γijBj captures

this shift. To identify a single structural break a standard 15% sample trimming

is employed and breakpoint is selected with the likelihood criterion. The potential

breakpoints Bj in factor augmentation are assumed to be common for all economies.

Secondly, we follow the strategy proposed by Klump et al. (2007) and use flexible

functional form for Γj
it based on the Box–Cox transformation:

Γj
it = exp

(
t0γij
λj

((
t

t0

)λj

− 1

))
, (12)

where the curvature parameters λj describes the shape of the shape of technical

progress. The above expression nests: (i) a linear specification (λj = 1), (ii) a hy-

perbolic trajectory (λj < 0), and (iii) a log-linear specification (λj = 0). The Box–Cox

parameters λj are assumed to be equal for all countries.

Thirdly, time dummies are agnostically included:

Γj
it = exp (γij (t− t0) + djtDt) , (13)

where is Dt the dummy variable indicating given year Dt = I(t = Dt) while the

parameter djt captures the potential influence of a common trend in unobserved factor-

augmenting technical change.6

Fourthly, an unknown deterministic component and number of structural breaks

in factor-augmenting technical change can be captured by a trigonometric approxima-

6It should be mentioned that due to the collinearity problem, one dummy variable is omitted. The

choice is the indicator variable representing the middle of sample. This strategy seems to be coherent

with the normalization.

14

5 Robustness checks

We now proceed to check whether our baseline results are robust. Our research interest

focuses on (i) time-varying technical change, (ii) non-zero mark-up level and, (iii)

alternative datasets.

5.1 Time-varying technical change

In the benchmark specification, it is assumed that the growth rates of factor-augmenting

technical change are constant over time. However, this textbook assumption seems to

be very restrictive since many researchers have documented structural breaks in labor

productivity or TFP. Therefore, we consider four additional specifications for factor-

augmenting technical change that allow for time dependence.

Firstly, an abrupt break in growth rate of factor augmentation is introduced:

Γj
it = exp

((
γij +DBjγijBj

)
(t− t0)

)
, (11)

where isDBj the dummy variable indicating a sharp change in the growth rate of factor-

augmenting technical progress, i.e., DBj = I(t > Bj), and the parameter γijBj captures

this shift. To identify a single structural break a standard 15% sample trimming

is employed and breakpoint is selected with the likelihood criterion. The potential

breakpoints Bj in factor augmentation are assumed to be common for all economies.

Secondly, we follow the strategy proposed by Klump et al. (2007) and use flexible

functional form for Γj
it based on the Box–Cox transformation:

Γj
it = exp

(
t0γij
λj

((
t

t0

)λj

− 1

))
, (12)

where the curvature parameters λj describes the shape of the shape of technical

progress. The above expression nests: (i) a linear specification (λj = 1), (ii) a hy-

perbolic trajectory (λj < 0), and (iii) a log-linear specification (λj = 0). The Box–Cox

parameters λj are assumed to be equal for all countries.

Thirdly, time dummies are agnostically included:

Γj
it = exp (γij (t− t0) + djtDt) , (13)

where is Dt the dummy variable indicating given year Dt = I(t = Dt) while the

parameter djt captures the potential influence of a common trend in unobserved factor-

augmenting technical change.6

Fourthly, an unknown deterministic component and number of structural breaks

in factor-augmenting technical change can be captured by a trigonometric approxima-

6It should be mentioned that due to the collinearity problem, one dummy variable is omitted. The

choice is the indicator variable representing the middle of sample. This strategy seems to be coherent

with the normalization.

14

tion7:

Γj
it = exp

(
γij (t− t0) + κj,sin sin

(
2πkjt

T

)
+ κj,cos cos

(
2πkjt

T

))
, (14)

where T is the time dimension, π equals 3.1415, kj denotes a single frequency of a

Fourier expansion and kj ∈ {1, 2, . . . , G}. We use single integer frequency because it is

appealing strategy in empirical application (Ludlow and Enders, 2000). The parameter

kj is restricted to range from 1 to 2 because its higher values would identify some high-

frequency noise in our sample (T = 27). Finally, we choose kj that maximizes the

likelihood function and is the same for all countries.

Table 4 summarizes our estimation results that assumes time-varying growth rates

of factor augmentation. It is easy to notice that the below unitary substitution is

reported for all specifications. Our estimated elasticity of substitution ranges from 0.52

to 0.72. Moreover, net labor-biased technical change is observed. As in the baseline

results, the estimated growth rate of labor augmentation is significantly positive while

the average growth rate of capital-augmenting technical change is strongly negative.

Let us now concentrate on the variation of factor augmentation. Except for the

Box-Cox specification, the null about time invariant growth rates of factor-augmenting

technical change can be rejected at any reasonable significance level. The abrupt

break in both labor- and capital-augmenting technical change can detected in the

middle of 1980s. The opposite signs of estimated parameters capturing breaks suggest

that the absolute factor augmentation has been slower since the second half of the

1980s. An analogous story can be revealed by the Box-Cox case. Namely, the below

unitary estimated Box-Cox curvature parameters, i.e., λj and λk, imply decrease in

factor-augmenting technical change. However, the null about exponential pattern, i.e.,

λl = λk = 1, is not rejected in all cases.

Figure 2 illustrates the implied time path for the factor-augmentation. Our previous

observation about slowdown (in absolute terms) in factor augmentation is confirmed

by other specifications. Even if the year dummies are included to capture some short-

run variation, the implied growth rates of labor- and capital-augmenting progress are

in modulus higher in the beginning of the sample. The same applies to the paths

predicted by three-equations system using a trigonometric representation because the

selected frequencies of a Fourier expansion, i.e., kL, kK = 1, equals unity.

In all time-varying cases, both the goodness-of-fit and statistical properties are more

appealing than in the respective baseline systems. The null about time independence of

factor augmentation is rejected in most of the considered specifications. Moreover, the

results of panel unit root tests are slightly more satisfactory and the null is relatively

easier to reject.

There are at least two arguments supporting the implied paths of factor-augmenting

technical change as well as the detected breakpoints. Firstly, the detected breakpoints

7This specification is related to a class of unit root tests basing on the flexible Fourier representation

(Becker et al., 2006; Christopoulos and Leon-Ledesma, 2010; Christopoulos and McAdam, 2017).
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Table 4: Estimation of Normalized Supply-Side System – Summary of the Esti-

mates based on time-varying factor augmentation

Homogeneous γ Heterogeneous γi
2eqs 3eqs 2eqs 3eqs

equations: (7, 6) (8,9,6) (7, 6) (8,9,6)

an abrupt break in factor augmentation
σ 0.696∗∗∗ 0.712∗∗∗ 0.687∗∗∗ 0.712∗∗∗
γl 0.029∗∗∗ 0.032∗∗∗ 0.029∗∗∗ 0.03∗∗∗
γk −0.036∗∗∗ −0.041∗∗∗ −0.035∗∗∗ −0.038∗∗∗
γl,B −0.006∗∗∗ −0.009∗∗∗ −0.006∗∗∗ −0.006∗∗∗
Bl 1984 1985 1985 1985
γk,B 0.009∗∗∗ 0.015∗∗∗ 0.007∗∗∗ 0.009∗∗∗
Bk 1984 1985 1985 1985
LL 825.893 2173.969 1197.679 2595.101
σ = 1 [0.000] [0.000] [0.000] [0.000]
γl,B = γk,B = 0 [0.000] [0.000] [0.000] [0.000]

Box-Cox case
σ 0.698∗∗∗ 0.709∗∗∗ 0.703∗∗∗ 0.689∗∗∗
γl 0.024∗∗∗ 0.025∗∗∗ 0.025∗∗∗ 0.025∗∗∗
γk −0.029∗∗∗ −0.03∗∗∗ −0.031∗∗∗ −0.03∗∗∗
λl 0.769∗∗∗ 0.726∗∗∗ 0.971∗∗∗ 0.927∗∗∗
λk 0.762∗∗∗ 0.623∗∗∗ 1.012∗∗∗ 0.884∗∗∗
LL 822.594 2160.575 1105.327 2472.561
H0 : σ = 1 [0.000] [0.000] [0.000] [0.000]
H0 : γli = γki [0.000] [0.000] [0.000] [0.000]
H0 : λl = λk = 1 [0.002] [0.000] [0.576] [0.023]
H0 : λk = 1 [0.000] [0.000] [0.503] [0.165]
H0 : λk = 1 [0.004] [0.000] [0.831] [0.060]

Year dummies
σ 0.69∗∗∗ 0.73∗∗∗ 0.569∗∗∗ 0.601∗∗∗
γl 0.053∗∗∗ 0.048∗∗∗ 0.04∗∗∗ 0.037∗∗∗
γk −0.086∗∗∗ −0.061∗∗ −0.057∗∗∗ −0.051∗∗∗
LL 843.862 2202.467 1163.418 2551.53
H0 : σ = 1 [0.000] [0.000] [0.000] [0.000]
H0 : γl,i = γk,i [0.000] [0.000] [0.000] [0.000]
H0 : Dtl = Dtk = 0 [0.000] [0.000] [0.000] [0.000]

a trigonometric approximation
σ 0.707∗∗∗ 0.733∗∗∗ 0.622∗∗∗ 0.627∗∗∗
γl 0.025∗∗∗ 0.029∗∗∗ 0.023∗∗∗ 0.025∗∗∗
γk −0.031∗∗∗ −0.038∗∗∗ −0.026∗∗∗ −0.028∗∗∗
kL 2 1 1 1
kK 2 1 2 1
LL 826.794 2165.363 1127.776 2493.127
H0 : σ = 1 [0.000] [0.000] [0.000] [0.000]
H0 : γl.i = γk.i [0.000] [0.000] [0.000] [0.000]
H0 : κi = 0 [0.000] [0.000] [0.000] [0.000]

Note: as in table 3. The numbers in the above table summarizes table A.2–A.4.

corroborate with behavior of the (relative) factor shares. Namely, as it is depicted

on figure 1, the most pronounced rise in the capital share or relative income share

can be observed in the beginning of our sample. Secondly, the implied path of factor-

augmenting technical change is also coherent with empirical studies documenting a

marked deceleration in labor productivity growth in the Eurozone countries since the

beginning of the 1980s (Benati, 2007).8

8Note that the EA countries make up more than half of the sample. In Appendix C the estimation
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Figure 2: Implied Path of the Growth Rates of Factor-Augmenting Technical

Change

Box-Cox

LATC

.0
24

.0
25

.0
26

.0
27

.0
28

.0
29

1980 1985 1990 1995 2000 2005

KATC

-.0
38

-.0
36

-.0
34

-.0
32

-.0
3

-.0
28

1980 1985 1990 1995 2000 2005

Fourier

LATC

.0
15

.0
2

.0
25

.0
3

.0
35

1980 1985 1990 1995 2000 2005

KATC

-.0
35

-.0
3

-.0
25

-.0
2

1980 1985 1990 1995 2000 2005

Dummies

LATC

-.0
2

0
.0
2

.0
4

.0
6

1980 1985 1990 1995 2000 2005

KATC

-.0
6

-.0
4

-.0
2

0
.0
2

.0
4

1980 1985 1990 1995 2000 2005

Note: the blue dashed lines refer to the average growth rate of factor-augmenting technical in the

considered specification while the black dashed lines represent the baseline estimates (see table 3). The

above lines are backed out from the estimates of three-equation system with heterogeneous growth rates

of factor augmentation.

5.2 Non-zero markups

In the KLEMS database the capital share is measured implicitly and it is calculated

as unity reduced by the labor share. Under perfect competition this is valid choice.

But in the presence of imperfect competition an aggregate markups are ascribed to

the capital share. Such mismeasurement might deteriorate identification of deep pro-

duction characteristics. For that reason, we agnostically re-calculate the capital share

assuming that it contains monopolistic markups.

Table A.5 summarizes the estimation results for the extreme case assuming that

the aggregate markup is constant over time and equals 10%, i.e., μ = 0.1 in (8) and

(9). Although we artificially boost persistence of relative factor shares our results are

qualitatively the same. The estimated elasticity of substitution is slightly lower in

comparison to the baseline estimates and ranges from 0.61 to 0.58. Moreover, the

strong upward trend in net labor-augmenting technical change is still to observe.

Figure 3 illustrates how the markups would affect our estimation results. There is

an intuitive trade-off. With the higher level of markup, the rise in the (re-calculated)

capital share would be stronger and, as a results, lower σ is required to account for the

decline in the labor share. Since we use cross-equations restriction in our estimation

strategy the accompanying fall in the growth rates of factor augmentation is negligible.

results, including country-specific detected breakpoints, are presented at the country level.
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Figure 3: Dependence of estimates on aggregate markups (μ) in the three-equation

system estimation
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5.3 Alternative datasets

To strengthen our empirical evidence we use two alternative datasets to estimate the

normalized supply-side system: (i) the WIOD database, and (ii) the TED database.

The detailed description of data used in this exercise is delegated to Appendix B. These

datasets cover a large sample of both developed and developing countries. Therefore, to

check robustness we estimate the panel normalized supply-side system for our baseline

set of countries as well as sample extended by other developed economies. Our choice

is discussed in Appendix B.

Despite the larger cross-country dimension the alternative dataset have one short-

coming, though. Both databases offer series starting in 1995. As a result, shorter

time span might be crucial for identification of deep technological parameters. Apart

from the baseline setting we estimate normalized supply-side system assuming non-zero

markups. This choice stems out from the fact that there are systematic differences in

each country’s factor shares between databases in the overlapping time period.9 Thus,

the case with μ = 0.1 is also considered.

Table 5 presents the estimation results for the alternative datasets. Let us start

with the results basing on the WIOD database. For the baseline set of countries,

the estimated parameters of the normalized supply-side system are very close to the

characteristics documented in section 4. The estimated elasticity of substitution varies

from 0.61 and to 0.82. In addition, it is straightforward to observed that the average

growth rate of labor augmentation is positive while capital-augmenting efficiency fall

in our sample. The lower growth rates of factor augmentation are consistent with the

previous evidence in favor of occurrence of a structural break in factor-augmenting

technical progress or, more generally, time-varying technical progress.

If we extend the WIOD database by additional developed economies our main find-

ings also remain robust. The estimated elasticity of substitution becomes higher but it

is still below unity. The same applies to the TED database which offers substantially

9It can be found that for all countries the labor share is substantially higher in the KLEMS database

between 1995-2006. In comparison with the WIOD database the average difference is about 3.3 per-

centage points while the TED database offers the labor share that is lower than the baseline series by

7.8 percentage points.
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Table 5: Estimation of Normalized Supply-Side System – Summary of the Esti-

mates Based on Alternative Datasets

TC: (i) (ii) (i) (ii) (i) (ii) (i) (ii)
2eqs 3eqs 2eqs 3eqs 2eqs 3eqs 2eqs 3eqs

EQ: (7, 6) (8,9,6) (7, 6) (8,9,6) (7, 6) (8,9,6) (7, 6) (8,9,6)

WIOD – baseline set of countries
μ = 0 μ = 0.1

σ 0.67∗∗∗ 0.749∗∗∗ 0.795∗∗∗ 0.827∗∗∗ 0.609∗∗∗ 0.71∗∗∗ 0.719∗∗∗ 0.765∗∗∗
γl 0.02∗∗∗ 0.024∗∗∗ 0.026∗∗∗ 0.028∗∗∗ 0.019∗∗∗ 0.022∗∗∗ 0.022∗∗∗ 0.024∗∗∗
γk −0.011∗∗∗−0.016∗∗∗−0.02∗∗ −0.024∗∗∗ −0.011∗∗∗−0.017∗∗∗−0.019∗∗∗−0.023∗∗∗

WIOD – extended set of countries
μ = 0 μ = 0.1

σ 0.872∗∗∗ 0.862∗∗∗ 0.935∗∗∗ 0.853∗∗∗ 0.817∗∗∗ 0.828∗∗∗ 0.774∗∗∗ 0.759∗∗∗
γl 0.036∗∗∗ 0.036∗∗∗ 0.064∗∗∗ 0.035∗∗∗ 0.031∗∗∗ 0.03∗∗∗ 0.029∗∗∗ 0.028∗∗∗
γk −0.034∗∗∗−0.035∗∗∗−0.083∗∗∗−0.037∗∗∗ −0.033∗∗∗−0.032∗∗∗−0.032∗∗∗−0.03∗∗∗

TED – baseline set of countries
μ = 0 μ = 0.1

σ 0.923∗∗∗ 0.962∗∗∗ 0.878∗∗∗ 0.882∗∗∗ 0.898∗∗∗ 0.95∗∗∗ 0.829∗∗∗ 0.846∗∗∗
γl 0.025∗∗∗ 0.02∗∗∗ 0.017∗∗∗ 0.017∗∗∗ 0.02∗∗∗ 0.016∗∗∗ 0.015∗∗∗ 0.015∗∗∗
γk −0.018∗∗ −0.01∗ −0.007 −0.006∗∗∗ −0.017∗∗ −0.01∗ −0.005 −0.006∗∗∗

TED – extended set of countries
μ = 0 μ = 0.1

σ 0.881∗∗∗ 0.89∗∗∗ 0.985∗∗∗ 0.894∗∗∗ 0.86∗∗∗ 0.872∗∗∗ 0.979∗∗∗ 0.862∗∗∗
γl 0.02∗∗∗ 0.021∗∗∗ 0.038∗∗∗ 0.027∗∗∗ 0.018∗∗∗ 0.018∗∗∗ 0.031∗∗∗ 0.023∗∗∗
γk −0.001 −0.003 −0.025∗∗∗−0.011∗∗∗ −0.002 −0.003 −0.023∗∗∗−0.011∗∗∗

Note: the numbers in the above table summarizes tables in Appendix B. The second row (EQ) lists

the equations in system estimation. The first row (TC) contains information about factor-augmenting

technical change, i.e. (i) captures homogeneous growth rates while (ii) refers to heterogeneous ones.

higher estimates of σ but in all specifications gross complementarity of capital and

labor can be found.

To rationalize the numbers in table 5 let us move to the statistical properties of

the considered estimation results (see Appendix B). It turns out that the specifications

that predict relatively high σ are rather problematic due to the weak evidence of the

residuals‘ mean reversion. If we accept only the models that have stationary residuals

at 10% significance level the estimated elasticity of substitution varies from 0.76 to

0.85.

Nevertheless, the below unitary elasticity is confirmed by the evidence basing on

the alternative datasets. This fact, together with our estimation results that allow

for time-varying factor augmentation and experiment with non-zero markups, imply

that the gross complementarity between labor and capital in developed countries is

appealingly robust.
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6 Estimates at the country level

In this section we provide systematic estimates of the elasticity of substitution between

labor and capital at the country level. The detailed description of our strategy is

delegated to Appendix C.

Table 6 summarizes the estimated σ while the detailed investigation is delegated to

appendix C. The first impression is that the single-approach leads to the inconsistency

of the estimates which is discussed in the section 4. On the one hand, the equation

for labor share predicts that capital and labor are gross substitutes for nine out of

twelve countries. On the other hand, the estimates based on the first-order condition

for capital (9) imply below unitary elasticity of substitution for all economies except

for Belgium. Importantly, the equation (9) also predicts the negative growth pattern of

capital-augmenting technological change for all countries except for the Netherlands.

Once again, the above inconsistency can be resolved by the estimates of the equa-

tion for the relative factor shares (7). For nine out of twelve countries, these results

indicate gross complementarity between labor and capital together with strong net

labor-augmenting technical change.

Apart from the economic ambiguity of the single-equation approach results this

strategy very in precise estimates of deep technological parameters. Relatively large

standard errors do not allow us to test conventional hypotheses. According to numbers

in table 6 the the Cobb-Douglas null is rejected at 5% for more than half of considered

specifications. This feature is contradictory to the historical trajectory of the factor

shares in our sample (see figure 1). The explanation for these results might be asso-

ciated with a fact that in small sample size, i.e., T = 27, any single-equation based

approach is not able to identify deep technological parameters.

Due to cross-equation restrictions in underlying parameters the above shortcom-

ings are overcome with the estimation of three-equation supply side system. For the

most of countries the estimated value of σ is below unity. Only for Belgium gross

substitutability between labor and capital is reported in specification assuming con-

stant growth rates of factor augmentation. However, this outlying estimate (σ > 4)

disappears when some time-varying technical change is introduced. As it is broadly

documented in Appendix C, production has been fueled by labor-augmenting tech-

nical change (γl > 0). Meanwhile, like in panel estimation, the pronounced rise in

the capital share (relative factor shares) has been amplified by downward trend in

capital-augmenting efficiency (γk < 0).

Let us now concentrate on cross-country heterogeneity in the value of elasticity

of substitution. We can distinguish two group of countries. The first group refers to

the economies for which consistent estimates of σ are predicted by various specifica-

tions. Clearly, for Austria, Germany and the United States the estimated elasticity of

substitution does not exceed unity and equals on average 0.83, 0.49 and 0.55.

In the second group, the identification of deep technological parameters is quite

difficult since there is an appealing evidence in favor time dependence of factor aug-
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Table 6: Summary of the country estimates

Single-equation approach Three-equation system
FOCL FOCK FOCK/L

equation: (8) (9) (7) (10) (11) (12) (14)

AUT
σ 0.905∗∗∗ 0.859∗∗∗ 0.816∗∗∗ 0.819∗∗∗ 0.962∗∗∗ 0.845∗∗∗ 0.602∗∗∗
H0 : σ = 1 [0.489] [0.490] [0.387] [0.000] [0.000] [0.000] [0.000]

BEL
σ 6.623 1.233 4.103 4.678∗∗∗ 0.422∗∗∗ 0.949∗∗∗ 0.894∗∗∗
H0 : σ = 1 [0.375] [0.784] [0.762] [0.000] [0.000] [0.000] [0.000]

DNK
σ 1.706∗∗∗ 0.405∗∗∗ 1.477 0.942∗∗∗ 0.357∗∗∗ 0.432∗∗∗ 0.699∗∗∗
H0 : σ = 1 [0.063] [0.000] [0.618] [0.000] [0.000] [0.000] [0.000]

FIN
σ 2.898∗ 0.563∗∗∗ 0.495∗∗∗ 0.705∗∗∗ 0.852∗∗∗ 0.847∗∗∗ 0.69∗∗∗
H0 : σ = 1 [0.219] [0.000] [0.000] [0.000] [0.000] [0.000] [0.000]

FRA
σ 5.905 0.319∗∗ 0.371∗ 0.671∗∗∗ 0.217∗∗∗ 0.26∗∗∗ 0.465∗∗∗
H0 : σ = 1 [0.514] [0.000] [0.001] [0.000] [0.000] [0.000] [0.000]

DEU
σ 0.834∗∗∗ 0.489∗∗∗ 0.400∗∗∗ 0.396∗∗∗ 0.389∗∗∗ 0.399∗∗∗ 0.525∗∗∗
H0 : σ = 1 [0.201] [0.000] [0.000] [0.000] [0.000] [0.000] [0.000]

ITA
σ 1.539∗∗∗ 0.360∗∗∗ 0.466∗∗∗ 0.886∗∗∗ 0.971∗∗∗ 0.801∗∗∗ 0.756∗∗∗
H0 : σ = 1 [0.053] [0.000] [0.000] [0.000] [0.000] [0.000] [0.000]

JPN
σ 1.386∗∗∗ 0.453∗∗∗ 1.201∗∗ 0.949∗∗∗ 0.455∗∗∗ 0.507∗∗∗ 0.567∗∗∗
H0 : σ = 1 [0.013] [0.000] [0.678] [0.000] [0.000] [0.000] [0.000]

NLD
σ 3.307 1.775 0.81∗∗∗ 0.899∗∗∗ 0.65∗∗∗ 0.902∗∗∗ 0.745∗∗∗
H0 : σ = 1 [0.471] [0.491] [0.195] [0.000] [0.000] [0.000] [0.000]

ESP
σ 1.276∗∗∗ 0.423∗∗∗ 0.958∗∗∗ 0.979∗∗∗ 0.998∗∗∗ 0.958∗∗∗ 0.722∗∗∗
H0 : σ = 1 [0.135] [0.000] [0.921] [0.000] [0.016] [0.000] [0.000]

USA
σ 0.878∗∗∗ 0.538∗∗∗ 0.453∗∗∗ 0.485∗∗∗ 0.512∗∗∗ 0.506∗∗∗ 0.461∗∗∗
H0 : σ = 1 [0.362] [0.000] [0.000] [0.000] [0.000] [0.000] [0.000]

GBR
σ 0.999∗∗∗ 0.58∗∗∗ 0.804∗ 0.982∗∗∗ 0.744∗∗∗ 0.718∗∗∗ 0.943∗∗∗
H0 : σ = 1 [0.024] [0.005] [0.641] [0.030] [0.000] [0.000] [0.000]

σ̄ 2.355 0.666 1.030 1.116 0.628 0.677 0.672
median σ 1.462 0.513 0.807 0.893 0.581 0.760 0.695
σ̄GDP 1.536 0.525 0.687 0.718 0.532 0.541 0.562

Note: in the bottom panel the σ̄ and σ̄GDP denotes the simple (unweighted) average and the GDP-

weighted average of the estimated elasticity of substitution between labor and capital. The data on

GDP in current USD are taken from WDI. An adjustment by purchasing parity does not change sig-

nificantly the presented numbers. In three-equation systems, the equation in the second row refers

to the assumption on the form of factor-augmenting technical change.

mentation. It is strongly illustrated by incredible estimated growth rates of the factor

augmentation (γj > 0.1) or non-stationarity of the residuals from the baseline three-

equation system.

Let us discuss some extreme examples. For Japan, the benchmark specification

produces the σ around 0.95 and non-stationary residuals. The latter problem can be

overcome by introducing any form of time dependence in technical progress. As a re-
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sult, the estimated σ is reduced to around 0.5 and factor-augmenting technical change

decelerates (in the Box-Cox case λl is around 0.4 while λk is below 0.7). The lowest

(reasonable) estimates of elasticity of substitution can be reported for France. In this

case, the residuals from the baseline specification have unit root. Once again, this

problem is resolved when some time variation in factor augmentation is introduced.

Then, the estimated σ ranges from 0.22 to 0.465. In the case of Spain, the resid-

uals mean reversion can be found only for the supply-side system assuming Fourier

approximation of smooth breaks. Finally, the estimated baseline supply-side system

for Belgium implies that labor and capital are gross substitutes. However, the ADF

statistics for residuals are extremely high and this facts questions the above unitary

σ. The extended systems yield the estimates of σ below unity as well as stationary

residuals.

Nevertheless, the bottom panel of table 6 contains descriptive statistics of estimates

for each considered specification. Clearly, it is worth to notice that the median esti-

mates of σ converges to the panel estimation results and ranges from 0.58 to 0.89 in

the system estimation. In order to make our (average) results more economically in-

terpretable we use data GDP as weights. It turns out that the GDP-weighted average

σ is lower than unweighted average. This discrepancy suggests that larger economies

are characterized by lower elasticity of substitution.10

Summing up, the above investigation at the country level confirms the fact that

the elasticity of substitution between labor and capital is below unity.

10In fact, the average σ for four the most important economies the average σ obtained in the system

estimation does not exceed 0.5 while the corresponding average for remaining countries (except for

outlying Belgium) equals 0.8.
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7 Concluding remarks

In this paper we study the aggregate elasticity of substitution between labor and capital

in advanced economies. Our comprehensive evidence suggest that labor and capital are

gross complementary and σ equals on average 0.7. In addition, factor-augmenting tech-

nical progress shows an interesting pattern. While the growth rate of labor-biased tech-

nical change are positive the capital-augmenting efficiency exhibits downward trend.

Importantly, these production characteristics are confirmed by empirical evidence at

the country level. Clearly, these features are also corroborated by our robustness

checks.

Our results have strong implication for a lively debate on rising income inequality

and, in particular, understanding broadly documented trends in the factor shares.

Under gross complementarity between labor and capital, capital deepening cannot

explain the strong downward tendency of the labor share in developed countries since

1970s. Specifically, our estimates imply that net labor-augmenting technical progress

has been major driver of the recent trends in the factor shares.
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A Additional tables

Table A.1: Estimation of Normalized Supply-Side System – time-varying growth

rate of technical progress – single break in factor-augmenting technical change

Homogeneous γ Heterogeneous γi
2eqs 3eqs 2eqs 3eqs

equations: (7, 6) (8,9,6) (7, 6) (8,9,6)

σ 0.696∗∗∗ 0.712∗∗∗ 0.687∗∗∗ 0.712∗∗∗
(0.031) (0.002) (0.053) (0.004)

ξ 1.003∗∗∗ 0.998∗∗∗ 1.005∗∗∗ 1.005∗∗∗
(0.003) (0.003) (0.001) (0.001)

γl 0.029∗∗∗ 0.032∗∗∗ 0.029∗∗∗ 0.03∗∗∗
(0.002) (0.001) (0.002) (0.001)

γk −0.036∗∗∗ −0.041∗∗∗ −0.035∗∗∗ −0.038∗∗∗
(0.004) (0.002) (0.005) (0.001)

γl,Bl
−0.006∗∗∗ −0.009∗∗∗ −0.006∗∗∗ −0.006∗∗∗
(0.002) (0.001) (0.001) (0.001)

Bl 1984 1985 1985 1985
γk,Bk

0.009∗∗∗ 0.015∗∗∗ 0.007∗∗∗ 0.009∗∗∗
(0.003) (0.002) (0.003) (0.002)

Bk 1984 1985 1985 1985
LL 825.893 2173.969 1197.679 2595.101

H0 : σ = 1 [0.000] [0.000] [0.000] [0.000]
H0 : γ = γi [0.000] [0.000]
H0 : γl,Bl

= γk,Bk
= 0 [0.000] [0.000] [0.000] [0.000]

Residuals diagnostics
equation (9) or (7)
avg ρ −0.001 0.024 0.092 0.106
avg |ρ| 0.325 0.326 0.284 0.293
CD −0.049 1.009 3.877 4.494
IPS [0.210] [0.133] [0.000] [0.000]
CIPS [0.932] [0.951] [0.052] [0.039]
equation (8)
avg ρ −0.007 0.076
avg |ρ| 0.322 0.261
CD −0.289 3.220
IPS [0.377] [0.000]
CIPS [0.973] [0.037]
equation (6)
avg ρ −0.014 −0.014 0.116 0.115
avg |ρ| 0.574 0.596 0.287 0.286
CD −0.599 −0.595 4.908 4.857
IPS [0.998] [0.998] [0.000] [0.000]
CIPS [1.000] [0.998] [0.002] [0.003]

Note: as in table 3.
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Table A.2: Estimation of Normalized Supply-Side System – time varying technical

progress – Box-Cox specification

Homogeneous γ Heterogeneous γi
2eqs 3eqs 2eqs 3eqs

equations: (7, 6) (8,9,6) (7, 6) (8,9,6)

σ 0.698∗∗∗ 0.709∗∗∗ 0.703∗∗∗ 0.689∗∗∗
(0.032) (0.002) (0.052) (0.007)

ξ 1.005∗∗∗ 0.998∗∗∗ 1.004∗∗∗ 1.002∗∗∗
(0.003) (0.003) (0.002) (0.002)

γl 0.024∗∗∗ 0.025∗∗∗ 0.025∗∗∗ 0.025∗∗∗
(0.001) (0.001) (0.002) (0.000)

γk −0.029∗∗∗ −0.030∗∗∗ −0.031∗∗∗ −0.03∗∗∗
(0.002) (0.001) (0.004) (0.001)

λl 0.769∗∗∗ 0.726∗∗∗ 0.971∗∗∗ 0.927∗∗∗
(0.062) (0.045) (0.043) (0.053)

λk 0.762∗∗∗ 0.623∗∗∗ 1.012∗∗∗ 0.884∗∗∗
(0.083) (0.054) (0.055) (0.062)

LL 822.594 2160.575 1105.327 2472.561
H0 : σ = 1 [0.000] [0.000] [0.000] [0.000]
H0 : γl,i = γk,i [0.000] [0.000] [0.000] [0.000]
H0 : γ = γi [0.000] [0.000]
H0 : λl = λk = 1 [0.002] [0.000] [0.576] [0.023]
H0 : λk = 1 [0.000] [0.000] [0.503] [0.165]
H0 : λk = 1 [0.004] [0.000] [0.831] [0.060]

Residuals diagnostics
equation (9) or (7)
avg ρ 0.032 0.025 0.154 0.129
avg |ρ| 0.322 0.339 0.322 0.285
CD 1.337 1.051 6.480 5.454
IPS [0.209] [0.134] [0.002] [0.000]
CIPS [0.703] [0.703] [0.193] [0.086]
equation (8)
avg ρ 0.002 0.114
avg |ρ| 0.334 0.317
CD 0.085 4.827
IPS [0.449] [0.002]
CIPS [0.984] [0.013]
equation (6)
avg ρ −0.013 0.001 0.129 0.124
avg |ρ| 0.573 0.588 0.325 0.336
CD −0.543 0.034 5.441 5.237
IPS [0.989] [0.988] [0.000] [0.000]
CIPS [1.000] [1.000] [0.028] [0.027]

Note: as in table 3.
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Table A.3: Estimation of Normalized Supply-Side System– time varying technical

progress – dummy variables

No γ Homogeneous γ Heterogeneous γi
2eqs 3eqs 2eqs 3eqs 2eqs 3eqs

equations: (7, 6) (8,9,6) (7, 6) (8,9,6) (7, 6) (8,9,6)

σ 0.692∗∗∗ 0.731∗∗∗ 0.690∗∗∗ 0.730∗∗∗ 0.569∗∗∗ 0.601∗∗∗
(0.030) (0.002) (0.030) (0.002) (0.038) (0.003)

ξ 1.004∗∗∗ 1.004∗∗∗ 1.01∗∗∗ 1.006∗∗∗ 1.008∗∗∗ 1.008∗∗∗
(0.013) (0.012) (0.007) (0.007) (0.003) (0.003)

γl 0.053∗∗∗ 0.048∗∗∗ 0.04∗∗∗ 0.037∗∗∗
(0.019) (0.017) (0.010) (0.009)

γk −0.086∗∗∗ −0.061∗∗ −0.057∗∗∗ −0.051∗∗∗
(0.031) (0.025) (0.015) (0.012)

LL 844.490 2203.265 843.863 2202.467 1163.418 2551.530
H0 : σ = 1 [0.000] [0.000] [0.000] [0.000] [0.000] [0.000]
H0 : γli = γki [0.003] [0.004] [0.000] [0.000]
H0 : γ = γi [0.000] [0.000]
H0 : Dtl = Dtk =

0

[0.219] [0.000] [0.000] [0.000]

Residuals diagnostics
equation (9) or

(7)
avg ρ −0.065 −0.021 −0.066 −0.018 −0.061 −0.011
avg |ρ| 0.347 0.320 0.349 0.317 0.307 0.291
CD −2.761 −0.901 −2.800 −0.769 −2.555 −0.481
IPS [0.213] [0.122] [0.214] [0.122] [0.002] [0.000]
CIPS [0.619] [0.216] [0.873] [0.270] [0.106] [0.023]
equation (8)
avg ρ −0.002 0.000 −0.001
avg |ρ| 0.335 0.000 0.284
CD −0.066 0.000 −0.029
IPS [0.367] [0.000] [0.001]
CIPS [0.851] [0.000] [0.009]
equation (6)
avg ρ −0.067 −0.021 −0.064 −0.020 −0.064 −0.020
avg |ρ| 0.591 0.576 0.589 0.575 0.340 0.331
CD −2.816 −0.880 −2.694 −0.851 −2.722 −0.856
IPS [0.992] [0.992] [0.993] [0.992] [0.000] [0.000]
CIPS [0.916] [0.994] [0.979] [0.997] [0.056] [0.046]

Note: as in table 3.
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Table A.4: Estimation of Normalized Supply-Side System – time varying technical

progress – Fourier

Homogeneous γ Heterogeneous γi
2eqs 3eqs 2eqs 3eqs

equations: (7, 6) (8,9,6) (7, 6) (8,9,6)

σ 0.707∗∗∗ 0.733∗∗∗ 0.622∗∗∗ 0.627∗∗∗
(0.031) (0.002) (0.046) (0.003)

ξ 1.002∗∗∗ 0.998∗∗∗ 1.002∗∗∗ 1.002∗∗∗
(0.000) (0.000) (0.000) (0.000)

γl 0.025∗∗∗ 0.029∗∗∗ 0.023∗∗∗ 0.025∗∗∗
(0.001) (0.001) (0.001) (0.000)

γk −0.031∗∗∗ −0.038∗∗∗ −0.026∗∗∗ −0.028∗∗∗
(0.003) (0.001) (0.002) (0.001)

κSINL −0.003 0.035∗∗∗ 0.001 0.016∗∗∗
(0.008) (0.010) (0.005) (0.005)

κCOS
L −0.024∗∗∗ −0.046∗∗∗ −0.013∗∗∗ −0.029∗∗∗

(0.009) (0.006) (0.003) (0.004)
κSINK −0.004 −0.069∗∗∗ −0.007 −0.019∗∗

(0.014) (0.015) (0.005) (0.008)
κCOS
K 0.058∗∗∗ 0.064∗∗∗ 0.021∗∗∗ 0.029∗∗∗

(0.015) (0.010) (0.004) (0.006)
kL 2 1 1 1
kK 2 1 2 1
LL 826.794 2165.363 1127.776 2493.127
H0 : σ = 1 [0.000] [0.000] [0.000] [0.000]
H0 : γl,i = γk,i [0.000] [0.000] [0.000] [0.000]
H0 : γ = γi [0.000] [0.000]
H0 : κi = 0 [0.000] [0.000] [0.000] [0.000]

Residuals diagnostics
equation (9) or (7)
avg ρ 0.043 0.057 0.098 0.133
avg |ρ| 0.338 0.317 0.324 0.267
CD 1.795 2.391 4.122 5.618
IPS [0.205] [0.120] [0.002] [0.000]
CIPS [0.702] [0.447] [0.080] [0.018]
equation (8)
avg ρ 0.012 0.043
avg |ρ| 0.312 0.251
CD 0.523 1.820
IPS [0.366] [0.001]
CIPS [0.955] [0.006]
equation (6)
avg ρ 0.017 −0.019 0.086 0.028
avg |ρ| 0.565 0.588 0.304 0.323
CD 0.723 −0.810 3.637 1.174
IPS [0.003] [0.003] [0.001] [0.000]
CIPS [0.999] [1.000] [0.016] [0.014]

Note: a as in table 3.
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Table A.5: Estimation of Normalized Supply-Side System – time invariant techni-

cal progress – non-zero markup (μ = 0.1)

Homogeneous γ Heterogeneous γi
2eqs 3eqs 2eqs 3eqs

equations: (7, 6) (8,9,6) (7, 6) (8,9,6)

σ 0.611∗∗∗ 0.684∗∗∗ 0.612∗∗∗ 0.627∗∗∗
(0.035) (0.003) (0.053) (0.005)

ξ 1.003∗∗∗ 0.997∗∗∗ 1.004∗∗∗ 1.003∗∗∗
(0.003) (0.002) (0.001) (0.001)

γl 0.023∗∗∗ 0.025∗∗∗ 0.023∗∗∗ 0.024∗∗∗
(0.001) (0.001) (0.001) (0.000)

γk −0.031∗∗∗ −0.034∗∗∗ −0.032∗∗∗ −0.032∗∗∗
(0.003) (0.001) (0.004) (0.001)

LL 696.282 1864.58 985.197 2199.03
σ = 1 [0.000] [0.000] [0.000] [0.000]
γl,i = γk,i [0.000] [0.000]
γ = γi [0.000] [0.000] [0.000] [0.000]
γk,i = 0 [0.000] [0.000] [0.000] [0.000]
γl,i = 0 [0.000] [0.000] [0.000] [0.000]

Residuals diagnostics
equation (9) or (7)
avg ρ 0.096 0.113 0.17 0.167
avg |ρ| 0.344 0.335 0.33 0.302
CD 4.05 4.755 7.171 7.062
IPS [0.161] [0.049] [0.001] [0.002]
CIPS [0.506] [0.342] [0.097] [0.169]
equation (8)
avg ρ 0.082 0.154
avg |ρ| 0.341 0.338
CD 3.449 6.521
IPS [0.000] [0.458] [0.000] [0.002]
CIPS [0.000] [0.883] [0.000] [0.162]
equation (6)
avg ρ 0.02 0.025 0.133 0.119
avg |ρ| 0.59 0.61 0.36 0.347
CD 0.858 1.036 5.625 5.022
IPS [0.999] [0.999] [0.000] [0.000]
CIPS [1.000] [1.000] [0.040] [0.034]

Note: as in table 3.

30

Narodowy Bank Polski32



B Alternative datasets

B.1 WIOD database

The first alternative dataset is the WIOD Socio Economic Accounts. Since its con-

truction is very similar to the EU KLEMS database we use Gross value added (volume

index) to measure real output, total hours worked by persons engaged to proxy labor

input. The capital stock is measure with Real fixed capital stock (in 1995 stock prices).

Finnally, the labor (capital) share is calculated as a simple relation of labor (capital)

compensation to nominal gross value added.

A broader set of countries extend our sample by 9 economies: Australia, Canada,

Ireland, Greece, Korea, Luxemburg, Portugal, Sweden, Taiwan.

B.2 TED database

Our second alternative database is TED Growth Accounting and Total Factor Pro-

ductivity. The output is calculated as the cumulative sum of log changes in GDP. We

proxy changes in a labor input as a sum of changes in labor quantity and quality and

the sum is cumulated. The labor share corresponds to Share of Total Labor Compen-

sation in GDP while the capital share is calculated explicitly. There is no aggregate

measure of capital services and in the TED database since capital services are divided

in ICT assets and non-ICT assets. Using data on their log changes and contribution

to GDP growth we calculate their remuneration. Next, based on their remuneration

we calculate weighted logged changes which are cumulated.

We extend our sample by 12 countries: Australia, Canada, Ireland, Greece, Korea,

Luxemburg, New Zealand, Norway, Portugal, Sweden, Switzerland, Taiwan.
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C Estimates at the country level

In an analogous fashion to the panel estimation, we provide systematic evidence on the

elasticity of substitution between labor and capital at the country level. In particular,

we estimate the underlying parameters using:

1. single equation approach. In particular, we consider:

(a) the linear equation for labor share (equation 8, henceforth FOCL);

(b) the linear equation for capital share (equation 9, FOCK );

(c) the linear equation for relative factor share (equation 7, FOCK/L);

2. the three-equation normalized supply-side system combining the logged CES pro-

duction function (6) with the linear equations for labor (8) and capital (9). The

following form of factor-augmenting technical change are considered:

(i) constant growth in factor augmentation (equation 10);

(ii) abrupt break in growth rate of factor augmentation (equation 11);

(iii) Box-Cox specification (equation 12);

(iv) trigonometric representation (Fourier expansion) that describe smooth breaks

in the form of factor-augmenting technical change (equation 14); .

Akin to the panel estimation we choose the parameter kL, kK in the trigonometric

presentation and breakpoint Bl and Bk that maximizes the likelihood function.

To check stationarity of residuals the usual ADF statistics are calculated and the

corresponding number of lags is determined by the BIC criterion. The ADF1 refers

to the equation for the capital share (9) or the relative factor shares (7), the ADF2 is

calculated for the residuals from the equation for the labor share (8) while the ADF3

captures stationarity of the implied output gap (6).

At the country level, we estimate the distribution parameters πi. However, fixing

it at sample average does not alter our results.
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Table C.1: Austria

Single equation approach Three-equation system
FOCL FOCK FOCK/L
(8) (9) (7) (10) (11) (12) (14)

σ 0.905∗∗∗ 0.859∗∗∗ 0.816∗∗∗ 0.819∗∗∗ 0.962∗∗∗ 0.845∗∗∗ 0.602∗∗∗
(0.137) (0.204) (0.212) (0.008) (0.008) (0.010) (0.004)

π 0.322∗∗∗ 0.321∗∗∗ 0.321∗∗∗ 0.321∗∗∗ 0.322∗∗∗ 0.319∗∗∗ 0.321∗∗∗
(0.002) (0.002) (0.002) (0.001) (0.002) (0.001) (0.001)

ξ 1.006∗∗∗ 1.008∗∗∗ 1.003∗∗∗ 1.002∗∗∗
(0.002) (0.003) (0.003) (0.002)

γl 0.061∗ 0.042∗∗∗ 0.141∗∗ 0.043∗∗∗ 0.027∗∗∗
(0.065) (0.001) (0.026) (0.002) (0.000)

γk −0.055∗ −0.045∗∗∗−0.249∗ −0.049∗∗∗−0.014∗∗∗
(0.092) (0.003) (0.054) (0.005) (0.001)

γlk 0.08
(0.083)

λl 1.028∗∗∗
(0.100)

λk 0.895∗∗∗
(0.114)

γl,Bl
0.005∗∗∗
(0.002)

Bl 1999
γk,Bk

−0.008∗∗∗
(0.003)

Bk 2001
κSINL −0.023

(0.004)
κCOS
L −0.005∗∗∗

(0.004)
κSINK 0.038∗∗

(0.006)
κCOS
K 0.014∗∗∗

(0.005)
kL 2
kK 2
LL 79.771 59.252 49.062 290.160 292.939 295.625 303.520
H0 : σ = 1 [0.489] [0.490] [0.387] [0.000] [0.000] [0.000] [0.000]
H0 : γ

K = γL [0.338] [0.000] [0.000] [0.000] [0.000]
H0 : const γ

L &

γK
[0.210] [0.002] [0.000]

H0 : const γ
L [0.778] [0.001] [0.000]

H0 : const γ
K [0.360] [0.001] [0.000]

ADF1 −3.565∗∗∗−3.418∗∗∗−2.952∗∗∗−2.646∗∗ −3.381∗∗∗−4.634∗∗∗
ADF2 −2.882∗∗∗ −2.912∗∗∗−2.453∗∗ −3.015∗∗∗−4.775∗∗∗
ADF3 −4.661∗∗∗−3.003∗∗∗−5.046∗∗∗−4.095∗∗∗

Note: the superscripts ∗∗∗, ∗∗ and ∗ denote the rejection of null about parameters’ insignificance

at 1%, 5% and 10% significance level, respectively. The expressions in round and squared brackets

stand for standard errors and probability values corresponding to respective hypothesis, respectively.

The LL stands for the log likelihood for a given model. For the ADF unit root, the asterisks ∗∗∗, ∗∗

and ∗, rejection of the null about unit root at the 1%, 5% and 10% significance level.
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Table C.2: Belgium

Single equation approach Three-equation system
FOCL FOCK FOCK/L
(8) (9) (7) (10) (11) (12) (14)

σ 6.623 1.233 4.103 4.678∗∗∗ 0.422∗∗∗ 0.949∗∗∗ 0.894∗∗∗
(6.337) (0.853) (10.234) (0.144) (0.001) (0.008) (0.007)

π 0.324∗∗∗ 0.323∗∗∗ 0.324∗∗∗ 0.325∗∗∗ 0.338∗∗∗ 0.329∗∗∗ 0.321∗∗∗
(0.002) (0.003) (0.002) (0.002) (0.002) (0.002) (0.001)

ξ 1.000∗∗∗ 1.005∗∗∗ 1.006∗∗∗ 1.003∗∗∗
(0.002) (0.002) (0.002) (0.002)

γl 0.016∗∗∗ 0.014∗∗∗ 0.014∗∗∗ 0.090∗∗ 0.029∗∗∗
(0.000) (0.000) (0.000) (0.012) (0.002)

γk −0.02∗∗ −0.018∗∗∗−0.024∗∗∗−0.18∗∗ −0.051∗∗∗
(0.018) (0.001) (0.001) (0.027) (0.005)

γlk 0.044∗∗∗
(0.003)

λl 0.4∗∗∗
(0.041)

λk 0.554∗∗∗
(0.037)

γl,Bl
−0.107∗∗∗
(0.016)

Bl 1984
γk,Bk

0.219∗∗∗
(0.035)

Bk 1984
κSINL 0.139∗∗∗

(0.031)
κCOS
L −0.265∗∗∗

(0.024)
κSINK −0.266∗∗∗

(0.064)
κCOS
K 0.51∗∗∗

(0.049)
kL 1
kK 1
LL 75.832 44.528 39.149 283.727 301.034 300.716 302.084
H0 : σ = 1 [0.375] [0.784] [0.762] [0.000] [0.000] [0.000] [0.000]
H0 : γ

K = γL [0.000] [0.000] [0.000] [0.003] [0.000]
H0 : const γ

L &

γK
[0.000] [0.000] [0.000]

H0 : const γ
L [0.000] [0.000] [0.000]

H0 : const γ
K [0.000] [0.000] [0.000]

ADF1 −2.587∗∗ −3.015∗∗∗−1.138 −3.001∗∗∗−3.681∗∗∗−2.452∗∗∗
ADF2 −3.595∗∗∗ −1.870∗ −2.979∗∗∗−3.567∗∗∗−2.484∗∗∗
ADF3 −1.745∗ −3.070∗∗∗−2.814∗∗∗−3.726∗∗∗

Note: as in table C.1.
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Table C.3: Denmark

Single equation approach Three-equation system
FOCL FOCK FOCK/L
(8) (9) (7) (10) (11) (12) (14)

σ 1.706∗∗∗ 0.405∗∗∗ 1.477 0.942∗∗∗ 0.357∗∗∗ 0.432∗∗∗ 0.699∗∗∗
(0.380) (0.080) (0.958) (0.014) (0.002) (0.004) (0.009)

π 0.295∗∗∗ 0.293∗∗∗ 0.294∗∗∗ 0.29∗∗∗ 0.315∗∗∗ 0.321∗∗∗ 0.294∗∗∗
(0.003) (0.003) (0.003) (0.003) (0.003) (0.003) (0.002)

ξ 1.01∗∗∗ 1.01∗∗∗ 1.019∗∗∗ 1.001∗∗∗
(0.004) (0.003) (0.003) (0.003)

γl 0.01∗∗∗ 0.073∗∗ 0.017∗∗∗ 0.029∗∗∗ 0.025∗∗∗
(0.003) (0.011) (0.001) (0.001) (0.001)

γk −0.031∗∗∗ −0.159∗∗ −0.028∗∗∗−0.04∗∗∗ −0.042∗∗∗
(0.002) (0.026) (0.000) (0.001) (0.003)

γlk 0.009
(0.046)

λl 0.456∗∗∗
(0.052)

λk 0.667∗∗∗
(0.037)

γl,Bl
−0.017∗∗∗
(0.001)

Bl 1998
γk,Bk

0.016∗∗∗
(0.002)

Bk 1995
κSINL −0.023

(0.016)
κCOS
L −0.079∗∗∗

(0.011)
κSINK 0.054∗

(0.027)
κCOS
K 0.101∗∗∗

(0.020)
kL 1
kK 1
LL 65.914 40.503 27.901 238.744 256.086 261.005 254.942
H0 : σ = 1 [0.063] [0.000] [0.618] [0.000] [0.000] [0.000] [0.000]
H0 : γ

K = γL [0.845] [0.000] [0.000] [0.000] [0.000]
H0 : const γ

L &

γK
[0.000] [0.000] [0.000]

H0 : const γ
L [0.000] [0.000] [0.000]

H0 : const γ
K [0.000] [0.000] [0.000]

ADF1 −2.409∗∗ −3.353∗∗∗−2.689∗∗∗−2.642∗∗ −2.915∗∗∗−3.354∗∗∗
ADF2 −2.965∗∗∗ −2.544∗∗ −2.669∗∗∗−3.351∗∗∗−3.165∗∗∗
ADF3 −2.333∗∗ −2.536∗∗ −3.217∗∗∗−2.960∗∗∗

Note: as in table C.1.
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Table C.4: Finland

Single equation approach Three-equation system
FOCL FOCK FOCK/L
(8) (9) (7) (10) (11) (12) (14)

σ 2.898∗ 0.563∗∗∗ 0.495∗∗∗ 0.705∗∗∗ 0.852∗∗∗ 0.847∗∗∗ 0.69∗∗∗
(1.543) (0.058) (0.077) (0.011) (0.030) (0.031) (0.013)

π 0.286∗∗∗ 0.299∗∗∗ 0.3∗∗∗ 0.307∗∗∗ 0.309∗∗∗ 0.303∗∗∗ 0.303∗∗∗
(0.004) (0.005) (0.005) (0.004) (0.005) (0.005) (0.003)

ξ 1.016∗∗∗ 0.979∗∗∗ 0.946∗∗∗ 1.01∗∗∗
(0.006) (0.005) (0.005) (0.003)

γl 0.017∗∗∗ 0.042∗∗∗ 0.061∗∗∗ 0.037∗∗∗ 0.033∗∗∗
(0.003) (0.002) (0.008) (0.007) (0.003)

γk −0.02∗∗∗ −0.033∗∗∗−0.07∗∗ −0.052∗∗ −0.014∗∗∗
(0.005) (0.004) (0.018) (0.017) (0.003)

γlk 0.05∗∗∗
(0.007)

λl 1.348∗∗∗
(0.184)

λk 0.917∗∗∗
(0.273)

γl,Bl
0.038∗∗∗
(0.004)

Bl 1993
γk,Bk

−0.02∗∗∗
(0.006)

Bk 1988
κSINL −0.137∗∗∗

(0.018)
κCOS
L 0.069∗∗∗

(0.013)
κSINK 0.275∗∗∗

(0.033)
κCOS
K −0.015

(0.025)
kL 1
kK 1
LL 76.545 28.762 17.587 175.130 195.934 201.699 215.907
H0 : σ = 1 [0.219] [0.000] [0.000] [0.000] [0.000] [0.000] [0.000]
H0 : γ

K = γL [0.000] [0.000] [0.000] [0.000] [0.000]
H0 : const γ

L &

γK
[0.000] [0.000] [0.000]

H0 : const γ
L [0.059] [0.000] [0.000]

H0 : const γ
K [0.762] [0.001] [0.000]

ADF1 −2.945∗∗∗−2.964∗∗∗−2.906∗∗∗−2.568∗∗ −2.740∗∗∗−3.871∗∗∗
ADF2 −1.484 −2.340∗∗ −2.472∗∗ −2.555∗∗ −3.950∗∗∗
ADF3 −1.746∗ −3.311∗∗∗−3.449∗∗∗−4.098∗∗∗

Note: as in table C.1.
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Table C.5: France

Single equation approach Three-equation system
FOCL FOCK FOCK/L
(8) (9) (7) (10) (11) (12) (14)

σ 5.905 0.319∗∗ 0.371∗ 0.671∗∗∗ 0.217∗∗∗ 0.26∗∗∗ 0.465∗∗∗
(7.513) (0.115) (0.190) (0.018) (0.002) (0.002) (0.006)

π 0.261∗∗∗ 0.258∗∗∗ 0.258∗∗∗ 0.248∗∗∗ 0.282∗∗∗ 0.292∗∗∗ 0.256∗∗∗
(0.003) (0.004) (0.004) (0.003) (0.002) (0.003) (0.001)

ξ 1.003∗∗∗ 1.009∗∗∗ 1.002∗∗∗ 1.001∗∗∗
(0.002) (0.003) (0.003) (0.002)

γl 0.01∗∗∗ 0.027∗∗∗ 0.016∗∗∗ 0.022∗∗∗ 0.022∗∗∗
(0.002) (0.001) (0.000) (0.000) (0.001)

γk −0.015∗∗∗ −0.041∗∗∗−0.01∗∗∗ −0.019∗∗∗−0.02∗∗∗
(0.004) (0.003) (0.000) (0.001) (0.001)

γlk 0.028∗∗∗
(0.002)

λl 0.611∗∗∗
(0.041)

λk 0.482∗∗∗
(0.058)

γl,Bl
−0.007∗∗∗
(0.001)

Bl 1986
γk,Bk

0.012∗∗∗
(0.001)

Bk 1993
κSINL 0.008

(0.006)
κCOS
L −0.041∗∗∗

(0.004)
κSINK 0.024∗∗∗

(0.008)
κCOS
K 0.077∗∗∗

(0.007)
kL 1
kK 1
LL 67.577 31.393 23.780 222.080 253.894 274.444 269.623
H0 : σ = 1 [0.514] [0.000] [0.001] [0.000] [0.000] [0.000] [0.000]
H0 : γ

K = γL [0.122] [0.000] [0.000] [0.000] [0.000]
H0 : const γ

L &

γK
[0.000] [0.000] [0.000]

H0 : const γ
L [0.000] [0.000] [0.000]

H0 : const γ
K [0.000] [0.000] [0.000]

ADF1 −1.552 −1.865∗ −1.263 −3.217∗∗∗−3.394∗∗∗−2.524∗∗∗
ADF2 −1.759∗ −1.185 −2.625∗∗ −3.998∗∗∗−2.130∗∗∗
ADF3 −2.729∗∗∗−2.604∗∗ −4.342∗∗∗−3.013∗∗∗

Note: as in table C.1.
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Table C.6: Germany

Single equation approach Three-equation system
FOCL FOCK FOCK/L
(8) (9) (7) (10) (11) (12) (14)

σ 0.834∗∗∗ 0.489∗∗∗ 0.4∗∗∗ 0.396∗∗∗ 0.389∗∗∗ 0.399∗∗∗ 0.525∗∗∗
(0.130) (0.045) (0.035) (0.001) (0.001) (0.001) (0.002)

π 0.268∗∗∗ 0.267∗∗∗ 0.267∗∗∗ 0.265∗∗∗ 0.269∗∗∗ 0.268∗∗∗ 0.267∗∗∗
(0.002) (0.002) (0.001) (0.001) (0.002) (0.002) (0.001)

ξ 0.999∗∗∗ 1.01∗∗∗ 1.019∗∗∗ 1.001∗∗∗
(0.003) (0.004) (0.003) (0.002)

γl 0.032∗∗ 0.023∗∗∗ 0.022∗∗∗ 0.026∗∗∗ 0.025∗∗∗
(0.010) (0.000) (0.000) (0.001) (0.001)

γk −0.032∗∗∗ −0.03∗∗∗ −0.03∗∗∗ −0.028∗∗∗−0.037∗∗∗
(0.001) (0.000) (0.000) (0.001) (0.001)

γlk 0.052∗∗∗
(0.001)

λl 0.802∗∗∗
(0.047)

λk 1.056∗∗∗
(0.048)

γl,Bl
−0.006∗∗∗
(0.001)

Bl 1990
γk,Bk

−0.004∗∗∗
(0.001)

Bk 1991
κSINL 0.022∗∗∗

(0.006)
κCOS
L −0.023∗∗∗

(0.004)
κSINK −0.06∗∗∗

(0.010)
κCOS
K 0.002

(0.005)
kL 1
kK 1
LL 71.373 54.073 49.047 285.027 293.536 299.022 304.407
H0 : σ = 1 [0.201] [0.000] [0.000] [0.000] [0.000] [0.000] [0.000]
H0 : γ

K = γL [0.000] [0.000] [0.000] [0.000] [0.000]
H0 : const γ

L &

γK
[0.000] [0.000] [0.000]

H0 : const γ
L [0.000] [0.000] [0.000]

H0 : const γ
K [0.241] [0.001] [0.000]

ADF1 −3.710∗∗∗−4.085∗∗∗−3.010∗∗∗−3.340∗∗∗−3.740∗∗∗−3.340∗∗∗
ADF2 −2.847∗∗∗ −2.750∗∗∗−3.991∗∗∗−4.456∗∗∗−4.381∗∗∗
ADF3 −2.759∗∗∗−3.693∗∗∗−4.960∗∗∗−4.543∗∗∗

Note: as in table C.1.
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Table C.7: Italy

Single equation approach Three-equation system
FOCL FOCK FOCK/L
(8) (9) (7) (10) (11) (12) (14)

σ 1.539∗∗∗ 0.36∗∗∗ 0.466∗∗∗ 0.886∗∗∗ 0.971∗∗∗ 0.801∗∗∗ 0.756∗∗∗
(0.278) (0.075) (0.068) (0.014) (0.005) (0.012) (0.013)

π 0.266∗∗∗ 0.262∗∗∗ 0.254∗∗∗ 0.263∗∗∗ 0.262∗∗∗ 0.273∗∗∗ 0.263∗∗∗
(0.003) (0.003) (0.003) (0.003) (0.003) (0.002) (0.002)

ξ 1.025∗∗∗ 1.028∗∗∗ 1.031∗∗∗ 1.013∗∗∗
(0.005) (0.004) (0.004) (0.002)

γl −0.005∗∗∗ 0.059∗∗∗ 0.217∗∗ 0.046∗∗∗ 0.018∗∗∗
(0.006) (0.006) (0.030) (0.003) (0.000)

γk −0.025∗∗∗ −0.144∗∗ −0.575∗ −0.099∗∗∗−0.042∗∗∗
(0.003) (0.016) (0.082) (0.007) (0.004)

γlk 0.045∗∗∗
(0.004)

λl 1.194∗∗∗
(0.120)

λk 0.998∗∗∗
(0.124)

γl,Bl
−0.025∗∗∗
(0.003)

Bl 2003
γk,Bk

0.042∗∗∗
(0.007)

Bk 2003
κSINL −0.212∗∗∗

(0.013)
κCOS
L 0.012

(0.011)
κSINK 0.405∗∗∗

(0.032)
κCOS
K −0.095∗∗∗

(0.025)
kL 1
kK 1
LL 66.122 39.228 31.571 215.253 227.155 232.360 263.546
H0 : σ = 1 [0.053] [0.000] [0.000] [0.000] [0.000] [0.000] [0.000]
H0 : γ

K = γL [0.022] [0.000] [0.000] [0.000] [0.000]
H0 : const γ

L &

γK
[0.000] [0.000] [0.000]

H0 : const γ
L [0.107] [0.000] [0.000]

H0 : const γ
K [0.987] [0.000] [0.000]

ADF1 −2.039∗∗ −2.089∗∗ −2.224∗∗ −2.254∗∗ −2.391∗∗ −2.822∗∗∗
ADF2 −1.832∗ −1.996∗∗ −1.598 −2.509∗∗ −3.079∗∗∗
ADF3 −2.912∗∗∗−2.941∗∗∗−3.628∗∗∗−3.862∗∗∗

Note: as in table C.1.
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Table C.8: Japan

Single equation approach Three-equation system
FOCL FOCK FOCK/L
(8) (9) (7) (10) (11) (12) (14)

σ 1.386∗∗∗ 0.453∗∗∗ 1.201∗∗ 0.949∗∗∗ 0.455∗∗∗ 0.507∗∗∗ 0.567∗∗∗
(0.155) (0.041) (0.484) (0.007) (0.002) (0.004) (0.005)

π 0.363∗∗∗ 0.362∗∗∗ 0.362∗∗∗ 0.357∗∗∗ 0.38∗∗∗ 0.381∗∗∗ 0.362∗∗∗
(0.003) (0.002) (0.003) (0.003) (0.002) (0.002) (0.002)

ξ 1.016∗∗∗ 1.021∗∗∗ 1.042∗∗∗1∗∗∗
(0.006) (0.007) (0.004) (0.004)

γl 0.01∗∗∗ 0.122∗∗ 0.025∗∗∗ 0.043∗∗∗ 0.035∗∗∗
(0.005) (0.012) (0.001) (0.001) (0.001)

γk −0.023∗∗∗ −0.186∗∗ −0.021∗∗∗−0.029∗∗∗−0.029∗∗∗
(0.001) (0.021) (0.001) (0.001) (0.001)

γlk −0.032
(0.148)

λl 0.432∗∗∗
(0.059)

λk 0.681∗∗∗
(0.063)

γl,Bl
−0.025∗∗∗
(0.002)

Bl 1988
γk,Bk

0.007∗∗∗
(0.001)

Bk 1984
κSINL 0.04∗∗∗

(0.013)
κCOS
L −0.1∗∗∗

(0.008)
κSINK −0.033∗∗∗

(0.011)
κCOS
K 0.036∗∗∗

(0.007)
kL 1
kK 1
LL 64.940 53.536 30.937 232.993 252.208 265.139 254.676
H0 : σ = 1 [0.013] [0.000] [0.678] [0.000] [0.000] [0.000] [0.000]
H0 : γ

K = γL [0.827] [0.000] [0.000] [0.000] [0.000]
H0 : const γ

L &

γK
[0.000] [0.000] [0.000]

H0 : const γ
L [0.000] [0.000] [0.000]

H0 : const γ
K [0.000] [0.000] [0.000]

ADF1 −2.885∗∗∗−1.671∗ −1.412 −4.258∗∗∗−5.928∗∗∗−3.737∗∗∗
ADF2 −1.659∗ −1.500 −2.900∗∗∗−4.217∗∗∗−4.085∗∗∗
ADF3 −2.133∗∗ −2.683∗∗∗−3.613∗∗∗−3.741∗∗∗

Note: as in table C.1.
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Table C.9: The Netherlands

Single equation approach Three-equation system
FOCL FOCK FOCK/L
(8) (9) (7) (10) (11) (12) (14)

σ 3.307 1.775 0.81∗∗∗ 0.899∗∗∗ 0.65∗∗∗ 0.902∗∗∗ 0.745∗∗∗
(3.198) (1.124) (0.430) (0.009) (0.003) (0.008) (0.008)

π 0.302∗∗∗ 0.301∗∗∗ 0.301∗∗∗ 0.307∗∗∗ 0.312∗∗∗ 0.31∗∗∗ 0.298∗∗∗
(0.003) (0.003) (0.003) (0.003) (0.002) (0.003) (0.002)

ξ 0.995∗∗∗ 0.998∗∗∗ 0.995∗∗∗ 1.003∗∗∗
(0.003) (0.003) (0.003) (0.003)

γl 0.009∗∗∗ 0.019∗∗∗ 0.014∗∗∗ 0.064∗∗∗ 0.028∗∗∗
(0.001) (0.004) (0.001) (0.006) (0.001)

γk 0.004∗∗∗ −0.021∗∗∗−0.009∗∗∗−0.143∗∗ −0.043∗∗∗
(0.009) (0.009) (0.001) (0.015) (0.002)

γlk 0.03
(0.038)

λl 0.434∗∗∗
(0.062)

λk −0.469∗∗∗
(0.075)

γl,Bl
−0.05∗∗∗
(0.009)

Bl 1984
γk,Bk

0.132∗∗∗
(0.020)

Bk 1984
κSINL 0.145∗∗∗

(0.017)
κCOS
L −0.045∗∗∗

(0.010)
κSINK −0.305∗∗∗

(0.039)
κCOS
K 0.158∗∗∗

(0.023)
kL 1
kK 1
LL 64.509 38.746 31.258 244.653 282.276 265.260 259.576
H0 : σ = 1 [0.471] [0.491] [0.195] [0.000] [0.000] [0.000] [0.000]
H0 : γ

K = γL [0.000] [0.003] [0.000] [0.113] [0.000]
H0 : const γ

L &

γK
[0.000] [0.000] [0.000]

H0 : const γ
L [0.000] [0.000] [0.000]

H0 : const γ
K [0.000] [0.000] [0.000]

ADF1 −3.032∗∗∗−4.726∗∗∗−3.418∗∗∗−3.181∗∗∗−2.739∗∗∗−2.936∗∗∗
ADF2 −3.206∗∗∗ −3.519∗∗∗−2.895∗∗∗−2.791∗∗∗−4.161∗∗∗
ADF3 −2.122∗∗ −1.881∗ −3.214∗∗∗−3.426∗∗∗

Note: as in table C.1.
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Table C.10: Spain

Single equation approach Three-equation system
FOCL FOCK FOCK/L
(8) (9) (7) (10) (11) (12) (14)

σ 1.276∗∗∗ 0.423∗∗∗ 0.958∗∗∗ 0.979∗∗∗ 0.998∗∗∗ 0.958∗∗∗ 0.722∗∗∗
(0.184) (0.058) (0.423) (0.003) (0.001) (0.007) (0.007)

π 0.35∗∗∗ 0.349∗∗∗ 0.35∗∗∗ 0.343∗∗∗ 0.351∗∗∗ 0.341∗∗∗ 0.35∗∗∗
(0.004) (0.003) (0.004) (0.002) (0.003) (0.002) (0.002)

ξ 1.035∗∗∗ 1.042∗∗∗ 1.047∗∗∗ 1.002∗∗∗
(0.003) (0.003) (0.003) (0.002)

γl 0.001∗∗∗ 0.19∗∗ 1.324 0.094∗∗ 0.025∗∗∗
(0.005) (0.017) (0.432) (0.015) (0.001)

γk −0.02∗∗∗ −0.361∗∗ −2.456 −0.163∗∗ −0.043∗∗∗
(0.001) (0.033) (0.802) (0.030) (0.002)

γlk 0.153
(1.349)

λl 0.296∗∗∗
(0.073)

λk 0.214∗∗∗
(0.074)

γl,Bl
0.004∗
(0.002)

Bl 1999
γk,Bk

−0.035∗∗∗
(0.006)

Bk 1992
κSINL 0.165∗∗∗

(0.017)
κCOS
L −0.113∗∗∗

(0.010)
κSINK −0.245∗∗∗

(0.024)
κCOS
K 0.053∗∗∗

(0.014)
kL 1
kK 1
LL 56.338 44.563 26.184 262.212 270.325 268.325 279.643
H0 : σ = 1 [0.135] [0.000] [0.921] [0.000] [0.016] [0.000] [0.000]
H0 : γ

K = γL [0.000] [0.000] [0.002] [0.000] [0.000]
H0 : const γ

L &

γK
[0.000] [0.000] [0.000]

H0 : const γ
L [0.000] [0.062] [0.000]

H0 : const γ
K [0.000] [0.000] [0.000]

ADF1 −2.411∗∗ −3.053∗∗∗−1.915∗ −2.103∗∗ −1.873∗ −3.131∗∗∗
ADF2 −2.375∗∗ −1.967∗∗ −2.152∗∗ −1.945∗ −3.463∗∗∗
ADF3 −2.048∗∗ −2.521∗∗ −2.111∗∗ −3.458∗∗∗

Note: as in table C.1.
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Table C.11: The United Kingdom

Single equation approach Three-equation system
FOCL FOCK FOCK/L
(8) (9) (7) (10) (11) (12) (14)

σ 0.999∗∗∗ 0.58∗∗∗ 0.804∗ 0.982∗∗∗ 0.744∗∗∗ 0.718∗∗∗ 0.943∗∗∗
(0.000) (0.149) (0.422) (0.008) (0.009) (0.012) (0.008)

π 0.278∗∗∗ 0.277∗∗∗ 0.277∗∗∗ 0.284∗∗∗ 0.286∗∗∗ 0.268∗∗∗ 0.279∗∗∗
(0.004) (0.004) (0.004) (0.003) (0.003) (0.003) (0.002)

ξ 1.023∗∗∗ 1.027∗∗∗ 1.006∗∗∗ 1.018∗∗∗
(0.004) (0.003) (0.003) (0.004)

γl −2.925∗∗∗ −0.089∗∗ 0.013∗∗∗ 0.015∗∗∗−0.002∗∗
(0.000) (0.029) (0.000) (0.002) (0.010)

γk −0.014∗∗∗ 0.261∗ 0∗∗∗ 0.008∗∗∗ 0.044∗∗
(0.004) (0.073) (0.000) (0.003) (0.010)

γlk 0.019
(0.062)

λl 0.226∗∗
(0.101)

λk −3.167
(4.744)

γl,Bl
0.005∗∗∗
(0.002)

Bl 1989
γk,Bk

−0.027∗∗∗
(0.003)

Bk 1987
κSINL 0.455∗∗∗

(0.064)
κCOS
L −0.261∗∗∗

(0.039)
κSINK −1.167∗∗∗

(0.160)
κCOS
K 0.656∗∗∗

(0.094)
kL 2
kK 2
LL 57.601 32.671 22.807 233.431 241.011 251.129 255.561
H0 : σ = 1 [0.024] [0.005] [0.641] [0.030] [0.000] [0.000] [0.000]
H0 : γ

K = γL [0.755] [0.001] [0.000] [0.000] [0.001]
H0 : const γ

L &

γK
[0.000] [0.000] [0.000]

H0 : const γ
L [0.000] [0.001] [0.000]

H0 : const γ
K [0.380] [0.000] [0.000]

ADF1 −2.769∗∗∗−3.143∗∗∗−3.063∗∗∗−2.662∗∗∗−3.680∗∗∗−2.782∗∗∗
ADF2 −3.120∗∗∗ −3.132∗∗∗−2.636∗∗ −3.715∗∗∗−2.999∗∗∗
ADF3 −3.801∗∗∗−2.924∗∗∗−3.330∗∗∗−5.599∗∗∗

Note: as in table C.1.
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Table C.12: The United States

Single equation approach Three-equation system
FOCL FOCK FOCK/L
(8) (9) (7) (10) (11) (12) (14)

σ 0.878∗∗∗ 0.538∗∗∗ 0.453∗∗∗ 0.485∗∗∗ 0.512∗∗∗ 0.506∗∗∗ 0.461∗∗∗
(0.134) (0.048) (0.044) (0.001) (0.001) (0.001) (0.001)

π 0.309∗∗∗ 0.309∗∗∗ 0.309∗∗∗ 0.31∗∗∗ 0.312∗∗∗ 0.312∗∗∗ 0.312∗∗∗
(0.002) (0.001) (0.001) (0.001) (0.001) (0.001) (0.001)

ξ 1.001∗∗∗ 0.997∗∗∗ 0.991∗∗∗ 1.001∗∗∗
(0.003) (0.004) (0.003) (0.000)

γl 0.031∗∗ 0.023∗∗∗ 0.023∗∗∗ 0.021∗∗∗ 0.024∗∗∗
(0.013) (0.000) (0.000) (0.000) (0.000)

γk −0.017∗∗∗ −0.016∗∗∗−0.017∗∗∗−0.02∗∗∗ −0.017∗∗∗
(0.001) (0.000) (0.001) (0.001) (0.000)

γlk 0.037∗∗∗
(0.001)

λl 1.061∗∗∗
(0.059)

λk 0.81∗∗∗
(0.079)

γl,Bl
0.004∗∗∗
(0.001)

Bl 2003
γk,Bk

0.006∗∗∗
(0.001)

Bk 1998
κSINL 0.021∗∗∗

(0.005)
κCOS
L 0.002

(0.004)
κSINK −0.02∗∗∗

(0.004)
κCOS
K 0.015∗∗∗

(0.004)
kL 1
kK 2
LL 74.490 61.738 53.041 306.130 307.571 316.525 322.555
H0 : σ = 1 [0.362] [0.000] [0.000] [0.000] [0.000] [0.000] [0.000]
H0 : γ

K = γL [0.000] [0.000] [0.000] [0.000] [0.000]
H0 : const γ

L &

γL
[0.055] [0.000] [0.000]

H0 : const γ
L [0.302] [0.000] [0.000]

H0 : const γ
K [0.016] [0.000] [0.000]

ADF1 −3.089∗∗∗−3.186∗∗∗−2.961∗∗∗−2.725∗∗∗−2.651∗∗ −3.827∗∗∗
ADF2 −2.498∗∗ −2.359∗∗ −2.308∗∗ −3.024∗∗∗−4.077∗∗∗
ADF3 −2.785∗∗∗−2.618∗∗ −3.345∗∗∗−4.940∗∗∗

Note: as in table C.1.
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