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Abstract

Abstract

The study aims to identify the granular demand and productivity

shocks, their properties, and the responses of the important firm-level

variables to these shocks. We use comprehensive data from the Polish

enterprise sector that cover the 2002-2019 period. As the data do not

include prices, the identification of the demand shocks relies on the infor-

mation on inventory changes. We utilize the control function approach to

estimate the parameters of the production function and to identify produc-

tivity shocks. We use projection methods with granular data to identify

the dynamic impulse-response function. We show that the distributions

of the two shocks differ: i.e., supply (productivity) shocks are symmet-

rically distributed, and the distribution of demand shocks is negatively

skewed. Moreover, both distributions have fat tails. Productivity shocks

have much more persistent effect on firms’ outcomes than demand shocks.

Following demand shocks, there are short-lived increases in output, mar-

ket share, productivity, real wages and markups; whereas investment and

employment demand remain elevated for a longer period. We also find a

very limited transmission of productivity into wages and we showed that

proxies for prices increase after demand shocks, and they decrease after

the supply shock, in a theory-consistent way.

Keywords: demand shocks, supply shock, granular impulse re-

sponse function, granular local projections

JEL Codes: D22, D24, D4, J42, L11
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Chapter 1

1 Introduction and literature review

The aim of this study is to identify the dynamic responses of firms to granular

supply (productivity) and demand shocks and to describe the properties of dis-

tributions of these shocks. Most of the existing literature on this topic has used

macroeconomic data and macroeconomic identification schemes (like structural

vector autoregressions or dynamic factor models) to derive the impulse responses.

Following the routes pioneered by Cochrane (1994) and Gabaix (2011), we search

for the rationale for macroeconomic shocks by measuring the granular reactions

of firms to these shocks. The latter approach serves as a cross-check for the

impulse responses identified using macroeconomic models. The need for such a

consistency check was stressed by Buera et al. (2021). Our approach extends the

existing literature by providing additional insights into the properties of shocks

and of firms’ adjustment mechanisms, in addition to performing a consistency

check.

Because both demand and productivity shocks are unobserved and affect

firms’ outcomes simultaneously, separating them is challenging, as Klette and

Griliches (1996) first noted. Various schemes for identifying demand shocks have

been presented in the literature, and their applicability depends on the available

data. For cases in which the data include information on prices, Foster et al.

(2008) and Pozzi and Schivardi (2016) have offered a feasible solution based on

the estimation of the demand schedules faced by firms. But if, as in our case,

the prices are unavailable, indirect approaches need to be used instead. We use

the identification scheme proposed by Kumar and Zhang (2019), as it is the

most suitable approach for our analysis given our data. The approach builds on

the assumption that the demand shocks are realized after the firm has chosen its

inputs and output levels, whereas the supply shocks are realized before the inputs

and output decisions are made (and thus should not affect inventory stock). The

uncertainty introduced by demand shocks and timing assumptions create a gap

between the expected and the realized sales. Thus, the firm-level deviations

of inventories from the targeted level of inventory stock provide information

about the unexpected shifts in demand. Note that the identification applied

here is agnostic regarding the exact source of the demand shock – e.g., whether

it is a result of a transitory shift in preferences or a change in monetary policy

conditions – provided it is unobserved when decisions about inputs and output

are made.

3
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The identification of supply (productivity) shocks is related to the estimation

of the production function. Here, we utilize here the control function approach

pioneered by Olley and Pakes (1996), as it addresses the endogeneity problem

that can arise when productivity shocks that are not observed by the econome-

trician are known to the firm (as is assumed in our identification scheme), and it

affects both output and input choices. Moreover, the lack of firm-level prices in

our data combined with the imperfect competition on the output markets implies

that additional problems can arise when using revenue rather than the quantity

production function, as was recently stressed by Bond et al. (2020), Doraszelski

and Jaumandreu (2021) and Ridder et al. (2021) in the context of measuring

markups.

Kumar and Zhang (2019) proposed an adjustment to the production func-

tion estimation procedure that incorporates the demand for the firm’s products

into the estimation of the revenue production function in a way that consistently

allows for demand shocks to be controlled for in the estimation of the firm level

productivity. This approach addresses some of the issues raised in the literature.

First, it changes the first stage of the estimation of the production function,

as inventories enter the production function as a state variable. Moreover, de-

mand shocks may affect the investment decisions of firms due to factors such as

the credit constraints. Thus, our identification assumes that demand shocks are

part of the investment policy function used to control for productivity1. Second,

demand shocks are a source of independent variation between investments deci-

sions and labor (and material) choices, which resolves the collinearity problem

described by Ackerberg et al. (2015). Third, Doraszelski and Jaumandreu (2021)

argued that controlling for the heterogeneity in demand conditions across firms

under imperfect competition is necessary to obtain unbiased estimates of the

parameters of the production function and productivity, and, thus, the related

measures of markups.2 They showed in simulations that controlling for the de-

mand shifts in the estimation procedure improves the estimates. In the empirical

part of their study they used a proxy for demand shifts taken from the survey

data. In our study, we directly identify a shock to the demand schedule.

We additionally refined the Kumar and Zhang (2019) identification scheme

and added a measure of the firm’s market share to the investment control func-

tion. Both Bond et al. (2020) and Doraszelski and Jaumandreu (2021) stressed

1We use investment as a control variable, as in Olley and Pakes (1996).
2Identified using a method proposed by De Loecker and Warzynski (2012).
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Introduction and literature review

that in cases in which firms are price-setters, the variables in the control function

for productivity should include marginal costs. While these costs are unobserved,

they are closely related to markups. Moreover, many theoretical models (see,

e.g., Atkeson and Burstein, 2008; Burstein et al., 2020) predict that firm-level

markups are closely related to market shares.

In the empirical part of the paper we derive the demand and supply shocks

using a comprehensive panel of financial statements from firms based in Poland,

that covers more than 80% of employment and output in the enterprise sector.

This rich dataset allows us to generate findings that are representative from a

macroeconomic perspective. We show that although the standard deviations

of the distributions of the two shocks are not large, their tails are extremely

fat. The two distributions also differ in terms of skewness, as the productivity

shocks are approximately symmetrically distributed, whereas the demand shocks

are negatively skewed. Moreover, the demand shocks are persistent, while the

autocorrelation of the supply shocks is essentially zero.

Having derived the productivity and demand shocks, we use the local pro-

jection method pioneered by Jordà (2005) to estimate the dynamic responses of

variables related to firms’ reactions to these shocks. Local projection is a method

that allows for a direct estimation of impulse responses without the need to es-

timate and invert the full structural decision model. This characteristic of the

method makes it especially well-suited for use in microanalyses based on panel

data, as in such analyses, the estimation of a fully-blown simultaneous equations

model is challenging. Nonetheless, to our knowledge, this paper is the first to

use local projections based on a large microeconomic dataset, given that in the

existing literature the method has been applied only in multi-country macroeco-

nomic contexts, such as in Auerbach and Gorodnichenko (2013) or Jordà et al.

(2015). Moreover, to our knowledge our study is the first attempt to identify

dynamic impulse responses using a fully granular identification scheme.

Our empirical results indicate that the changes in firms’ outcomes are much

more persistent in response to productivity shocks than to demand shocks. De-

mand shocks result in short-lived increases in output, market share, productivity,

real wages, and markups; and in increases in investment and employment for a

couple of periods. Firms’ reactions to supply shocks are qualitatively similar,

but they are more persistent. Moreover, regardless of the nature of the shock,

the resulting increases of labor productivity only partially translate into higher

wages. We also use the estimated production function to construct the measures

5
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of prices and find that prices tend to increase temporarily after demand shocks,

and to decrease temporarily after the supply shock, as predicted by theoretical

models.

The studies that are the closest to ours are Pozzi and Schivardi (2016) and

Carlsson et al. (2021). The authors of the former study also used granular

measures of demand and supply shocks (using data for Italian manufacturing

firms that include prices, which implies a different identification scheme), and

found a limited pass-through of these shocks into firm’s output growth for the

current period. We extend their analysis to cover dynamic responses, which is

important, given that many of the firms’ characteristics are affected for a longer

period of time. Moreover, our analysis covers a wider set of variables of interest.

The authors of the latter study used data from Swedish manufacturing firms

that include prices. They applied a set of long-run restrictions in a firm-level

panel SVAR model to identify and examine the effects of demand and supply

shocks. While their analysis included the reactions of output and prices, they

concentrated on the responses of labor market flows to these shocks, and found

that demand shocks have a larger impact on employment, whereas technology

shocks have a larger impact on prices. Our work extends their analysis by using

a more comprehensive set of variables of interst and by broadening the sectoral

coverage of the analysis. Moreover, we use local projections as a more robust way

to measure dynamic short-run and long-run responses to firm-specific shocks.

The related literature has also measured the effects of supply and demand

shocks on market selection and firm turnover. The pioneering study of Foster

et al. (2008) found that both productivity and demand shocks affect firm sur-

vival. As we do not have direct information on firm bankruptcies, and the firm

exits we observe in our data may have occurred for other reasons, we do not

include this variable in the main analysis (although it still serves as a control

variable in the identification of technology shocks). Roberts et al. (2018) focused

on the role of firm-level demand and supply shocks in firms’ exports, whereas

Bachmann and Zorn (2020) used survey data to investigate the relative role of

demand and supply shocks in firms’ investment and output growth. Coviello

et al. (2021) found that Italian firms tend to adjust investments rather than

employment after experiencing negative demand shocks (identified as reductions

in local government spending). The reactions of employment and wages were

also studied by Cho (2018), who used matched firm-level financial data with a

dataset of transactions from the American Recovery and Reinvestment Act.

6
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Introduction and literature review

The rest of the paper is organized as follows. In the next section, we present

our identification strategy. We then discuss our data sources and their properties.

In the following section, we report the results of our estimation: i.e., the targeted

levels of inventories and the properties of the distributions of demand and supply

shocks. In the next section, we present our main results, which indicate how firms

respond to these shocks. In the final section, we offer some concluding remarks

and comments.

7
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Chapter 2

2 Identification

Our approach to the firm-level identification of demand shocks closely follows

that of Kumar and Zhang (2019), who used information on inventory changes

to derive the unexpected demand shocks faced by firms, and used the estimated

production function to measure supply (productivity) shocks. We modify their

approach to estimateing the production function in order to address the identifi-

cation issues recently discussed in the literature on firm-level markup estimation.

Assume the production function of firm i at time t is

Qit = exp (ω∗
it + �∗it)F (Vit, Kit), (1)

where Qit,Vit, Kit are the quantity produced, a vector of variable factors (e.g.,

labor, materials) and capital, respectively. ω∗
it is the firm’s structural (observed)

productivity, and �∗it is an unobserved, non-structural shock that contemporane-

ously affects production and productivity. We use lower-case letters to denote

the logarithms of the respective variables. We assume F (·) is Cobb-Douglas (in
Appendix B.1, we show our main results for the translog production function).

We assume the demand the firm faces follows a standard CES form:

Qs
it = P η

it exp (zit) , (2)

where Qs
it is the quantity demanded (and sold), Pit is the price firm i charges in

period t, η is the demand elasticity, and zit ∼ N (0, σ2) is an unexpected demand

shock.

We assume that when making decisions in period t, the firm knows its capital

stock Kit,productivity ωit and enters the period with some initial inventory stock

N b
it. At the beginning of the period, the firm chooses variable factors (Vit) and

output prices Pit that maximize its expected profits conditional on unobserved

productivity, �∗it, and demand shocks, zit. The firm may choose to produce a dif-

ferent amount of output than it expects to sell, while aiming to achieve some level

of targeted inventory stock λit. After production, the demand and productivity

shocks are observed. These shocks determine the firm’s sales and output levels,

and lead to end-of-period inventory stock N e
it and to the firm’s profits. There-

after, the firm chooses whether to exit, and (conditional on the exit decision)

how much to invest to build capital for the next period.

The timing implies that the firm faces uncertainty when deciding how much

8
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Identification

to produce, and the optimal choice may generate too much or too little inven-

tory compared to the targeted level. As inventories cannot be negative, output

shortages may occur. Thus, inventories contain useful information on demand

shocks, and we use this information for the identification of demand shocks.

Moreover, demand shocks can help us pin down productivity in the estimation

of the production function, which we will discuss later.

2.1 Demand shocks

In each period, the production sold needs to correspond to the output and in-

ventory changes, which implies:

Qit +N b
it = Qs

it +N e
it, (3)

where Qit and Qs
it are output and sales, respectively. The demand function

(2) can be decomposed into two components, expected and unexpected: Qs
it =

E (Qs
it|Iit) exp zit, where Iit is the firm’s beginning of the period information

set. The literature on inventory behavior (see, e.g., Ramey, 1991; Kahn, 1992,

among others) stresses that due to the factors like production smoothing and/or

stockout avoidance in the presence of demand uncertainty, it is optimal for firms

to maintain a targeted level of inventory stock. We assume that each firm i

at time t targets the end-of-period inventory stock, which is proportional to its

expected sales: λit = λiE (Qs
it|Iit). Kumar and Zhang (2019) stressed that this

assumption is satisfied in a large class of inventory models that predict a fixed

stockout rate as their optimal production strategy.

From the firm’s perspective, the available output Qit +N b
it need to be equal

to the expected sales plus the targeted inventory stock:

Qit +N b
it = E (Qs

it|Iit) + λit. (4)

Equation (4) can be solved for expected sales. Our assumption regarding the

targeted inventory level then allows us to express equation (3) as:

log

(
Qs

it

Qit +N b
it

)
= − log (1 + λi) + zit. (5)

Equation (5) can be used to identify both the targeted inventory level and de-

mand shocks, provided we have information on quantities, which is often absent
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in the available data. However, if inventories are priced in line with output prices

(which is the rule in practical accounting), the ratio in the LHS of equation (5)

can be measured in nominal terms:

log

(
Rs

it

Rit +RN b
it

)
= − log (1 + λi) + zit, (6)

where Rs
it is the value of the production sold in period t, Rit is the value of

the output, and RN b
it is the value of the initial inventories. Equation (6) shows

that the cross-firm variation of the average ratio of sales to the available output

(which is observed, and can be easily computed in the data) identifies the targeted

inventory level λi, whereas its within-firm (time) variation identifies the demand

shock zit.

In the empirical application, we approximate the firm-specific constant term

− log (1 + λi) with a function of firm characteristics, like in Kumar and Zhang

(2019). We use a third order polynomial of a firm’s size (measured as a log of

employment), the interaction of its size with its ownership status (state, private

and foreign), and a regional indicator. We also experimented with a firm’s fixed

effects in a panel regression, but it did not have a qualitative effect on the results.

The regression in (6) is estimated separately for 2-digit NACE sectors (in a

limited number of cases the sectors are aggregated to avoid convergence problems

with Tobit estimation that can occur in small samples). Moreover, in 7.4% of

the cases, the estimated measures of λi are outside the [0, 1] interval, and we

therefore fix them at the boundary values. Finally, the demand shocks zit are

calculated as the difference between the LHS of equation (6) and the firm-level

constant − log(1 + λi).

There is an additional issue with the above identification scheme. The non-

negativity of inventories implies that with a sufficiently high positive demand

shock, firms may stockout. Hence, we cannot identify the full distribution of

demand shocks with equation (5). This leads to two different kinds of problems.

First, the non-negativity of inventory implies that the LHS of (5) is truncated

at zero. Thus, to get consistent estimates of λj and the demand shocks one

would have to include the censoring in the estimation of (6), and apply a To-

bit estimation. Second, the truncation implies that we cannot recover the exact

magnitude of the demand shocks. When N e
jt = 0, then sales and available

output coincide; thus, the LHS of equation (5) is zero, and in these censored

(bounded) cases zit = log(1 + λi). Kumar and Zhang (2019) proposed the use
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of the normality assumption of the demand shock and the conditional expec-

tation as a measure of the magnitude of the demand shocks in censored cases.

As E(zit|N e
it = 0) =

� +∞
log(1+λj)

zit
φ(zit)

1−Φ(log(1+λj))
dzit, it follows that the conditional

demand shock (we call it ẑit) is:

ẑit =

⎧
⎨
⎩
log

�
Rs

it

Rit+RNb
it

�
+ log (1 + λi) for N e

jt > 0

σ√
2π

1
1−Φ(log(1+λi))

exp
�

− log2(1+λi)
2σ2

�
for N e

jt = 0
(7)

The logic and the approach applied here is similar to the Heckman correction

commonly used in quantitative social sciences to tackle the problem of selection

into the sample. We used the bounded shocks zit in the production function

estimation (the rationale is given in Kumar and Zhang, 2019). The conditional

shocks ẑit are used in the discussion on the properties of the shocks and the

impulse-response analysis.

2.2 Production function and supply shocks

The estimation of the production function is subject to a well-known endogeneity

problem (first noticed by Marschak and Andrews, 1944): namely, that the pro-

ductivity shock, which is unobserved by the econometrician, affects both output

and production factors, and introduces a bias into the parameter estimates. We

address this problem using the so-called control function, which was pioneered

by Olley and Pakes (1996). Our approach to estimating the production func-

tion and productivity also addresses the problems of unobserved firm-level prices

and imperfect competition, which were recently discussed by Bond et al. (2020),

Doraszelski and Jaumandreu (2021), and Ridder et al. (2021).

As Kumar and Zhang (2019) pointed out, the explicit tackling of the demand

helps to resolve the problem of unobserved prices. Most firm-level datasets in-

clude information on revenues, not on the quantities produced or sold. The

observed (log) revenues are given by rit = qsit + pit and together with the inverse

demand function from (2) can be expressed as

rit = (1 +
1

η
)qsit −

1

η
zit. (8)

Moreover, equation (3) gives the relationship between production and sold pro-

duction: qit = qsit+ log (1 + xit) where x =
RNe

it−RNb
it

Rs
it

is the ratio of the change in

inventory value relative to sales. By plugging this, together with the definition

11
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of production function (1), into (8), we get:

rit = (1 +
1

η
) logF (Vit, Kit)− (1 +

1

η
) log(1 + xit)− 1

η
zit + ωit + �it, (9)

where (log) revenues rit, (bounded) demand shock zit, a term related to invento-

ries log(1+xit) and production factors are all observed (or consistently estimated,

as in the case of demand shocks), whereas structural productivity ωit = (1+ 1
η
)ω∗

it,

non-structural productivity �it = (1+ 1
η
)�∗it, the production function parameters,

and η are unobserved, and thus need to be estimated.

Notice that the LHS of equation (9) are revenues rather than quantity pro-

duced, which solves the problem with unobserved individual prices (pit) that was

described by Bond et al. (2020). In other words, using the explicit assumption

regarding the demand the firm faces allows us to estimate output elasticities

rather than revenue elasticities.

A direct estimation of equation (9) yields biased estimates, as factor de-

mands Vit(ωit, ·) in any feasible timings of shocks and decisions depend on pro-

ductivity. We use the control function approach to get consistent estimates of

equation (9). We use labor, materials, and outsourcing as the variable factors:

logVit = [lit,mit, oit]
� (and capital as a state variable) and a Cobb-Douglas pro-

duction function F (·).3 The timing we discussed above implies that the invest-

ment iit depends on productivity, capital stock and the end-of-period inventories.

Moreover, it also depends on profits, which are, given a non-competitive environ-

ment and a firm-specific residual demand (as in our case), a function of markups.

While the estimation of markups is not our primary concern, as Doraszelski and

Jaumandreu (2021) pointed out, the non-degenerate distribution of markups

across firms implies that the estimation of (9) yields biased estimates of output

elasticities.

Assuming a monotone relationship between investment and productivity and

scalar observability (discussed extensively in Ackerberg et al., 2007), we can in-

vert the investment function (holding fixed arguments other than productivity)

and express productivity as: ωit = ωt(iit, kit, rn
e
it, zit, ·). Doraszelski and Jauman-

dreu (2021) showed that productivity should depend on the planned output (i.e.,

the expected output before the factor decisions are made), and used a proxy for

demand conditions to control for it. Our approach allows us to measure demand

3In the empirical analysis we used capital, labor, materials and outsourcing services as pro-
duction factors. We use the translog production function as a robustness check, see Appendix
B.1.
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of the normality assumption of the demand shock and the conditional expec-
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As E(zit|N e
it = 0) =
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zit
φ(zit)

1−Φ(log(1+λj))
dzit, it follows that the conditional

demand shock (we call it ẑit) is:

ẑit =

⎧⎨
⎩
log

�
Rs

it

Rit+RNb
it

�
+ log (1 + λi) for N e

jt > 0

σ√
2π

1
1−Φ(log(1+λi))

exp
�

− log2(1+λi)
2σ2

�
for N e

jt = 0
(7)

The logic and the approach applied here is similar to the Heckman correction

commonly used in quantitative social sciences to tackle the problem of selection

into the sample. We used the bounded shocks zit in the production function

estimation (the rationale is given in Kumar and Zhang, 2019). The conditional

shocks ẑit are used in the discussion on the properties of the shocks and the

impulse-response analysis.

2.2 Production function and supply shocks

The estimation of the production function is subject to a well-known endogeneity

problem (first noticed by Marschak and Andrews, 1944): namely, that the pro-

ductivity shock, which is unobserved by the econometrician, affects both output

and production factors, and introduces a bias into the parameter estimates. We

address this problem using the so-called control function, which was pioneered

by Olley and Pakes (1996). Our approach to estimating the production func-

tion and productivity also addresses the problems of unobserved firm-level prices

and imperfect competition, which were recently discussed by Bond et al. (2020),

Doraszelski and Jaumandreu (2021), and Ridder et al. (2021).
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rit = (1 +
1

η
)qsit −

1

η
zit. (8)

Moreover, equation (3) gives the relationship between production and sold pro-

duction: qit = qsit+ log (1 + xit) where x =
RNe

it−RNb
it

Rs
it

is the ratio of the change in

inventory value relative to sales. By plugging this, together with the definition
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shocks directly from the data, and we use these shocks to identify productivity

ωit(·). It is also consistent with the timing of decissions discussed above. More-

over, Bond et al. (2020) and Doraszelski and Jaumandreu (2021) showed that if

firms are price-setters, one of the control variables in ωit(·) should be the firm’s

(log) marginal costs. These costs are usually non-observable, but they can be

proxied by markups. Unfortunately, markups are also unobserved, and produc-

tion function estimation is often used to identify them. We use market share as

a proxy for marginal costs, given that in many economic models market share is

correlated with markups.4

Summing up, we assume ωit = ω(iit, kit, rn
e
jt, zit,msit, t), where msit is a

measure of market share. Plugging this into (9) yields the following equation,

which is usually refereed to in the literature as the first-stage equation:

rit = β∗
l lit + β∗

mmit + β∗
ooit + β∗

kkit − (1 +
1

η
) log(1 + xit)− 1

η
zit+

+ ω(iit, kit, rn
e
jt, zit,msit, t) + �it

= β∗
l lit + β∗

mmit + β∗
ooit − (1 +

1

η
) log(1 + xit) + ϕ(iit, kit, rn

e
jt, zit,msit) + �it,

(10)

where β∗
i = 1+η

η
βi and ϕ(·) are unknown, and we approximate them using a

polynomial of order three. Equation (10) gives consistent estimates of η, β∗
l , β

∗
m

and β∗
ooit. As was pointed out by Kumar and Zhang (2019) the introduction of

demand shocks into the first stage estimation resolves the collinearity problem

between factors and investment discussed in Ackerberg et al. (2015). The timing

of our model implies that demand shocks affect investment only, and introduces

independent variation between the two variables.

Similar to Olley and Pakes (1996), we can calculate: ϕ̂it = r̂it+(1+ 1
η̂
) log(1+

xit)−β∗
l lit−β∗

mmit−β∗
ooit, where r̂it are fitted values from the estimation of (10).

To identify βk, we assume that productivity follows a first-order Markov process:

ωit = g(ωit−1, χit−1) + ξit, where χit is an exit probability. The inclusion of

exit probability addresses the attrition bias in the measurement of productivity,

discussed in Olley and Pakes (1996), among others. The χit is measured as a

predicted exit probability from an estimated non-parametric logit function of

4See, e.g., Atkeson and Burstein (2008). Moreover, market share is a sufficient statistics for
market power in a Cournot model. A fixed effect panel regression of market share on a proxy
of marginal costs, which is discussed in section 2.4, yields a statistically significant coefficient,
equal to 0.12.
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investments, demand shocks, and third-order polynomials of production factors

as regressors (without the cross terms), all lagged by one period. The above

considerations imply the following relationship, referred to as the second-stage

equation:

ϕ̂it = β∗
kkit −

1

η̂
zit + g

(
ϕit−1 − β∗

kkit−1 +
1

η̂
zit−1, χit−1

)
+ ξit, (11)

where η̂ is an estimate derived from the first stage equation (10).

The g(·) function in equation (11) is also unknown and is approximated non-

parametrically using a third-order polynomial. We estimate equation (11) using

an iterative non-linear sum of squares estimation technique, which results in a

consistent estimate of β∗
k . This allows us to calculate productivity as follows:

ωit = ϕit − β̂∗
kkit +

1

η̂
zit, (12)

from which we calculate supply shocks as Δωit

In empirical settings we estimate the production function parameters sepa-

rately for 2-digit NACE sectors.5 As Ackerberg et al. (2015) observed, firm-level

datasets usually have considerable attrition, which affects productivity. In our

case, the exit rate for each year varies between 6% and 12%. We controll for the

exit probability, approximated by fitted values of logit, which is estimated using

production factors, the proxy variable (i.e., investments), and demand shock as

regressors, all lagged by one period. In both the first and the second stage regres-

sions, we apply the within transformation to take account of the panel structure

of the data.

2.3 Firm-level responses to supply and demand shocks

So far, we have discussed the identification scheme for demand and supply shocks.

Here, we focus on the identification of the firms’responses to these shocks. We use

the local projections method pioneered by Jordà (2005) in the vector autoregres-

sions context, which is flexible enough to accommodate non-linearities and the

panel structure of the data (see e.g., Auerbach and Gorodnichenko, 2013; Jordà

et al., 2015). This approach is especially well-suited to our granular data, as the

5We aggregated some sectors to address the convergence problems in the second step in
equation (11) and to avoid the problem of negative point estimates (insignificant) of capital
elasticity in a limited number of less capital-intensive sectors.
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estimation of a full microeconomic decision model, which is needed to calculate

impulse responses, is often impossible when using such data. The approach is

also very simple when using shocks that are already identified, as is the case in

our analysis.

We use the following set of regressions to derive impulse responses from the

granular data:

yit+h = αih + γt + βhshockit + �it+h, for h ∈ 0, 1, . . . , H − 1, (13)

where h denotes the horizon of a response, yit+h is the response variable, and

αih is the fixed effect. We include the time effects γt in the specification, as

they control for the business cycle, generating common movements of response

variables across a large fraction of firms. βh measures an impulse response at

a horizon h. It is directly estimated from the data; and, importantly, it makes

it easy to quantify the accuracy of the estimator. Moreover, this method is

more robust to misspecification, because it estimates a separate regression for

each horizon h, instead of using the same set of coefficients from the assumed and

potentially incorrect autoregressive specification for y in calculating the responses

analytically. In practice, to consistently estimate the covariance matrix, it is

crucial to account for heteroskedasticity and autocorrelation in panel models.

Thus, we 1) cluster errors at the firm level, and 2) use a consistent covariance

matrix estimator first introduced by Driscoll and Kraay (1998). Appendix B.2

shows the main results of our paper when the set of estimation equations in

(13) is augmented with a lagged dependent variable, as suggested in Olea and

Plagborg-Møller (2021).

2.4 Markups and proxies for prices

We identify markups using the methodology proposed by De Loecker andWarzyn-

ski (2012). We choose materials as a base factor, thus the markup μit is defined

as:

μit = βM
i

(
wM

it Mit

Rit

· exp(�it)
)−1

, (14)

where the expression in the parenthesis is a share of material costs wM
it Mit in the

firm’s revenues, corrected by the residual from the first-stage regression given in

equation (10).

Our dataset does not allow us to calculate the responses of prices to the
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demand and supply shocks, but we construct two proxies for prices, and use

them in the calculations of the impulse responses. We use the relationship

pit = log μit + mcit, where μit is defined in equation (14). The first proxy for

marginal costs mcit is unit labor costs, (see, e.g., Sbordone, 2002). Thus, the

proxy for a firm-level price becomes pit = log μit + logWL
it − log

(
Qit

Lit

)
. Second,

we use the cost function derived in the firm’s cost minimization problem with

the production function given in equation (1), and with a Cobb-Douglas specifi-

cation of the F (·) function. When we define the economies of scale of a firm i as

γi =
∑

j∈{K,L,M,O} β
j
i , then the cost function (measured up tu a constant) is:

Cit(Q,Ω,WK
it ,W

L
it ,W

M
it ,W

O
it ) ∝

(
Qit

Ωit exp(�it)

) 1
γi ∏

j∈{K,L,M,O}

(
W j

it

)β
j
i
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6We also calculate responses of a simpler version of the proxy for price, which is based on
wages, output and productivity only, hance we assume that prices of capital and materials are
not affected by the shock. The results are qualitatively similar.
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estimation of a full microeconomic decision model, which is needed to calculate

impulse responses, is often impossible when using such data. The approach is

also very simple when using shocks that are already identified, as is the case in

our analysis.

We use the following set of regressions to derive impulse responses from the

granular data:

yit+h = αih + γt + βhshockit + �it+h, for h ∈ 0, 1, . . . , H − 1, (13)

where h denotes the horizon of a response, yit+h is the response variable, and

αih is the fixed effect. We include the time effects γt in the specification, as

they control for the business cycle, generating common movements of response

variables across a large fraction of firms. βh measures an impulse response at

a horizon h. It is directly estimated from the data; and, importantly, it makes

it easy to quantify the accuracy of the estimator. Moreover, this method is

more robust to misspecification, because it estimates a separate regression for

each horizon h, instead of using the same set of coefficients from the assumed and

potentially incorrect autoregressive specification for y in calculating the responses

analytically. In practice, to consistently estimate the covariance matrix, it is

crucial to account for heteroskedasticity and autocorrelation in panel models.

Thus, we 1) cluster errors at the firm level, and 2) use a consistent covariance

matrix estimator first introduced by Driscoll and Kraay (1998). Appendix B.2

shows the main results of our paper when the set of estimation equations in

(13) is augmented with a lagged dependent variable, as suggested in Olea and

Plagborg-Møller (2021).

2.4 Markups and proxies for prices

We identify markups using the methodology proposed by De Loecker andWarzyn-

ski (2012). We choose materials as a base factor, thus the markup μit is defined

as:

μit = βM
i

(
wM

it Mit

Rit

· exp(�it)
)−1

, (14)

where the expression in the parenthesis is a share of material costs wM
it Mit in the

firm’s revenues, corrected by the residual from the first-stage regression given in

equation (10).

Our dataset does not allow us to calculate the responses of prices to the
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3 Data and measurement

Our annual data cover an 18-year period (2002-2019), and include the finan-

cial reports and balance sheets of almost all Polish enterprises with more than

nine employees (in full-time equivalent positions). The data are collected by

the Central Statistical Office, and comprise non-financial enterprises from the

agriculture, mining, manufacturing, construction, and market and non-market

service sectors (the latter covers only units from the enterprise sector), as well

as a limited number of enterprises in the agriculture sector.

The original data7 is an unbalanced panel of over 0.928 million observations

– i.e., more than 131,000 firms were observed for an average of seven years (see

Table 1) – while also containing missing observations. The original data cover

56% of all firms with 10+ employees that are registered8, and they cover 83%

of all employees of all registered firms with 10+ employees and 85% of the total

economy’s output. Thus, smaller firms are under-represented in our dataset.9

Table 1: Data trimming and coverage

initial demand final
No. of observations 928,168 855,924 772,275
Observation share 1.00 0.92 0.83
No. of firms 131,580 111,817 104,161
Firms share 1.00 0.85 0.79
Average spell 7.05 7.65 7.41
Output coverage 0.85 0.83 0.69
Employee coverage 0.83 0.79 0.78
Firm coverage 0.56 0.52 0.46

Source: own calculations and Eurostat data

We have trimmed the original data to render them usable for further analysis.

Around 15% of the firms (8.2% of observations) did not have any inventories

during the observation period. In these cases, it is impossible to apply the

identification scheme for the demand shocks. The properties of the trimmed

data are presented in the demand column in Table 1. The estimation of the

7A similar dataset with shorter time coverage and slightly lower firm coverage was used by
Gradzewicz (2021) in the analysis of investment spikes.

8The firm registry also contains firms that are not active. Moreover, some smaller firms,
mainly those employing fewer than 50 employees, decided not to fill out the compulsory form,
which is a statistical base for our data.

9The information on the total economy is taken from Eurostat databases with the acronyms:
‘bd 9bd sz cl r2’ and ‘nama 10 a64’.
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production function and the supply shocks is more demanding, and not all of

the firms in the sample reported usable data. The data on capital stocks and

investments are especially problematic, with relatively high shares of zeros or

missing values. Zeros are problematic, as we need to log most of the variables.

Thus, we decided to replace zeros with ones in the analysis of the production

function10 in order to use as much information from the data as possible.

The properties of the final sample for which both demand and supply shocks

are available are presented in final column in Table 1. The final dataset has 0.772

million records based on observations of more than 104,000 firms over an average

of 7.4 years. The firms in our final dataset represent 46% of all firms in Poland

with 10+ employees, 78% of the country’s employees and 69% of the economy’s

global output.

Nominal output is measured as total revenues from production and from

the sale of purchased goods. The dataset contains information on the stock of

inventories at both the beginning and the end of the period. The dataset also

allows us to use relatively disaggregated production factors: i.e., labor input is

measured as the firm’s employees, capital is measured as the firm’s tangible fixed

assets (buildings, land, machinery, and vehicles), and materials are measured as

the sum of purchases of materials used in the production process and purchases of

commodities for resale. We also use outsourcing outlays as a separate production

factor, observing that the share of this factor in total costs is rising, and these

costs are functionally different from materials. In order to construct real values

from nominal values (when needed, as our approach addresses the problem of a

lack of price data for the firm’s output), we use the respective deflators from the

sectoral national accounts provided by Eurostat. Capital is deflated using the

Eurostat sectoral data on values of fixed assets in the current and previous period

replacement costs, while investments (used as a proxy variable in the control

function approach) are deflated using the Eurostat sectoral data on gross capital

formation deflators. Market shares are calculated as a fraction of industry sales,

with the latter defined as a 4-digit NACE aggregation of sectoral sales (calculated

using the original data, before trimming).

10The unit in the data is 1000 PLN – approximately 255 USD – a very small amount
compared to the scale of even smaller enterprises.
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4 Estimation results

Before we proceed to our main findings, we present some intermediate results

from the estimation that are worth highlighting. They concern the targeted

inventory levels, the production function parameters, and the properties of the

shocks.

4.1 Targeted inventory levels

The estimation of equation (6) yields λ̂i, which is the targeted inventory level

(measured as a fraction of expected sales). The left panel of Figure 1 displays the

density of λi. For over 95% of the firms, the targeted inventory level is below 20%

of expected sales, and the dominant values are in the 12-13% range. The graph

presents the kernel densities of all firms, and specially of the non-constrained

firms (and thus only of the firms that did not fail to meet the demand for their

products). The left panel of Figure 1 suggests that the approximation to the

truncation problem presented in equation (7) does not affect the density of λi.

Figure 1: Density of targeted inventories λi and its relationship to the inventory-
to-output ratio
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Notes: inventories/output is defined as a mean of the firm-level ratio of the end-of-period

inventories and the output produced, both measured in nominal terms.

The right panel of Figure (1) shows the scatterplot of λi and its closest (albeit

imperfect) directly observed counterpart: i.e., the mean of the firm-level ratio

of the end-of-period inventories and the output produced, both measured in

nominal terms. There is no clear pattern between the two, and the correlation is
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significant but small (0.052). This indicates that the information that λi holds

is unique, and cannot be directly (and simply) derived from the data.

4.2 Production function parameters

Our baseline calculations assume the Cobb-Douglas production function with

four factors, estimated separately for the 2-digit NACE aggregations. The cross-

sector average labor elasticity is βl = 0.2, ranging from 0.013 in agriculture to

0.4 in the computer repairs. This range is commonly found in the literature.

The average elasticities of materials and outsourcing, βm = 0.26 and βo = 0.15,

respectively, sum up to 0.4, which is roughly in line with the values reported

in empirical studies. The capital elasticity βc = 0.023 is relatively small, on

average, although the variation is quite large, ranging from 0.001 in financial

services11 to 0.11 in coal mining. The graph with the densities of production

function parameters is presented in Figure A.1 in the appendix.

4.3 Properties of demand and supply shocks

The identification procedure outlined in chapter 2 allows us to simultaneously

derive demand and supply shocks. As we mentioned in the introduction, demand

and supply shocks are usually identified at the macroeconomic level, assuming

some distribution; usually a normal distribution. In the identification scheme,

we assume that at the firm level, shocks are (log)normally distributed. As the

distribution of firms approximately follows the power law, Gabaix (2011) showed

that the distributions of firm groupings and aggregate outcomes can have prop-

erties that differ from the properties of firm-level distributions. Below, we will

characterize the properties of the distributions of the demand and supply shocks

identified for all firms in our data.

Figure 2 presents the kernel densities, and Table 2 shows the moments and

the positional statistics of demand and supply shocks. The density of the de-

mand shocks is pictured for all firms (for which the calculation is feasible), and

for the subgroup of non-constrained firms. Interestingly, the shapes of the dis-

tribution of the two shocks differ considerably. The distribution of the demand

shocks exhibits negative skewness, whereas the supply shock distribution is al-

most symmetric. The distribution of the demand shocks is centered at zero while

11As the dataset excludes firms classified into the sector of financial institutions, all of the
firms in this sector are classified into the sector of enterprises.
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Figure 2: Densities of demand and supply shocks
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the supply shocks are centered at 4%, which indicates that demand shocks have

redistributive effects whereas supply shocks have both redistributive and growth

effects. Moreover, significant differences are also observed in both the dispersion

and the thickness of tails. The distribution of demand shocks is much more dis-

persed, less in terms of standard deviation (which is only 30% higher) than in

terms of kurtosis, which is more than 2.3 times higher than in case of supply

shocks. The mixture of both negative skewness and high kurtosis of demand

shocks is apparent in the positional statistics: i.e., while the 75th and 90th per-

centiles are quite similar across the distributions (and are even higher for supply

shocks), the 10th and 25th percentiles are significantly lower for demand shocks.12

There are also noticeable differences in the persistence of the two shocks,

measured as an autoregression coefficient in a pooled regression. The persistence

of supply shocks is low and is even negative, at -0.05; although it is significantly

different from zero (with a standard error equal to 0.001).13 By contrast, de-

mand shocks are much more persistent: i.e., the autoregression coefficient is 0.70

(0.001), and is thus slightly lower than that reported in Foster et al. (2008).

Additionally, the demand and supply shocks are almost orthogonal, as the corre-

12It is worth emphasizing that the magnitude of the demand shocks is relatively large, as
the size of about 10% of the negative demand shocks exceeds 12% of sales. A similar pattern
is found for the positive demand shocks.

13It is important to keep in mind that supply shocks are defined as Δωit, and, in turn, that
the productivity ωit is a highly persistent variable, with a persistence coefficient equal to 0.99.
For reference, the persistence of log real sales is 0.95. Foster et al. (2008) also found high
persistence in the levels of productivity.
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lation coefficient between the two is -0.04. These findings show our assumptions

regarding the different timings of the shocks are reasonable (a high correlation

would suggest that demand shocks as well as supply shocks affect inventory

changes). The correlation between the shocks calculated for each period sepa-

rately varies in time, and the time pattern of correlation is slightly anticyclical:

e.g., the correlation with the HP-adjusted log of sales is -0.24.

Table 2: Properties of demand and supply shocks

mean sd skewness kurtosis q10 q25 q75 q90

demand shock zit 0.00 0.17 -12.55 411.08 -0.12 -0.03 0.06 0.11
supply shock Δωit 0.04 0.13 2.37 179.48 -0.07 -0.01 0.08 0.14

The next section will focus on the responses of various variables, most no-

tably sales, to the identified shocks. Here, we investigate the relationship between

shock volatility and sales volatility. Our methodological approach does not al-

low us to perform the variance decomposition exercise. Instead, we use a simple

statistic: namely, the ratio of a standard deviation of a shock to a standard

deviation of sales.14 Figure 3 presents the cross-firm distributions of these mea-

sures. In most firms, the volatility of demand shocks constitutes a relatively

small fraction of the overall sales volatility: i.e., in half of the firms, the volatil-

ity of demand shocks is at most 3% of sales volatility; and in only 13% of the

firms, the volatility of demand shocks exceeds 10% of sales volatility. Combined

with a relatively large dispersion of demand shocks, these findings suggest that

there needs to be a substantial correlation between the volatility of sales and the

volatility of demand shocks. This is indeed the case here, as the slope of a simple

regression15 is 1.3 with a standard error equal to 0.009.

The relative volatility of supply shocks is generally higher (as presented in

Figure 3). In half of the firms, the volatility of supply shocks constitutes at most

7.5% of sales volatility; whereas for a large fraction (35%) of firms, the volatility

of supply shocks exceeds 10% of sales volatility. The regression of the volatility

of sales shocks on the volatility of sales yields a higher multiplier, 1.39 (0.01),

suggesting a higher pass-through of supply shock volatility to sales volatility.

14The volatility of shocks and the volatility of sales are positively related, as presented in
Figure A.2 in the appendix.

15It can be interpreted as a sort of pass-through coefficient that reflects how much output
volatility is, on average, generated by shock volatility.
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Figure 3: The ratio of shock volatility to sales volatility
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Chapter 5

5 Firm responses to shocks

After discussing the properties of demand and supply shocks, we now focus on

the dynamic responses of important variables to these shocks. As we discussed

in section 2.3, we use linear projections to identify an impulse-response function

(IRF) based on the data. We decided to calculate IRFs of a relatively large subset

of variables in order to gain a comprehensive picture of firm-level adjustments to

either a temporarily higher demand for the firm’s products or to an improvement

in the firm’s productivity.

We have chosen nine indicators as response variables. In addition to real sales,

we also present the results for market share, displaying the firm’s outcomes rel-

ative to the industry. Moreover, we calculate impulse responses for employment

and investments to gauge the extent to which firms are adjusting their factors of

production. We also show the behavior of labor productivity (log of value added

per person employed), and how it translates into real average wages (calculated

as the compensation of employees over employment). Additionally, we estimate

the responses of markups in order to check if the shocks trigger the short-run

changes in the firm’s monopoly power. As the shocks should induce the opposite

reactions of prices, we also calculate the impulse responses of both proxies for

prices, i.e., the ULC-based measure and the marginal-cost-based measure, which

are described in section 2.4.

5.1 Demand shocks

Figure 4 displays the responses of a set of variables to a one-period firm-level

demand shock. A positive demand shock triggers an increase in real sales. Inter-

estingly, although the reaction of sales to the shock is large on impact (see the

discussion in the previous chapter for a reference regarding the shock volatility),

it exhibits almost no persistence. Although sales are significantly higher even

five years after the shock, the size of the response is very small. The increase

in sales lifts the firm’s output more than that of its competitors, and the firm’s

market share rises, but only in the period of the shock. Higher sales in response

to the shock translate into higher employment. A substantial share of this ad-

ditional employment is probably short-term, as the level of employment drops a

year after the shock. Employment returns to its initial level very slowly, staying

slightly elevated even 10 years after the shock. This pattern indicates that at

least a portion of the initial increase in employment is permanent, most likely
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because employment protection, which is quite strong in Poland16, prevent firms

from reducing their employment levels.

Figure 4: Responses to demand shocks
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Notes: The dark and light gray areas represent 90% and 95% confidence intervals,

respectively. The horizontal axis is expressed in years.

A positive demand shock triggers the firms to increase its investments. The

firm’s purchases of capital goods remain elevated levels for about four years,

which increases the efficiency of its production processes. Hence, the firm’s labor

productivity (measured as real value added per employee) rises. It increases

substantially in response to the shock (technically, sales – and hance the value

16The various dimensions of the OECD’s Employment Protection Legislation index usually
rank Poland among the countries with relatively high labor protection.
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added – increase more than employment), and stays at an elevated level for

four years after the shock. But the increase in productivity is not permanent,

and productivity eventually returns to the pre-shock level. An increase in labor

productivity translates into higher real wages. However, higher productivity

only partially translates into wage increases. The short-term pass-through of

productivity into wages is close to 0.1 and declines thereafter. Higher wages

persist for the first year only, then return to the pre-shock level, and eventually

stay on a level slightly lower than in the period before the shock.

Following an expansion in the demand for a firm’s products, the markups

that the firm charges rise. While the initially large increase in markups is short-

lived, the markups are somewhat elevated three to six years after the shock, and

then return to the pre-shock level. Our observation that markups increase in

response to a positive demand shock is consistent with the findings of Nekarda

and Ramey (2020) who used macroeconomic data to identify markups and their

responses to demand shocks. Moreover, in line with sectoral oligopolistic models

of the economy (see especially Burstein et al., 2020), we find a positive correlation

between markups and market share, conditional on demand shocks.17

Finally, the evolution of both proxies for prices suggests that firm-level prices

tend to rise after a demand shock. However, the two measures do not provide a

consistent picture of the inertia of the price response. The ULC-based measure

indicates a sharp and immediate increase of the price, but the proxy stays on

a slightly elevated level up to seven years after the shock. In contrast, there

is a higher inertia of an increase in price, measured using marginal costs. The

mc-based proxy indicates prices are above the initial level up to five years after

the shock. Summing up, prices tend to increase temporarily after the demand

shock.

5.2 Supply shocks

We defined a supply shock as a one-period increase of the change in the TFP.

Figure 5 displays the path of TFP (Ωit) after the shock (estimated using the

local projection method). There are two observations that we need to highlight.

First, the shock does not permanently shift the path of TFP. Second, although

the persistence of the shock is very low, TFP remains at an elevated level for

about six years.

17The unconditional correlation of markups and market share is 0.005.
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Figure 5: Response of TFP, Ωit, to a supply shock
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The responses of our variables of interest to supply shocks are presented in

Figure 6. The first observation that emerges is that compared to the demand

shocks, the firms’ responses to supply shocks are much more persistent.

Sales increase after the supply shock, remain higher for about five years, and

then return to the pre-shock levels. The response of the market share closely

mirrors that of sales. The shock we identified and used in the estimation of

impulse responses does not affect permanently the level of TFP, thus sales and a

the market share return to the level before the shock. It suggests that the firm’s

initial efficiency improvement vanishes after six years, driving down its market

share and its sales.

A positive supply shock drives the demand for production factors, leading to

increases in both employment and investment. In contrast to demand shocks,

which triggered the highest employment response in the short run, there is al-

most no short-term change in employment after the supply shocks. However,

employment rises substantially in the second period, and then slowly returns

to the pre-shock level, reaching it seven years after the shock. It appears that

given the labor market frictions and lags associated with finding new employ-

ees, firms adjust relatively slowly to supply shocks. The changes in investments

are concentrated in the second and third periods after the shock, which is also

understandable given the time needed to adjust the firm’s capital stock. Impor-

tantly, both labor and investments rise after a productivity shock, indicating a
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Figure 6: Responses to supply shocks
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Labor productivity also rises after a supply shock, staying above the pre-shock

level for about five years. Likewise in the case of a demand shock, the increase

in labor productivity only partially translates into real wages, which are higher

only immediately after the shock. Moreover, there is a high dispersion of the

evolution of wages after the supply shock across firms, and the confidence bands

associated with the estimate are wide. The pass-through of productivity into real

wages is again close to 0.1. The incomplete pass-through of productivity shocks

to wages was also found by Guiso et al. (2005), who attributed it to risk-sharing
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evolution of wages after the supply shock across firms, and the confidence bands
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The responses of our variables of interest to supply shocks are presented in

Figure 6. The first observation that emerges is that compared to the demand

shocks, the firms’ responses to supply shocks are much more persistent.

Sales increase after the supply shock, remain higher for about five years, and

then return to the pre-shock levels. The response of the market share closely

mirrors that of sales. The shock we identified and used in the estimation of

impulse responses does not affect permanently the level of TFP, thus sales and a

the market share return to the level before the shock. It suggests that the firm’s

initial efficiency improvement vanishes after six years, driving down its market

share and its sales.

A positive supply shock drives the demand for production factors, leading to

increases in both employment and investment. In contrast to demand shocks,

which triggered the highest employment response in the short run, there is al-

most no short-term change in employment after the supply shocks. However,

employment rises substantially in the second period, and then slowly returns

to the pre-shock level, reaching it seven years after the shock. It appears that

given the labor market frictions and lags associated with finding new employ-

ees, firms adjust relatively slowly to supply shocks. The changes in investments

are concentrated in the second and third periods after the shock, which is also

understandable given the time needed to adjust the firm’s capital stock. Impor-

tantly, both labor and investments rise after a productivity shock, indicating a
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Firm responses to shocks

Figure 6: Responses to supply shocks
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Labor productivity also rises after a supply shock, staying above the pre-shock

level for about five years. Likewise in the case of a demand shock, the increase

in labor productivity only partially translates into real wages, which are higher

only immediately after the shock. Moreover, there is a high dispersion of the

evolution of wages after the supply shock across firms, and the confidence bands

associated with the estimate are wide. The pass-through of productivity into real

wages is again close to 0.1. The incomplete pass-through of productivity shocks

to wages was also found by Guiso et al. (2005), who attributed it to risk-sharing
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considerations.

Markups tend to rise immediately after the supply shock, and to decline

shortly thereafter. The adjustment is short-lived and four years after the shock

the markups return the the pre-shock level. Again, as predicted in the theo-

retical model of Burstein et al. (2020), markups tend to move in line with the

market share, at least in the short run. Moreover, our short-run results are again

consistent with the findings in Nekarda and Ramey (2020), who found using a

macroeconomic identification scheme that markups are procyclical, conditional

on TFP shocks. However, they found that the positive response of markups have

relatively more inertia.

Finally, our results provide quite consistent evidence on the behavior of prices

after the productivity shock. The ULC-based measure declines immediately after

the shock, and then for the next two years it returns to the pre-shock level.

The marginal-cost-based measure, which includes not only the information on

markups and wages, but also the costs of capital and intermediates, does not

change in the moment of the shock, and declines a year after the shock. The

prices stay on a reduced level up to five years after the shock and then return to

the pre-shock level. Summing up, prices tend to decrease temporarily after the

supply shock.

29



Narodowy Bank Polski32

Chapter 6

6 Conclusions

The aim of our study was 1) to identify shifts in the demand and productivity

schedules of individual firms; 2) to describe the properties of these shocks; and

3) to estimate the empirical granular dynamic responses of variables like sales,

employment, and investments to these shocks. We used a comprehensive dataset

from the Polish enterprise sector, that covers more than 80% of the whole output

and employment of the country’s enterprise sector. These data allowed us to draw

conclusions that are representative from a macroeconomic standpoint. However,

as our data do not contain information on physical output and prices, we used the

identification scheme of demand shocks proposed by Kumar and Zhang (2019).

It extracts the unexpected demand shocks from the time variation of inventories

and sales. The direct observation of demand shocks also helped us to address the

problematic issues in the production function estimation implied by the lack of

price data under imperfect competition. Thus, in the control function approach

to the estimation – which is discussed extensively in, for example Ackerberg et al.

(2015) – we controlled for the heterogeneity of demand changes, as recommended

by Doraszelski and Jaumandreu (2021). We identified the dynamic responses of

a set of variables to temporary demand and supply shocks using a projection

method pioneered by Jordà (2005). To our knowledge, our study is the first at-

tempt to identify dynamic impulse responses using a fully granular identification

scheme. Moreover, we use the information from the estimation of the produc-

tion function to construct the proxies for individual prices and we measure their

responses to the two shocks.

We showed that although the distributions of the two shocks have quite regu-

lar standard deviations, their tails are very fat. The two distributions also differ

in terms of skewness; i.e., the productivity shocks are approximately symmetri-

cally distributed, whereas the demand shocks are negatively skewed. Moreover,

the demand shocks are persistent, while the supply shocks are not. The empirical

analysis revealed that the changes in firms’ outcomes in response to productivity

shocks are much more persistent than those in response to demand shocks. De-

mand shocks result in short-lived increases in output, market share, productivity,

real wages, and markups; and to increases in investments, and employment for

a couple of periods. Firms’ reactions to supply shocks are in most cases quali-

tatively similar, but they are more persistent. Our analysis showed that prices

tend to increase temporarily after demand shocks, and to decrease temporarily
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Conclusions

after the supply shock, as predicted by theoretical models and found by Pozzi

and Schivardi (2016) in a firm-level analysis. Moreover, regardless of the nature

of the shock, the resulting increases of labor productivity only partially translate

into higher wages.

The differences we found in the persistence of both shocks and responses to

shocks are consistent with the results of many macroeconomic models (in which

the persistence of the technology shocks is usually assumed in the calibration,

like, e.g., in the canonical DGSE models, see Smets and Wouters, 2003). The

positive reactions of output and demand for production factors we observed are

also consistent with the findings of many macroeconomic models. In addition,

other observations we made are consistent with assumptions that are frequently

found in macroeconomic models. In particular, our finding that markups increase

after a productivity shock suggests that prices are sticky, as rising productivity

does not fully translate into prices. By contrast, the limited impact of both

productivity and demand shocks on wages we found is consistent with nominal

wage rigidities. Moreover, the sluggish response of employment to both types of

shocks points to the importance of labor market frictions, which are, for example,

emphasized in search models.
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Appendices

A Additional graphs

Figure A.1: Cobb-Doglas elasticities (cross-sectional dispersion)
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Appendix B

B Robustness of the main results

B.1 The identification of supply shocks

The identification scheme used to detect shocks in the data leaves more room

to maneuver in choosing details of econometric procedure for productivity shock

than for demand shocks. Here, we present our main results limited to the impulse

responses of the most important variables (due to space considerations), with

important changes in the identification scheme of the supply shock: 1/ using

the translog production function instead of Cobb-Douglas, and 2/ using the

Perpetual Inventory Method (PIM) to measure capital (in both cases, holding

the other elements of the identification scheme constant and identical to the

baseline case).

In order to check the robustness of our results for the shape of the production

function we assume an unrestricted translog with all squared and cross terms for

all production factors. The parameters are estimated separately within 1-digit

NACE groupings, using fixed effects (within transformation) in the identification.

Most of the parameters are identified in the first step of the control function

approach, with only linear and square capital terms left for the second stage.

The first column of Figure B.1 shows the impulse responses of log employment,

wages, and sales to supply shocks identified using the translog function, compared

with the benchmark Cobb-Douglas case in the second column. The comparison

shows that our main results are robust to the shape of the production function,

which can be attributed to the high correlation of both measures of supply shocks

(0.897). Table B.1 shows that most of the properties of the distributions of shocks

in the translog case are similar to the baseline Cobb-Douglas case.

Table B.1: Robustness - properties of supply shocks

supply shock mean sd skewness kurtosis q10 q25 q75 q90
baseline 0.04 0.13 2.37 179.48 -0.07 -0.01 0.08 0.14
translog 0.03 0.11 3.90 342.82 -0.05 -0.01 0.07 0.12
PIM 0.03 0.12 0.53 68.05 -0.07 -0.01 0.08 0.13

Notes: Cobb-Douglas is used in the baseline; translog – unrestricted coefficients translog

production function; PIM – Cobb Douglas production function with capital calculated using

the perpetual inventory method.

Using the perpetual method requires: 1/ a starting point for capital (we

use the value of capital in the first period for the company in the data), 2/
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Appendix B

depreciation rates (we use separate depreciation rates for buildings, machinery,

and vehicles that follow Fraumeni, 1997), and 3/ a long and continuous time

series of investments. We tried to minimize the loss of observations generated by

short spells of missing data due to companies being out of the sample for one or

two years. In these cases we imputed investments using the mean values from

the adjacent periods. Despite these efforts, the effective number of observations

of capital decreased by 17%, and the effective number of supply shocks identified

declined by 13.2%. The correlation of supply shocks identified using the PIM

definition of capital with the supply shocks in the baseline case proved to be high,

at 0.854. Table B.1 indicates that most of the properties of the distributions of

the two types of shocks were similar. The third row of Figure B.1 shows that

the impulse responses hardly changed. Thus, our main results are robust to the

change in the definition of capital.

B.2 Controlling for the lagged dependent variable

A recent analysis by Olea and Plagborg-Møller (2021) showed that controlling

for the lagged dependent variable leads to a more robust inference in applied

local projections. This means that a set of equations defined in (13) becomes:

yit+h = αih + γt + ρyit−1 + βhshockit + �it+h, for h ∈ 0, 1, . . . , H − 1, (17)

The augmentation is particularly relevant with highly persistent data and

lag-augmented local projections with normal critical values that are asymptot-

ically valid with both stationary and non-stationary data, and that also over

a wide range of response horizons. Figure B.2 compares the impulse response

functions in the baseline case with the impulse response functions derived with

lag-augmented local projections, and shows that the general shape of responses

is not affected by the assumptions of the estimation method.
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Figure B.1: Robustness: responses of log employment, log wage and log sales
to supply shocks in the benchmark Cobb-Douglas case versus translog and PIM
capital
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Notes: Cobb-Douglas is used in the baseline; translog – unrestricted coefficients translog

production function; PIM – Cobb Douglas production function with capital calculated using

the perpetual inventory method.
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Figure B.2: Robustness: responses of log employment, log wage and log sales to
supply and demand shocks in the baseline specification and in the specification
augmented for the lagged dependent variable
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