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Abstract

We analyze an economy populated by a sequence of generations who decide over their

consumption and investment in human capital of their immediate descendants. The

objective of the paper is twofold: firstly, to identify the impact of strategic interac-

tions between consecutive generations on the time path of human capital accumula-

tion. To this end, we characterize the Markov perfect equilibrium (MPE) in such an

economy and derive the sufficient conditions for its existence and uniqueness. We

then benchmark our results against an optimal but time-inconsistent policy which

abstracts from strategic interactions between generations. We prove analytically

that human capital accumulation is unambiguously lower in the “strategic” case

than in the optimal, “non-strategic” case.

The second objective of the current paper is to work out a functional parametriza-

tion of the model, suitable for obtaining clear-cut results on the monotonicity of the

(unique) Markov perfect equilibrium policy and the optimal policy. We then carry

out a sensitivity analysis under this parametrization, thereby assessing quantita-

tively the magnitude of discrepancies between human capital accumulation paths

whether strategic interactions between consecutive generations are taken into ac-

count or not.

Keywords: human capital, intergenerational interactions, Markov perfect equi-

librium, stochastic transition, constructive approach

JEL codes: C73, I20, J22
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Non-technical summary

Non-technical summary

Human capital is nowadays widely acknowledged to be one of the most important

factors determining the differences in wealth across nations as well as their growth

potential. The variable is thus present in a wide range of micro- and macroeconomic

theories, including those taking an explicitly intergenerational planning perspective.

In such theories, various forms of altruism are proposed to deal with the empirically

grounded intergenerational correlations and linkages in wealth, human capital, social

status, and occupation choice. In particular, strategic interactions across generations

should be especially apparent in relation to schooling.

If one assumes that within each generation, people derive their utility from –

among other things – the utility of their children, then there logically follows an

infinite-horizon planning problem: the parents care for children who care for grand-

children who care for great-grandchildren, etc. A markedly different situation might

however be encountered if the parents care for their children’s consumption directly:

it is then crucial if there is a way for all consecutive generations to credibly commit

to their future choices. If not, then there must exist some finite cut-off point be-

yond which the consumption of further generations does not matter for the original

generation’s utility. And it is precisely the inclusion of such a finite cut-off which

takes us from the standard dynastic optimization frameworks to models where the

planning problem becomes strategic. As the natural first step in such a procedure,

this article considers strategic interactions between two consecutive generations.

From the human capital theory perspective, the investigations of the current arti-

cle are based on the presumption that dynamic paths of human capital accumulation

might markedly differ whether there are strategic interactions across generations in-

volved or not (or equivalently, whether there is full or only partial commitment to

future generations’ choices). Basic economic intuition tells us that if strategic as-

pects come into play, or if commitment is only partial, the willingness to invest in

future generations’ human capital should be lower. This paper inspects under which

conditions the omission of strategic interactions can be a serious shortcoming of the

non-strategic approaches and presents one way to alleviate it.

6

From the technical perspective, the point of departure of the current article

is the following. The original generation (i.e. the parents) would like to choose

their consumption level and the level of investment in human capital of their chil-

dren optimally which requires considering the possible options the children will face

in the subsequent period – when they will themselves become independent utility

maximizers. The parents would therefore like to embed their children’s optimiza-

tion problems in their own and thus become “leaders” of such an intergenerational

strategic game. Unfortunately, this procedure cannot be carried out directly: since

the children’s optimization problem embeds the optimization problem of their own

children, and so forth ad infinitum, we end up with an infinite series of embedded

strategic games. The problem with applying usual fixed-point arguments here is

that the strategic component of the embedded games creates a “vicious circle” of

strategy space which has obstructed the development of economic theories in this

vein for many years. This issue has been resolved only recently, thanks to the crucial

technical developments of Amir (1996a,c) and Nowak (2006). The current article

applies these developments to the case of intergenerational interactions in human

capital accumulation.

Given this background, the contribution of the current paper to the literature is

twofold. First, we identify the impact of strategic interactions between consecutive

generations on the human capital accumulation path as well as its steady state in

an economy populated by a sequence of generations allowed to decide over their

consumption levels as well as over the levels of investment in human capital of their

immediate descendants. We are able to obtain clear-cut results here by computing

the Markov perfect equilibrium (MPE) human capital investment policy at the ag-

gregated level and benchmarking the time-consistent MPE result against the optimal

but time-inconsistent policy which neglects strategic interactions across generations.

In this regard, we provide an analytical proof that, other things equal, human capital

accumulation is unambiguously smaller in the strategic model than in the dynastic

model. Secondly, we work out a functional parametrization of the model, suitable

for obtaining clear-cut results on the monotonicity of the (unique) Markov perfect

equilibrium policy and the optimal policy. We then carry out a sensitivity analysis

7
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under this parametrization, thereby assessing quantitatively the magnitude of dis-

crepancies between human capital accumulation paths whether strategic interactions

between consecutive generations are taken into account or not.
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1 Introduction

Human capital is nowadays widely acknowledged to be one of the most important

factors determining the differences in wealth across nations as well as their growth

potential. The variable is thus present in a wide range of micro- and macroeconomic

theories, including those taking an explicitly intergenerational planning perspective.

In such theories, various forms of altruism (cf. Abel and Warshawsky, 1987; Arrondel

and Masson, 2006; Bertola, Foellmi, and Zweimueller, 2006) are proposed to deal

with the empirically grounded intergenerational correlations and linkages in wealth,

human capital, social status, and occupation choice. In particular, strategic inter-

actions across generations should be especially apparent in relation to schooling: on

the one hand, a substantial fraction of investment in accumulating human capital of

an individual is made by her parents, while on the other hand, the parents cannot

fully anticipate what use will be eventually made of these personal assets (Becker

and Tomes, 1986; Galor and Tsiddon, 1997; Lochner, 2008; Loury, 1981; Orazem

and Tesfatsion, 1997).1

If one assumes that within each generation, people derive their utility from –

among other things – the utility of their children, then there logically follows an

infinite-horizon planning problem: the parents care for children who care for grand-

children who care for great-grandchildren, etc. A markedly different situation might

however be encountered if the parents care for their children’s consumption directly.

It is then crucial if there is a way for all consecutive generations to credibly commit

to their future choices. If not, we are led to frameworks where the optimization

problem becomes strategic. The impact of such strategic interactions is not clear a

priori. On the one hand, their presence and the resulting lack of commitment may

lower each generations’ investment. But on the other hand, as noted by Bernheim

and Ray (1987), higher investment today is needed to obtain the same result in

1The classic works within the human capital accumulation literature, such as Mincer (1958)

or Ben-Porath (1967), focus primarily on the other component of investment in education which

is individuals’ own purposeful educational spending motivated by the expected increases in their

future earnings. The Ben-Porath’s model specification is however already flexible enough to allow

for intergenerational transmission of human capital as well.
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terms of tommorow’s consumption and utility.

The contribution of the current paper to the literature is twofold. First, we

identify the impact of strategic interactions between consecutive generations on the

human capital accumulation path as well as its steady state in an economy populated

by a sequence of generations allowed to decide over their consumption levels as well

as over the levels of investment in human capital of their immediate descendants. We

are able to obtain clear-cut results here by computing the Markov perfect equilibrium

(MPE) human capital investment policy at the aggregated level and benchmarking

the time-consistent MPE result against the optimal but time-inconsistent policy

which neglects strategic interactions across generations.2 Second, we work out a

functional parametrization of the model, suitable for obtaining clear-cut results on

the monotonicity of the (unique) Markov perfect equilibrium policy and the optimal

policy. We then carry out a sensitivity analysis under this parametrization, thereby

assessing quantitatively the magnitude of discrepancies between human capital ac-

cumulation paths whether strategic interactions between consecutive generations are

taken into account or not.

As far as the economic subject of this paper is concerned, our results include an

analytical proof that, other things equal, the equilibrium human capital accumu-

lation policy is unambiguously (pointwise) smaller in the strategic model than the

optimal policy in a dynastic model. To provide this result with a quantitative edge,

we also run a series of numerical exercises quantifying how large the differences be-

tween the optimal human capital accumulation decisions could be whether strategic

interactions are present or not.3 Hence this paper not only puts in question the

estimates obtained from models neglecting such intergenerational interactions, but

2In Section 6.3, we also compare these two setups to a model similarly frequently used in

the literature, i.e. the one of joy-of-giving altruism (used by, among numerous others, Abel and

Warshawsky (1987); Artige, Camacho, and de la Croix (2004); Bruhin and Winkelmann (2009)).
3Additionally, we also show numerically that the joy-of-giving altruism model differs markedly

from the strategic and the dynastic model, insofar the implied optimal decisions cannot be unam-

biguously compared against each other: for most parameter values, joy-of-giving altruism implies

more human capital investment than the strategic model, but for a range of specific parametric

choices, this relationship is reversed.

10
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can also be viewed as a methodological contribution to the discussion on intergener-

ational transfers, distribution of wealth, and the corresponding public policy in the

class of OLG models initiated by Barro (1974) and continued in a series of papers by

Laitner (see Laitner (1979, 2002) and references therein), Bernheim, Shleifer, and

Summers (1985), and – specifically in the context of human capital accumulation –

by Drazen (1978).

The remainder of the article is structured as follows. Section 2 discusses the re-

lated literature, both from the substantive, and the methodological–technical angle.

In Section 3 we lay out our basic model with strategic interactions and present the

principal theoretical results. In Section 4 we compare this model with a benchmark

model where no strategic interactions are allowed. Section 5 provides an illustrative

numerical example for our calculations of the preceding chapters. Section 6 discusses

the role of strategic interactions in shaping human capital investment decisions. Sec-

tion 7 concludes.

2 Related literature

The topic of intergenerational commitment and strategic interactions has been widely

studied in the economic literature, both of normative and of positive nature. The

former group of articles includes, among others, works by Dasgupta (1974b), Das-

gupta (1974a) and Lane and Mitra (1981). According to Dasgupta (1974b), the

Nash equilibrium is a concept corresponding to the universalizability criterion of

distributive justice discussed by Rawls, while Lane and Mitra (1981) study Pareto

(in)efficiency of a Nash equilibrium in a class of games of intergenerational altru-

ism. The “positive” literature on strategic interactions between generations includes

papers by Leininger (1986), Bernheim and Ray (1987), Bernheim and Ray (1989),

Amir (1996c) and Nowak (2006). In deterministic as well as stochastic settings,

these authors prove existence of a (Markov, Lipschitz continuous) perfect equilib-

rium in this class of games. Finally, the literature on hyperbolic discounting offers

one more motivation for studying economic settings where consecutive generations

(or current and future selves) play strategically in consumption decisions (see Phelps

11
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and Pollak (1968), Peleg and Yaari (1973) or more recently Laibson (1997), Bern-

heim, Ray, and Yeltekin (1999) and Krusell and Smith (2003)). Based on these

three considerations – altruistic preferences, hyperbolic discounting, and distribu-

tive justice – in our paper we let each generations’ utilities be defined over their

own and the successive generation’s consumption, leading to strategic interactions

and necessitating an application of the (Markov perfect) Nash equilibrium concept

rather than just an optimal planning solution.

The commitment problem in intergenerational setups is also closely related to

the issue of time (in)consistency of optimal plans which has been studied in detail by

economists ever since the work of Kydland and Prescott (1977). Although Kydland

and Prescott’s pathbreaking contributions focused primarily on strategic interactions

between the private economy and the government while the current paper deals with

strategic interactions between private agents only, the conceptual and numerical

problems are the same for both approaches.

From the human capital theory perspective, the investigations of the current

article are based on the presumption that dynamic paths of human capital ac-

cumulation might markedly differ whether there are strategic interactions across

generations involved or not (or equivalently, whether there is full or only partial

commitment to future generations’ choices). Basic economic intuition tells us that

if strategic aspects come into play, or if commitment is only partial, the willingness

to invest in future generations’ human capital should be lower. The neglect of in-

tergenerational interactions, habitually done in the literature, should thus lead to a

(potentially large) overestimation of the strength of the postulated intergenerational

human capital transmission mechanisms. This paper inspects and measures under

which conditions this can be a serious shortcoming of the non-strategic approaches

and presents one way to alleviate it.

From the technical perspective, the point of departure of the current article

is the following. The original generation (i.e. the parents) would like to choose

their consumption level and the level of investment in human capital of their chil-

dren optimally which requires considering the possible options the children will face

in the subsequent period – when they will themselves become independent utility
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maximizers. The parents would therefore like to embed their children’s optimiza-

tion problems in their own and thus become “leaders” of such an intergenerational

strategic game. Unfortunately, this procedure cannot be carried out directly: since

the children’s optimization problem embeds the optimization problem of their own

children, and so forth ad infinitum, we end up with an infinite series of embedded

strategic games. The problem with applying usual fixed-point arguments here is

that the strategic component of the embedded games creates a “vicious circle” of

strategy space which has obstructed the development of economic theories in this

vein for many years (see e.g. Strotz (1955) and Phelps and Pollak (1968)). The

(Markov perfect) equilibrium existence results for a deterministic incarnation of the

game has been obtained by Bernheim and Ray (1983) and Leininger (1986), and for

the stochastic setting – thanks to Amir (1996a,c) and Nowak (2006). These cru-

cial technical developments are however based on topological arguments, existential

rather than constructive in nature, and thus without additional results regarding

uniqueness of the analyzed equilibrium, their usefulness in applied work is uncer-

tain.

In this regard, we should also mention the methods for showing equilibrium

existence in the class of dynamic games proposed by Kydland and Prescott (1980)

and Abreu, Pearce, and Stacchetti (1990) – the latter frequently abbreviated as APS.

In this line of research, existence results come almost for free, but unfortunately

almost no equilibrium characterization is available, not to mention uniqueness of

the analyzed equilibria or computational possibilities4.

There is one more line of theoretical contributions closely related to our paper.

Klein, Krusell, Quadrini and Ŕıos-Rull in a series of papers on time-consistent taxa-

tion propose an intuitive numerical technique for equilibrium computation by value

function iteration. Specifically, Klein and Ŕıos-Rull (2003) and Klein, Vincenzo,

4Consider for example a study of a Markovian equilibrium set for a distorted competitive econ-

omy a la Coleman (1991). If you use APS, what you can conclude existence of values that can be

supported by a measurable selection from the Markovian equilibrium correspondence. If you use

the direct approach a la Mirman, Morand, and Reffett (2008), you can provide e.g. existence of a

unique smooth Markov equilibrium or a complete lattice of locally Lipschitz Markovian equilibria.
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iteration of the value function under a linear-quadratic approximation. There are,

however, two problems with applications of this approach to the our case. Firstly,

no controlled accuracy or error bounds are provided for these approximations. Sec-

ondly and more importantly, their method is based on differentiability of the policy

function and connected strict concavity and twice differentiability of the (infinite

horizon) value function which, perhaps apart from a few cases of specific functional

forms representing preferences and technology, is very problematic to be shown (see

e.g. the assumptions in Santos (1994), Montrucchio (1998) necessary for policy func-
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managed to solve the first mentioned problem by proposing a characterization of the

time-consistent policy in terms of first order conditions (the so-called Generalized

Euler Equation), the second argument, to our best knowledge, remains unsolved.

Hence, as for our human capital bequest economy, there are no results available

yet on the uniqueness or differentiability of the Markov perfect equilibrium (see

Kohlberg (1976) and Amir (1996c) for discussion), we cannot apply the methods

proposed by Klein, Krusell, Quadrini and Ŕıos-Rull for a constructive study.

Given the drawbacks of all discussed methods, the only suitable technical frame-

work for the study of our human capital bequest economy with strategic interactions

is – to our best knowledge – the one offered by Balbus, Reffett, and Woźny (2008).

The reason is that these authors not only obtain the equilibrium uniqueness result

(within an appropriate set of Lipschitz continuous policies) but also put forward a

constructive numerical algorithm for computing the Markov perfect equilibrium in

games of intergenerational altruism, based on iterating the best response map. The

algorithm guarantees uniform convergence, thanks to which we are able to solve the

technical problem of computing error bounds. The technique due to Balbus, Reffett,

and Woźny (2008) comes, however, at a cost as well. Specifically it is restrictive in

5Klein, Vincenzo, and Ŕıos-Rull (2005) analyze a two country model and hence not only need

to solve a taxation commitment problem but also find a within-period Nash equilibrium of a two

country game.
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terms of requiring a specific form of stochastic transition of the state variable – here,

the human capital stock. Two main features of this transition are the following: (i)

it is defined in terms of distributions over the next period state space parameterized

by the a current period investment and current state and (ii) it “separates” decisions

from distributions by requiring a certain functional form of the mixing functions.

Such stochastic transition has already been widely used by Amir (1997) in optimal

growth theory; by Amir, Nowak and coauthors6 in the directly related context of

dynamic games; as well as (at somehow more general level) by Magill and Quinzii

(2009) in the general equilibrium framework.

On the one hand our assumption on the shape of the stochastic transition func-

tion is quite general but critical for the results on uniqueness and construction of the

equilibrium. On the other hand, it also has two main drawbacks. First, it requires

a certain level of “mixing” (see assumption 2 for the details), and specifically cannot

be reduced to the deterministic case. The second drawback is that there are no

known ways yet to prove existence of appropriate price systems decentralizing firms’

allocations in a general equilibrium context under stochastic technologies expressed

by such probability distributions.

Recently Magill and Quinzii (2009) have proposed, however, a way to decentralize

the optimal allocation in a (two-period) economy with technology being a probability

distribution (over a finite number of states), rather than an Arrow-Debreu “state of

nature” production function. By generalizing the Magill and Quinzii approach, one

could thus obtain a counterpart of the first welfare theorem for our model, and con-

sequently derive its decentralization both in the case of the optimal, “non-strategic”

human capital allocation, and of the “strategic” Markov perfect equilibrium alloca-

tion (together with the result due to Lane and Leininger (1986), generalized to a

stochastic setting). Although such a characterization could be obtained in principle,

there are no known ways to show existence of appropriate (recursive and integrable)

prices of Arrow securities in an economy with an infinite horizon, uncountable num-

ber of states, and a stochastic production technology. Hence, it is not the strategic

interactions that constitute the problem for a decentralization in our setup, but the

6See Amir (2002), Nowak (2007) and references therein.
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stochastic formulation of technology and the uncountable set of states. Finally, let

us mention that this should not be considered as a serious drawback of our results,

since by the mentioned counterpart of the first welfare theorem, both of our analyzed

allocations can actually appear on real markets.

The crucial contributions of this paper are therefore purely theoretical. The lack

of immediate empirical applications of our theory comes from the fact that the model

developed herein, though based on sound microeconomic foundations, is admittedly

simplified. We are therefore convinced that it would be a stark exaggeration to

calibrate it in its current form in order to draw quantitative implications aimed at

discriminating between competing theories of human capital accumulation based on

empirical evidence. Another reason for this limitation are mentioned problems of

a general equilibrium decentralization of both the strategic and the dynastic op-

timization frameworks. Being aware of these theoretical and technical difficulties,

our model should nevertheless be considered as an important first step: it is the

first model of human capital accumulation which integrates and rigorously calcu-

lates fully-specified strategic interactions between consecutive generations into an

otherwise standard framework.

3 The model

3.1 Setup

Our model economy is populated by an infinite sequence of generations whose sizes

are equal and normalized to unity. Each generation t = 0, 1, 2, . . . is characterized

by the common utility function U , taking values U(ct, ct+1), where ct is the total

consumption of generation t. We assume U to be time-separable7 and take the form:

U(ct, ct+1) = u(ct) + v(ct+1). The consumption set is Y = [0, Ȳ ] where Ȳ ∈ R+.

7We analyze the case of time-separable utility functions only because the monotone methods

used in Theorem 2 rely on this assumption heavily and because this assumption has been exten-

sively used in literature. The case of non-time separable utility functions could also be analyzed

nonetheless. This would require the use of results on mixed monotone operators. See Guo, Cho,

and Zhu (2004) and the applications in Balbus, Reffett, and Woźny (2008).
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The unique consumption good is produced using technology f which requires two

kinds of inputs: (i) time devoted to work l̂t, and (ii) human capital ht. The set

H = [0, H̄], where H̄ ∈ R+, represents all possible levels of human capital. We

neglect all physical capital accumulation in our basic model. Human capital, on the

other hand, is accumulated using technology g̃ taking as inputs: (i) the current level

of human capital ht, and (ii) time devoted to human capital accumulation 1− l̂t.

Technically, our assumptions on the considered economy are the following:

Assumption 1 Let:

• u, v : Y → R be increasing, continuously differentiable, and satisfying limc→0 u
(c) =

limc→0 v
(c) =∞; (∀c ∈ Y, c > 0) u(c) <∞ and (∀c ∈ Y, c > 0) v(c) <∞.

Moreover, let u and v be strictly concave and such that u(0) = v(0) = 0,

• f : H×[0, 1]→ Y be strictly concave with respect to the second argument, twice

continuously differentiable with finite partial derivatives, and satisfying (∀l̂ ∈
[0, 1]) f(0, l̂) = 0, (∀h ∈ H) liml̂→0 f


2(h, l̂) = ∞. Furthermore, assume that

(∀h ∈ (0, H̄]) f(h, ·) and (∀l̂ ∈ (0, 1]) f(·, l̂) are strictly increasing functions.

Within each generation, the household chooses its consumption level ct to max-

imize utility U , that is:

max
ct

u(ct) + v(ct+1). (3.1)

The neglect of physical capital accumulation requires assuming full depreciation as

well. All output is thus immediately consumed: ct = f(ht, l̂t), where l̂t ∈ [0, 1].
Human capital, on the other hand, is accumulated according to the equation:

ht+1 = g̃(ht, 1 − l̂t), where g̃ : H × [0, 1] is a continuous, strictly positive function.
Substituting the relations specified above into (3.1) and ignoring time subscripts we

obtain the following household maximization problem:

max
l̂∈[0,1]

u(f(h, l̂)) + v(f(g̃(h, 1− l̂), l̃)). (3.2)

The problem (3.2) features two endogenously determined variables which are taken

as given by the original generation: their own human capital level h ∈ H and the

labor choice of the next generation l̃ ∈ [0, 1].
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summarized by the maximization problem (3.2):

• each household lives for one period and derives utility from its own consump-
tion, u(ct), and the consumption of its immediate successor, v(ct+1);

• each household lives for two periods but chooses the fraction of time devoted to
the production of consumption goods and the fraction of time devoted to the

accumulation of human capital of the subsequent generation in the first period

only. Its consumption in the second period is chosen by the next generation,

and thus is only indirectly influenced by the level of human capital left to the

next generation.

3.2 The concept of Markov perfect equilibrium

The primary objective of this paper is to analyze closed-loop Markov perfect equi-

libria (MPE) of the economy specified above. To this end, we must now introduce

some new notation. Namely, by l ∈ L, where L = {l : (0, H] → [0, 1], l ∈ C}8,

we will denote the Markov strategy of the next generation. Moreover, we shall let

0 ∈ L denote the constant zero function, and let 1 ∈ L denote a constant function

whose values are always equal to 1. We shall also introduce the correspondence

D : L×H → [0, 1] defined by

D(l, h) = arg max
l̂∈[0,1]

u(f(h, l̂)) + v(f(g̃(h, 1− l̂), l(g̃(h, 1− l̂)))). (3.3)

The best response of the current generation for next generation’s strategy l ∈ L is

therefore a selection l(·) from D(l|·).
We adopt the following definition of MPE:

Definition 1 A Markov perfect equilibrium (MPE) of the economy is a selection9

l∗ : (0, H̄]→ [0, 1] from D(l∗|·).
8By C we denote the set of all continuous functions with the given domain and codomain.
9We are leaving l∗(0) undefined here, since under Assumptions 1 and 2, as we shall show later,

it is not single-valued. The economic justification is the following: having no human capital one

produces, consumes and invests nothing, but since there is a no disutility of work, any level of l

could be optimal.
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The MPE can be interpreted either as a subgame perfect Nash equilibrium of

an sequential intergenerational game or as a time-consistent policy which is equally

well suited for any generation. Since the time horizon of the economy is infinite, we

concentrate on stationary Markov policies, i.e. such that in each period, the same

function of the state variable h is applied.10

3.3 Introducing stochastic transition

Unfortunately, as discussed by Leininger (1986) and others, the standard way of

obtaining results on the existence and uniqueness of MPE in similar setups – as fixed

points of some self maps – is obstructed by the so-called “vicious circle” of strategy

space. The problem occurs when trying to construct appropriate sets of admissible

strategies/policies. Even very strong assumptions made on the strategy/policy of

the subsequent generation cannot guarantee that the best response to that strategy

would belong the the same strategy/policy space.

The crucial step required to solve this problem is to break the deterministic

links between subsequent generations (see Amir, 1996c; Nowak, 2003). In our case,

this would correspond to assuming that the transition (human capital accumulation

function) g̃ be stochastic. Hence, we shall let G(·;h, 1 − l) be the distribution of

human capital in the subsequent period, parametrized by the current human capital

level h and the time investment in education, 1− l.

The introduction of stochastic factors in human capital accumulation is thus

motivated primarily by technical reasons. Such factors have sound economic mo-

tivation, though. Indeed, (i) heredity involves randomness: the unobservable skill

levels are not inherited from one’s parents deterministically; (ii) human capital is not

homogenous: it is technology-specific and thus up-front investment in it might (but

might not) be ineffective (Chari and Hopenhayn, 1991), depending on the future

pattern of technological progress; (iii) the motivation of children to learn is endoge-

nous (Orazem and Tesfatsion, 1997). All these factors taken together make it clear

10If the horizon of the economy were finite, we could solve for non-stationary policies by backward

induction.

19

The MPE can be interpreted either as a subgame perfect Nash equilibrium of

an sequential intergenerational game or as a time-consistent policy which is equally

well suited for any generation. Since the time horizon of the economy is infinite, we

concentrate on stationary Markov policies, i.e. such that in each period, the same

function of the state variable h is applied.10

3.3 Introducing stochastic transition

Unfortunately, as discussed by Leininger (1986) and others, the standard way of

obtaining results on the existence and uniqueness of MPE in similar setups – as fixed

points of some self maps – is obstructed by the so-called “vicious circle” of strategy

space. The problem occurs when trying to construct appropriate sets of admissible

strategies/policies. Even very strong assumptions made on the strategy/policy of

the subsequent generation cannot guarantee that the best response to that strategy

would belong the the same strategy/policy space.

The crucial step required to solve this problem is to break the deterministic

links between subsequent generations (see Amir, 1996c; Nowak, 2003). In our case,

this would correspond to assuming that the transition (human capital accumulation

function) g̃ be stochastic. Hence, we shall let G(·;h, 1 − l) be the distribution of

human capital in the subsequent period, parametrized by the current human capital

level h and the time investment in education, 1− l.

The introduction of stochastic factors in human capital accumulation is thus

motivated primarily by technical reasons. Such factors have sound economic mo-

tivation, though. Indeed, (i) heredity involves randomness: the unobservable skill

levels are not inherited from one’s parents deterministically; (ii) human capital is not

homogenous: it is technology-specific and thus up-front investment in it might (but

might not) be ineffective (Chari and Hopenhayn, 1991), depending on the future

pattern of technological progress; (iii) the motivation of children to learn is endoge-

nous (Orazem and Tesfatsion, 1997). All these factors taken together make it clear

10If the horizon of the economy were finite, we could solve for non-stationary policies by backward

induction.

19



The model

WORKING PAPER No. 71 19

3

The MPE can be interpreted either as a subgame perfect Nash equilibrium of

an sequential intergenerational game or as a time-consistent policy which is equally

well suited for any generation. Since the time horizon of the economy is infinite, we

concentrate on stationary Markov policies, i.e. such that in each period, the same

function of the state variable h is applied.10

3.3 Introducing stochastic transition

Unfortunately, as discussed by Leininger (1986) and others, the standard way of

obtaining results on the existence and uniqueness of MPE in similar setups – as fixed

points of some self maps – is obstructed by the so-called “vicious circle” of strategy

space. The problem occurs when trying to construct appropriate sets of admissible

strategies/policies. Even very strong assumptions made on the strategy/policy of

the subsequent generation cannot guarantee that the best response to that strategy

would belong the the same strategy/policy space.

The crucial step required to solve this problem is to break the deterministic

links between subsequent generations (see Amir, 1996c; Nowak, 2003). In our case,

this would correspond to assuming that the transition (human capital accumulation

function) g̃ be stochastic. Hence, we shall let G(·;h, 1 − l) be the distribution of

human capital in the subsequent period, parametrized by the current human capital

level h and the time investment in education, 1− l.

The introduction of stochastic factors in human capital accumulation is thus

motivated primarily by technical reasons. Such factors have sound economic mo-

tivation, though. Indeed, (i) heredity involves randomness: the unobservable skill

levels are not inherited from one’s parents deterministically; (ii) human capital is not

homogenous: it is technology-specific and thus up-front investment in it might (but

might not) be ineffective (Chari and Hopenhayn, 1991), depending on the future

pattern of technological progress; (iii) the motivation of children to learn is endoge-

nous (Orazem and Tesfatsion, 1997). All these factors taken together make it clear

10If the horizon of the economy were finite, we could solve for non-stationary policies by backward

induction.

19

that treating investment in education as a lottery where future payoffs depend on

stochastic factors is quite reasonable.11

The following assumption on the stochastic transition follows Amir (1996c)

and Nowak (2006).

Assumption 2 (Technology) The distribution G satisfies the following condi-

tions:

• ∀h ∈ H, G(0|h, 0) = 1,

• ∀h ∈ H, l ∈ [0, 1),

G(·|h, 1− l) = (1− g(h, 1− l))δ0(·) + g(h, 1− l)λ(·|h),

where

• g : H × [0, 1] → [0, 1] is strictly concave with respect to the second argument,

twice continuously differentiable, satisfies the condition: (∀l ∈ [0, 1]), g(0, 1 −
l) > 0,

• (∀l ∈ [0, 1)) g(·, 1−l) and (∀h ∈ (0, H̄]) g(h, ·) are strictly increasing functions,

• (∀h ∈ H) liml→1 g

2(h, 1− l) =∞ and (∀h ∈ H, l < 1), 0 < g2(h, 1− l) <∞,

• λ(·|h) is a family of Borel transition probabilities on (0, H̄] that is stochastically

decreasing and continous with h,

• δ0 is a probability measure concentrated at zero.

The crucial implications of this specification are as follows: with probability

1 − g(h, 1 − l), the next generation’s human capital will be zero, indicating that

the investment in it has been completely ineffective. The economic interpretation

of this assumption can be twofold. First, it may capture human capital-dependent

11It should be noted that we rule out all systematic human capital externalities from non-relatives

here (Ben-Porath, 1967; Rangazas, 2000) and assume that children’s human capital is created from

parental human capital, education effort, and stochastic factors only.
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mortality: the next generation’s zero human capital is then a synonym for not sur-

viving until adult age. Such a setup is in agreement with evidence: indeed, children

of better educated parents face a generally lower risk of dying young. Second, this

may also relate to the argument that skills are often technology-specific and that

technology might change fast enough to make all previously acquired skills obsolete.

With probability g(h, 1 − l), i.e. conditional on survival and non-obsolescence of

skills, human capital is however drawn from a distribution λ which does not depend

l. This relates to the stochastic heredity assumption, coupled with the random

motivation of children to learn.

Assuming that the next generation follows a Markov strategy l ∈ L, the maxi-

mization problem (3.2) augmented by the stochastic transition takes the form:

max
l̂∈[0,1]

u(f(h, l̂)) +



H

v(f(y, l(y)))G(dy;h, 1− l̂). (3.4)

Under Assumptions 1 and 2, the maximand of (3.4) (for a given h ∈ (0, H̄])
is strictly concave and differentiable with respect to l̂ on (0, 1). Furthermore, the

unique optimal labor supply level l∗ solves ζ(l∗, h, l) = 0 whenever interior, where

ζ is defined as:

ζ(l, h, l) := u(f(h, l))f 
2(h, l)− g2(h, 1− l)



H

v(f(y, l(y)))λ(dy|h). (3.5)

A MPE of the economy with stochastic transition is then a function l which solves

ζ(l(h), h, l) = 0 for all h ∈ (0, H̄].

3.4 Characteristics of the closed-loop MPE

Let us now comment on the possibilities of showing existence of a MPE in the given

class of functions. In the paper most closely related to this one, Balbus, Reffett,

and Woźny (2008) have constructed an operator whose fixed points are MPE of an

economy with intergenerational altruism (see also Bernheim and Ray (1987)). The

operator is defined implicitly on the set of Lipschitz continuous functions belonging

to L by an appropriate first order condition. The authors find that it suffices to show

continuity of such an operator, and existence of a MPE follows by the Brouwer fixed

21

point theorem. In our particular case, however, their method fails due to the non-

uniqueness of the maximizer in equation (3.5) for h = 0. Specifically, for any l ∈ L

the optimal l∗(0) = [0, 1]. Notice also that (∀h ∈ H, h > 0), l∗(h) = 1 is the best

response to l = 0. Hence, we cannot apply those results directly.

However before showing existence we may present some of equilibrium basic

properties. They will be helpful in our further analysis.

Theorem 1 (Characteristics of MPE) Suppose that a MPE exists.

Then:

• the set of Markov perfect equilibria of the economy has no ordered (in a point-

wise order) elements in L.

• If f 
12(·, ·) ≤ 0 and g12(·, ·) ≥ 0, then l∗ is strictly decreasing on (0, H̄) wherever

interior.

Proof of Theorem 1: Follows immediately from observing that our best response

operator is decreasing (in the partial pointwise order). See Balbus, Reffett, and

Woźny (2008) for the details. The second statement of the theorem follows from

the observation that for the given assumptions, the objective function in (3.4) has

strictly increasing marginal returns. An application of the theorem due to Amir

(1996b) and Edlin and Shannon (1998) on strict comparative statics completes the

proof.

The first assertion results from the fact that an appropriate operator defined

derived from the first order conditions, whose fixed points are MPE of the economy,

is decreasing. The second assertion follows from established theorems on strict

monotone comparative statics (Amir (1996b); Edlin and Shannon (1998)) of optimal

solutions to maximization problems featuring a submodular function on a lattice.

Please observe that the reverse to the second assertion need not hold. Generally,

even if f 
12(·, ·) ≥ 0 and g12(·, ·) ≤ 0, the optimal labor supply policy l∗ need not

increase with h due to the strictly decreasing marginal utility.
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The methods used to show uniqueness of the MPE in the setup of Balbus, Reffett,

and Woźny (2008) can be used in our current model as well, disregarding the fact

that in the current case, for any l ∈ L the optimal l∗(0) = [0, 1]. To state this, we

shall rearrange the first order condition of maximization in (3.4) for h ∈ (0, H̄] as:

ξh(l̂) :=
u(f(h, l̂))f 2(h, l̂)

g2(h, 1− l̂)
=



H

v(f(y, l(y)))λ(dy|h). (3.6)

The function ξh(0, 1] → R+, with ξh(1) = 0, introduced just above, captures the

marginal utility of consumption coupled with marginal labor productivities in both

sectors. Obviously function ξ is continuously differentiable, strictly decreasing, and

invertible with continuously differentiable inverse.

Let us also define an operator B on P = {l̄ : (0, H̄]→ [0,∞)} such that for any
h ∈ (0, H̄], B satisfies:

Bl̄(h) =



H

v(f(y, ξ−1
h (l̄(y))))λ(dy|h). (3.7)

The operator B is going to be central to the reasoning in the remainder of the paper:

it will be used both in the proofs of our theoretical results and in their numerical

implementation. Its importance stems from the fact that by definition, the fixed

point of B satisfies (3.6).12

The next theorem gives the conditions under which B has a unique fixed point

in P . This finding is equivalent to showing under which conditions the MPE of the

considered economy, l∗ exists and is unique. By Ef
x we denote the partial elasticity

of a function f with respect to x: Ef
x =

∂f(x)
∂x

x
f(x)
.

Theorem 2 (Existence and uniqueness) Let Assumptions 1 and 2 be satisfied.

Assume in addition that there exists an r ∈ (0, 1) such that for all h ∈ H the

following holds:

(∀x > 0) r ≥

−Ev

f(h,ξ−1
h (x))

Ef,2

ξ−1
h (x)

E
ξ−1
h (x)

x


. (3.8)

Then there exists a unique MPE l∗ ∈ L of the economy under study.

12For a more detailed justification, see Coleman (2000) and Balbus, Reffett, and Woźny (2008).
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23

The methods used to show uniqueness of the MPE in the setup of Balbus, Reffett,
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Proof of theorem 1: The result follows by applying theorem 5 (see Guo, Cho, and

Zhu (2004)). We firstly show that B maps a cone of measurable functions into itself

and is decreasing. Secondly we show that under condition 3.8 operator B satisfies

geometric condition in 5. For the details of a similar proof the reader is referred to

Balbus, Reffett, and Woźny (2008).

Theorem 2 provides the sufficient conditions for the existence and uniqueness of a

fixed point of a MPE of the considered economy. Moreover one can straightforwardly

compute it using a Picard iterative procedure.

The mathematical intuition behind Theorem 2 is the following: since the fixed

point operator B is decreasing, it may have multiple, unordered fixed points. The

condition in Theorem 2 asserts, however, that this operator is “convex” (see Guo and

Lakshmikantham (1988) for details) or – in other words – it is a “local contraction”.

This property is sufficient for existence of a unique fixed point. Economically, the

condition (3.8) (“convexity” or “local contraction”) could be interpreted in terms

of partial elasticities: it requires that the product of elasticities of v, f and ξ−1
h

cannot exceed unity, i.e. that the percentage change in next-period utility v resulting

from a one per-cent change in labor supply l cannot be “too high”. Otherwise, it

could be profitable to deviate from the given policy – the loss in instantaneous

consumption sub-utility u would be more than compensated by the gain in next-

period consumption sub-utility v – indicating that the given policy could not be an

equilibrium any more.

We leave the questions on existence and number of equilibria when condition (3.8)

is not satisfied for further work. Instead, we shall now present our workhorse example

which will be used in our subsequent numerical exercises.

Example 1 Let U(c1, c2) = cγ11 + δcγ22 , f(h, l) = hα1lβ1. Furthermore, take any g

satisfying Assumption 2 with α1, β1, γ1, γ2 ∈ (0, 1) and δ ∈ (0, 1]. If 1 > β1(γ1 + γ2)

then there exists a unique MPE in L.

Proof of Example 1: Observe that is this case elasticities of the utilities u and v

as well as f are constant. Hence we may apply the Guo, Cho, and Zhu (2004) theo-
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rem (see Theorem 5 in the Appendix) directly to the (decreasing) operator B which

can be calculated explicitly for the given functions.

4 Human capital dynamics with and without stra-

tegic interactions

In the current section, we shall compare the time-consistent Markov perfect policy

l∗, discussed in the previous section, to the outcomes obtained within a similar setup

which does not however allow for strategic interactions across generations.

To this end, we will focus on optimal (or full-commitment) policies. Specifically,

we will consider a setup where individuals live for two periods and decide over the

consumption (or labor supply) in the first period taking the consumption function

of the next generation as given. In the other interpretation, individuals live for just

one period, but each subsequent generation fully commits to some level of l and

reveals it to the previous generation.

In order to attain comparability of utilities across different periods, we assume

that v(·) = δu(·) where δ ∈ (0, 1) is a discount factor. Finally, to find the optimal
policy (generally time inconsistent) benchmark for our Markov perfect (time con-

sistent) policy, obtained in the previous section, we shall solve the following social

planner’s problem:

max
{ct}

∞
t=0

δtu(ct) +
∞

t=1

δtv(ct) = 2max
{ct}


u(c0)

2
+

∞
t=1

δtu(ct)


.

Observe that the similar optimization problem can be obtained when we refor-

mulate the model such that individuals do not derive utility directly from their

successors’ consumption, but from their utility. Hence, generations’ choices can be

embedded in the first generation’s optimization problem, ultimately yielding a “dy-

nastic”model with infinite-horizon planning where each generation t > 0 maximizes∞
τ=t δ

τ−tu(cτ ).
13

13Provided that the transversality condition holds: limτ→∞ Λτhτ = 0 (where Λ is the shadow

25



Human capital dynamics with and without strategic interactions

N a t i o n a l  B a n k  o f  P o l a n d24

4

rem (see Theorem 5 in the Appendix) directly to the (decreasing) operator B which

can be calculated explicitly for the given functions.

4 Human capital dynamics with and without stra-

tegic interactions

In the current section, we shall compare the time-consistent Markov perfect policy

l∗, discussed in the previous section, to the outcomes obtained within a similar setup

which does not however allow for strategic interactions across generations.

To this end, we will focus on optimal (or full-commitment) policies. Specifically,

we will consider a setup where individuals live for two periods and decide over the

consumption (or labor supply) in the first period taking the consumption function

of the next generation as given. In the other interpretation, individuals live for just

one period, but each subsequent generation fully commits to some level of l and

reveals it to the previous generation.

In order to attain comparability of utilities across different periods, we assume

that v(·) = δu(·) where δ ∈ (0, 1) is a discount factor. Finally, to find the optimal
policy (generally time inconsistent) benchmark for our Markov perfect (time con-

sistent) policy, obtained in the previous section, we shall solve the following social

planner’s problem:

max
{ct}

∞
t=0

δtu(ct) +
∞

t=1

δtv(ct) = 2max
{ct}


u(c0)

2
+

∞
t=1

δtu(ct)


.

Observe that the similar optimization problem can be obtained when we refor-

mulate the model such that individuals do not derive utility directly from their

successors’ consumption, but from their utility. Hence, generations’ choices can be

embedded in the first generation’s optimization problem, ultimately yielding a “dy-

nastic”model with infinite-horizon planning where each generation t > 0 maximizes∞
τ=t δ

τ−tu(cτ ).
13

13Provided that the transversality condition holds: limτ→∞ Λτhτ = 0 (where Λ is the shadow

25

To see it formally (from t > 0), consider an economy populated by a sequence of

generations each represented by a single household with preferences U(ct, Vt+1) over

its consumption ct and its immediate descendants’ utility Vt+1. Since all generations’

utility functions are the same, their choices can be embedded in the first generation’s

optimization problem. The solution to this maximization problem corresponds to a

stationary solution to an infinite-horizon dynastic model with stochastic transition

in human capital levels: max{cτ}
∞

τ=t δ
τ−tu(cτ ), where δ ∈ (0, 1) is a discount factor.

For t > 0 the first order condition reads:

u(f(h, l(h)))f 2(h, l(h)) = δg2(h, 1− l(h))



H

V (y)λ(dy|h), (4.9)

where V (h) is the Bellman’s value function defined as

V (h) = max
l̂∈[0,1]


u(f(h, l̂)) + δ



H

V (y)G(dy;h, 1− l̂)


. (4.10)

Standard arguments of dynamic programming (see e.g. Stokey, Lucas, and Prescott

(1989)) guarantee that under our assumptions the functional equation (4.10) has a

unique solution V and that the solution corresponds to a function l(h) which solves

V (h) = u(f(h, l(h))) + δ


H
V (y)G(dy, h, 1− l(h)).

The first order condition (4.9) guarantees that the marginal utility of consump-

tion of the current generation, acquired thanks to an extra unit of time devoted to

work, is exactly equal to the expected marginal cost in terms of utility lost by the

next generation because of having marginally less human capital. Having calculated

(for t > 0) the optimal policy l∗ : H → [0, 1] in such a setup, one only needs to

add the optimal decision for the first generation l0, obtained as a solution to the

maximization problem:

max
l0


u(f(h0, l0))

2
+ δ



H

V (y)G(dy, h0, 1− l0(h0))


.

Since the optimal setup rules out all strategic aspects of the decision process, the

full-commitment Markov policy for the dynastic optimization economy is (generally)

price of human capital). If the set of admissible human capital levels H is bounded, as it is in our

case, this transversality condition holds for sure.
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work, is exactly equal to the expected marginal cost in terms of utility lost by the

next generation because of having marginally less human capital. Having calculated

(for t > 0) the optimal policy l∗ : H → [0, 1] in such a setup, one only needs to

add the optimal decision for the first generation l0, obtained as a solution to the

maximization problem:

max
l0


u(f(h0, l0))

2
+ δ



H

V (y)G(dy, h0, 1− l0(h0))


.

Since the optimal setup rules out all strategic aspects of the decision process, the

full-commitment Markov policy for the dynastic optimization economy is (generally)

price of human capital). If the set of admissible human capital levels H is bounded, as it is in our

case, this transversality condition holds for sure.
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not a MPE of an economy with strategic interactions.14 It turns out, however, that

equilibrium policies for our basic model with strategic interactions and the optimal

policy abstracting from such interactions can be directly compared:

Theorem 3 (On comparing equilibria) Let lMPE be a MPE of an economy with

strategic interactions with v(·) = δu(·), and lR be the optimal stationary policy of a

dynastic economy with utility u. Then lMPE(h) > lR(h) for all h ∈ (0, H̄].

Proof of Theorem 3: Consider two families of functions parametrized by h ∈
(0, H̄], denoted as Sh,Zh : [0, 1]→ R+, such that for a given h ∈ (0, H̄],

Sh(l) = u(f(h, l)) + δg(h, 1− l)



H

u(f(y, lMPE(y)))λ(dy|h)

and

Zh(l) = u(f(h, l)) + δg(h, 1− l)



H

V (y)λ(dy|h),

where V is the value function corresponding to the Bellman equation (4.10).

We would like to show that for any given h, S 
h(l) > Z 

h(l) in their whole domain.

To this end, first note that

u(f(h, lMPE(h))) ≤ max
l∈[0,1]

u(f(h, l)) <

< max
l∈[0,1]

{u(f(h, l)) + δg(h, 1− l)



H

V (y)λ(dy|h)} = V (h). (4.11)

From the above reasoning, it immediately follows that


H

u(f(y, lMPE(y)))λ(dy|h) <


H

V (y)λ(dy|h) (4.12)

14A related class of models frequently encountered in the human capital accumulation literature

uses the framework of joy-of-giving altruism. In such models, generations do not derive their utility

directly from their successors’ consumption, but are instead interested in providing them with the

means allowing for consumption. In the context of human capital accumulation it means that their

utility function is u(ct)+v(ht+1). Hence, the decisions made by the next generation do not matter

for the utility of the current generation. Unfortunately, although widely used in the literature,

the “joy-of-giving” altruism utility function and hence the whole model is not directly comparable

to the ones studied in this paper. Hence, we only briefly discuss the implications of joy-of-giving

altruism models in the context of our argument in Section 6.3.
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and hence:

S 
h(l) = u(f(h, l))f 

2(h, l)− δg2(h, 1− l)



H

u(f(y, lMPE(y)))λ(dy|h) >

u(f(h, l))f 
2(h, l)− δg2(h, 1− l)



H

V (y)λ(dy|h) = Z 
h(l), (4.13)

which completes the first part of the proof.

Now let us impose another function T : {1, 2} × [0, 1] → R+ on top of that,

such that T (1, l) = Z(l) and T (2, l) = S(l). From inequality (4.13) we have that

T 
2(2, l) > T 

2(1, l), and thus T has increasing marginal returns with i = 1, 2. For

i = 1, 2, the function T (i, ·) defined on the lattice [0, 1] is thus supermodular. Hence,
by the theorem due to Amir (1996b) and Edlin and Shannon (1998), we obtain that

(∀h ∈ (0, H]) lMPE(h) = argmaxl∈[0,1] T (2, l) > argmaxl∈[0,1] T (1, l) = lR(h).

Theorem 3 asserts that equilibrium human capital investment is unambiguously

lower in an economy with strategic interactions than in an economy using the opti-

mal policy. The intuition behind this result is straightforward: the optimal invest-

ment policy under full commitment must exceed the equilibrium investment policy

when only partial commitment between consecutive generations is possible. Indeed,

under the optimal policy, the dynastic head from generation t will take into account

not only the consumption of the following generation t + 1, but of all generations

from t onwards. She will therefore be willing to save more for the future than a

generation t member of the strategic model: the latter person is myopic and wishes

to save for her children but not for her grandchildren.

Theorem 3 provides a formal argument determining the direction of the bias

incurred when a baseline model with strategic interactions is replaced with its non-

strategic counterpart.15

15Understandably, a similar clear-cut relationship does not exist between the strategic model and

the model with joy-of-giving altruism. Even though each numerical example has been prepared

so that direct comparisons could be possible, we find that for different parameter configurations,

different results are possible. Usually it is the strategic model which puts more weight on immediate

consumption and less on human capital accumulation; sometimes the result is reversed, though.
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5 Computation of the MPE

The objective of the current section is to compute numerically the equilibrium policy

l∗ for an economy with strategic interactions and to analyze the equilibrium dynam-

ics of human capital accumulation given certain functional assumptions on u, v, f

and G. To facilitate economic interpretation, we will concentrate on iso-elastic util-

ity and Cobb-Douglas production functions here. We will then benchmark these

numerical results against the corresponding one obtained within the non-strategic

(dynastic) model discussed in the previous section.

Example 2 Extending Example 1, let us additionally assume that g(h, 1 − l) =
1

H̄α2
hα2(1− l)β2 where α2, β2 ∈ (0, 1). The function ξh is then given by:

ξh(l) =
β1γ1

β2

H̄α2hα1γ1−α2
lβ1γ1−1

(1− l)β2−1
. (5.14)

Furthermore, we assume that β2 = β1γ1.

The last equality assumption has been made for the sole purpose of analytical

tractability: it is only when β2 = β1γ1 that the ξh mapping is analytically invertible.

Relaxing it increases the computational burden significantly but does not overturn

any of our results. If β2 = β1γ1, we obtain:

ξ−1
h (l̄) =

l̄
1

β2−1h
α1γ1−α2

1−β2 H̄
α2

1−β2

1 + l̄
1

β2−1h
α1γ1−α2

1−β2 H̄
α2

1−β2

. (5.15)

Assuming furthermore that the distribution λ is uniform on H, the MPE policy

can be found as l∗(y) = ξ−1
h (l̄(y)) where l̄ is found as the fixed point of the operator

B given by

Bl̄(h) =
δ

H̄

 H̄

0

yα1γ2


l̄(y)

1
β2−1h

α1γ1−α2
1−β2 H̄

α2
1−β2

1 + l̄(y)
1

β2−1h
α1γ1−α2

1−β2 H̄
α2

1−β2

β1γ2

dy. (5.16)

As stated in Theorem 2, repeated iteration of B guarantees convergence to the MPE

(see Figure 1).16

16To calculate the equilibrium policies of any of the three models numerically, we have used the

discretization method discussed by Judd (1998). Matlab codes used to compute the numerical

results quoted throughout the paper as well as to produce Table 1 are available from the authors

upon request.
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Theorem 4 The MPE policy l∗ is monotone. It is everywhere decreasing iff α1γ1 <

α2, everywhere increasing iff α1γ1 > α2, and constant iff α1γ1 = α2.

Proof of Theorem 4: In equilibrium, l̄(h) = ξh(l(h)) can by defined as the right-

hand side of (5.16).

We will now differentiate l(h) = ξ−1h (l̄(h)) with respect to h. Observe that it is

justified since ξ−1h is differentiable while from equations (5.15) and (5.16) we also

have that functions ηz (where, for given z ∈ [0,∞), ηz(h) := ξ−1h (z)) and l̄ are

differentiable with respect to h on (0, H̄). It is obtained that:

dl(h)

dh
=

∂ξ−1h (l̄(h))

∂l̄(h)

∂l̄(h)

∂h
+
∂ξ−1h (l̄(h))

∂h
=

=
1

(1 + Ξ(h))2


l(h)

1
β2−1h

α1γ1−α2
1−β1

−1

1− β2


(α1γ1 − α2)× (5.17)

×


1−

β1γ2
1−β2

δ
H̄

 H̄

0
yα1γ2


Ξ(y)
1+Ξ(y)

β1γ2
1

1+Ξ(y)
dy

δ
H̄

 H̄

0
yα1γ2


Ξ(y)
1+Ξ(y)

β1γ2
dy


 ,

with Ξ(y) ≡ l̄(y)
1

β2−1h
α1γ1−α2

1−β2 H̄
α2

1−β2 . Since β1γ1 = β2, and by assumption, 1 >

β1(γ1 + γ2), it follows that
β1γ2
1−β2

< 1 and thus the ratio of two integrals in the last

parenthesis is smaller than one, we find the expression in the last parenthesis to

be positive. In conclusion, dl(h)
dh

> 0 and thus l(h) is increasing in its domain iff

α1γ1 > α2,
dl(h)
dh

< 0 and thus l(h) is decreasing in its domain iff α1γ1 < α2, and l(h)

is constant iff α1γ1 = α2.

Having specified the three cases in which the optimal labor supply policy is

increasing, decreasing, or constant in the human capital endowment, let us discuss

the empirical plausibility of each of the cases. The results are somewhat reassuring

here. Namely, the case where α2 > α1γ1, guaranteed to hold e.g. if α1 ≈ α2

(i.e. if the shares of human capital in production of the consumption good and of

human capital, respectively, are approximately equal), turns out to be significantly
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Figure 1: Convergence to the fixed point of operator B. The fixed point is the

auxilliary policy function l̄(h) = ξh(l(h)). Assumed parameter values: α1 = .3; β1 =

.7;α2 = .3; γ1 = .6; γ2 = .5; β2 = β1γ1 = .42; H̄ = 100; δ = .9.

more plausible empirically than any of the other cases.17 This case, implying that

labor supply decreases (and human capital accumulation increases) with the stock

of human capital, is thus going to be our benchmark case.

5.1 Dynamics

The dynamic properties of the economy are as follows. If all generations play the

MPE strategy, then in the limit as t→ ∞, average human capital tends to h̄ solving
17Becker and Tomes (1986), Lochner (2008), among numerous others, discuss the empirical

evidence that the educational effort and children’s school attainments are unambiguously positively

related to the parental human capital level.
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more plausible empirically than any of the other cases.17 This case, implying that

labor supply decreases (and human capital accumulation increases) with the stock

of human capital, is thus going to be our benchmark case.

5.1 Dynamics

The dynamic properties of the economy are as follows. If all generations play the

MPE strategy, then in the limit as t→ ∞, average human capital tends to h̄ solving
17Becker and Tomes (1986), Lochner (2008), among numerous others, discuss the empirical

evidence that the educational effort and children’s school attainments are unambiguously positively

related to the parental human capital level.
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the implicit equation:

h̄ = 2
1

α2−1 H̄(1− l(h̄))
β2
1−α2 . (5.18)

This result has been confirmed numerically.18

The distribution of human capital will also evolve over time as consecutive gen-

erations will invest different fractions of time to work and education. By definition,

however, the distribution of human capital over H will have a constant density
1
H̄
g(h̄, 1− l(h̄)) = 1

H̄α2+1
h̄α2(1− l(h̄))β2 and a probability mass 1− g(h̄, 1− l(h̄)) =

1− 1
H̄α2

h̄α2(1− l(h̄))β2 concentrated at zero.

5.2 Role of the transition distribution λ

The MPE policy l∗(h) depends on the underlying transition distribution λ but this

impact turns out to be rather modest. As a robustness check of our earlier numerical

results, we have substituted the uniform distribution λ with two alternatives:

• a triangular distribution with density

ϕ(h) =


4
H̄2
h, h ∈ (0, H̄

2
),

4
H̄
− 4

H̄2
h, h ∈ ( H̄

2
, H̄);

(5.19)

• a one-point distribution19 with all probability mass concentrated in H̄/2:

P (h = H̄/2) = 1.

As we have confirmed numerically,20 the greatest labor supply is obtained when the

distribution is uniform, and the least labor is supplied when the probability mass

is concentrated at the mean human capital level. The policy for the triangular

distribution falls in between these two extreme cases (uniform and one-point). The

interpretation of this result is straightforward: the more risk remains that human

capital of the successive generation would be low despite substantial investment, the

18The results are available from the authors upon request.
19Note that even when λ is one-point, there remains a probability that the next generation’s

human capital will be zero. Hence, the assumptions and interpretations of the economy with

strategic interactions studied in Section 3 are still satisfied.
20These results are available from the authors upon request.
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less willing the decision maker would be to invest in human capital. Since individuals

are risk-averse in this model, additional risk lowers education effort and increases

labor supply which guarantees a certain payoff.

6 Numerical assessment of the role of strategic

interactions

Let us now compare the equilibrium dynamics obtained in the numerical example

presented above to the ones generated by the optimal-policy, dynastic model of

Section 3.

Example 3 Let u(c) = cγ, f(h, l) = hα3lβ3, g(h, 1 − l) = 1
H̄α4

hα4(1 − l)β4. Let

the decision maker born at t maximize u(ct) + δu(ct+1). From (4.9), we obtain the

first order condition for the optimal policy function l(h). It is given as an implicit

solution to the equation:

l1−β3γ

(1− l)1−β4
=
H̄α4

δI
hα3γ−α4 , (6.20)

where I ≡

H
V (y)λ(dy|h) is a predetermined constant.

Using the implicit function theorem, it can again be easily shown that l(h) is

everywhere decreasing whenever α4 > α3γ and everywhere increasing whenever

α4 < α3γ. In the special case where α3γ = α4, (6.20) implies that l(h) is constant,

independent of h. This finding parallels Theorem 4 precisely: there are absolutely no

qualitative differences in the optimal policy behavior between the strategic and the

non-strategic model. Quantitative differences are substantial, though, as we shall

see shortly.

Moreover, just like in the strategic case, the first order condition (6.20) can be

solved for l∗(h) explicitly in the special case β3γ = β4. In such case,

l∗(h) =


H̄α4

δI

 1
1−β4 h

α3γ−α4
1−β4

1 +

H̄α4

δI

 1
1−β4 h

α3γ−α4
1−β4

. (6.21)
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What remains to be derived is the constant I =


H
V (y)λ(dy|h). It can be found

as an implicit solution of the following equation:

I =


H
yα3γl∗(y)β1γλ(dy|h)

1− δ

H

�
y
H̄

α4 (1− l∗(y))β4λ(dy|h)
, (6.22)

with l∗ defined as in (6.21) and thus containing I. The approximate solution to this

equation can be easily computed numerically. Please note that knowing I, we can

also obtain an explicit formula for the value function:

V (h) = hα3γl∗(h)β3γ + (6.23)

+


δ

H
yα3γl∗(y)β1γλ(dy|h)

1− δ

H

�
y
H̄

α4 (1− l∗(y))β4λ(dy|h)


h

H̄

α4

(1− l∗(h))β4 .

The direct computation of I would not have been possible if not for the introduction

of stochastic transition in human capital levels. Thanks to that step, the infinite

series expansion of V (h) can be computed as a simple geometric series which has a

closed-form sum. It also enables us to use the law of iterated expectations to convert

an n-tuple integral into a product of n simple integrals.

We are now in the position to compare the equilibrium labor supply policy func-

tion derived from the model with strategic intergenerational interactions with the

alternative non-strategic scenario. To attain direct comparability of both setups, we

must assure γ = γ1 = γ2 – in the dynastic model, the shape parameters of utility

functions u and v must be equal. We shall also fix our other parameters at equal

levels, α1 = α3, β1 = β3, α2 = α4, β2 = β4.

The results are apparent in Figure 2. Significantly more labor is supplied (and

thus, less human capital is accumulated) in the case of the MPE policy in our

baseline model with strategic interactions than in the optimal policy model which

does not include such interactions.21 This directly confirms Theorem 3, providing a

quantitative edge to that result.

21Because of its different utility function, the outcomes of the “joy-of-giving” altruism model

cannot be unambiguously compared to the two alternatives discussed here. There exist certain

cases (though arguably unusual) in which joy-of-giving altruism could give rise to less human

capital accumulation (and more labor supply) than dynastic optimization, possibly even more

than the strategic intergenerational game.
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Figure 2: The difference between equilibrium policy functions l∗(h) in the time-

consistent policy and the optimal but time-inconsistent policy. Assumed parameter

values: α1 = .3; β1 = .7;α2 = .3; γ = .6; β2 = β1γ1 = .42; H̄ = 100; δ = .9.

Furthermore, even though there is a marked difference in the levels of human

capital investment between the models, the shapes of the policy functions are re-

markably similar. With iso-elastic utility and Cobb-Douglas production functions,

and under our benchmark parametrization, labor supply functions l∗(h) always de-

crease with h, indicating that human capital and education effort are positively

related, in line with empirical observations (e.g. Becker and Tomes (1986)).
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6.1 Equilibrium investment in human capital: an interpre-

tation

The uniform ordering of labor supply functions obtained from the models under

consideration (the policy curves such as the ones depicted in Figure 2 never intersect)

offers an intuitive and convincing explanation. In simple words: the more directly

does child’s human capital enter parent’s utility function, the more willing will she

be to invest in it.

The rationale is that with strategic interactions, utility acquired from second

period consumption is conditional on the strategy chosen by the subsequent gener-

ation while with the optimal policy model it is certain. Bernheim and Ray (1987)

identify, however, another force at work here: since in the strategic model, each

generation views the investment made by their children, (1 − l), as pure waste, it

must invest more to obtain the same effect. The latter force turns out to have a

relatively smaller impact on our results in the benchmark parametrization, but it

could become dominant if β’s are sufficiently small.22

Under dynastic optimization, utility is derived from children’s utility which is a

function of their human capital. In such case, the parents know exactly what would

eventually be optimal for their children; because of that knowledge, they can antici-

pate their children’s choices and solve for the social planner’s first best which involves

substantial human capital investment (once you care for your children’s utility, you

also care for your grandchildren’s, great-grandchildren’s, etc.). Perfect anticipation

across generations is not possible in our baseline model with intergenerational inter-
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in children’s human capital is smaller under this scenario. The unambiguous order-

ing of the strategic and the dynastic model, proved formally in Theorem 3, leads to

the conclusion that strategic interactions across generations are an important source

of underinvestment in human capital as compared to the intergenerational first best.

6.2 Sensitivity analysis

In order to obtain a rough approximation of the magnitude of difference between

equilibrium policies in the two considered models, we have carried out a numerical

sensitivity analysis exercise: we have manipulated the parameters of the models

under study and compared the resultant equilibrium policy functions l∗(h). For

each parameter configuration, we calculated two measures of distance between the

functions. Since by Theorem 3, we know that lMPE > lO (where MPE stands for

the Markov perfect equilibrium of our baseline strategic model and O stands for

“optimal”, i.e. the model featuring dynastic optimization), our proposed distance

measures have been defined as follows:

1. The area between lMPE and lo: D1 =


H
(lMPE(h)− lO(h))dh > 0.

2. The minimum distance between lMPE and lO:

D2 = infh∈H |lMPE(h)− lO(h)| > 0.

One crucial finding which facilitates the subsequent analysis and justifies the above

definitions is that the policy functions never intersect.

For simplicity of computations, we have maintained the assumption β2 = β1γ1;

for comparability of our results, we have also retained the condition γ1 = γ2. This

limits the scope of this sensitivity analysis exercise markedly, but our intention

was not to search through the whole parameter space anyway. Even under these

restrictions, we find both important departures from the baseline parametrization

illustrated in Figure 2 and potentially large distances between the two policy func-

tions.

First of all, our numerical exercise confirms that equilibrium policy functions l∗

from different models indeed never intersect (D2 > 0). Furthermore, the numerical
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Table 1: Sensitivity analysis results.

Case D1 D2

Close to Baseline

Baseline 23.7462 0.1353

β1 = 0.5 25.9257 0.1884

α1 = 0.6 24.2728 0.2336

α1 = α2 = 0.6 13.0828 0.0215

α2 = 0.6 13.2903 0.0043

β1 = 0.6; γ = 0.8 22.3790 0.1617

lMPE ≈ l0: low δ

α1 = α2 = 0.6; δ = 0.6 4.0759 0.0044

α1 = α2 = 0.6; δ = 0.3 0.4628 0.0004

δ = 0.6 7.7896 0.0296

β1 = 0.6.γ = 0.8; δ = 0.6 6.4581 0.0361

δ = 0.3 0.9392 0.0026

β1 = 0.6; γ = 0.8; δ = 0.3 0.5958 0.0027

Source: own computations.

results on the ordering of policy functions obtained from the strategic model and

from the optimal policy (lMPE > lO) are obviously consistent with implications of

Theorem 3. The distance between these two policy functions can vary considerably,

though: under some parametrizations (such as the baseline parametrization), it is

large, while under others, in particular those involving radically low δ’s, it may even

be close to zero.

The results of our sensitivity analysis exercise have been summarized in Table 1.

The baseline parametrization is: α1 = 0.3; β1 = 0.7;α2 = 0.3; γ = 0.6; β2 = β1γ1 =

0.42; H̄ = 100; δ = 0.9, just like in the previous section. Unless indicated otherwise,

these parameter choices are maintained throughout the table.
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6.3 A model of joy-of-giving altruism

Let us now proceed to one different example of a model which could be compared

against our benchmark model with intergenerational interactions in human capital

accumulation: a model with joy-of-giving altruism.

A model with joy-of-giving altruism (and, to guarantee direct comparability, with

a stochastic transition in human capital levels) can be generally specified as:

max
l̂∈[0,1]

u(f(h, l̂)) +



H

v(y)G(dy;h, 1− l̂). (6.24)

The crucial difference between this model and the main model of the current paper

consists in the fact that here, parents’ utility depends directly on their children’s

human capital and not on their consumption (v(ht+1) instead of v(ct+1)).

Concentrating on Markovian policies, the first order condition for optimal labor

supply l(h) is given by:

u(f(h, l(h)))f 2(h, l(h)) = g2(h, 1− l(h))



H

v(y)λ(dy|h), (6.25)

guaranteeing that the marginal utility of consumption acquired thanks to an extra

unit of time devoted to work is exactly equal to the expected marginal cost in terms

of lost human capital of the next generation.

Example 4 Let u(c) = cγ5, v(h) = (h)γ6, f(h, l) = hα5lβ5, g(h, 1−l) = 1
H̄α6

hα6(1−
l)β6. From (6.25), we obtain the first order condition for the optimal policy l(h). It

is given as an implicit solution to the equation:

l1−β5γ5

(1− l)1−β6
=
β5γ5

δβ6

(1 + γ6)H̄
α6−γ6hα5γ5−α6 . (6.26)

Using the implicit function theorem, it is straightforward to show that l(h) is

everywhere decreasing whenever α6 > α5γ5 and everywhere increasing whenever

α6 < α5γ5. In the special case where α5γ5 = α6, (6.26) implies that l(h) is con-

stant, independent of h. This finding is crucial here because it is an exact ana-

logue to Theorem 4 and an equivalent theorem which holds for the dynastic model:

whenever the MPE labor supply policy of the model with strategic interactions is de-

creasing/increasing, it is also decreasing/increasing in the model with“joy-of-giving”

altruism.
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39Just like in Example 2, the above equation (6.26) can be solved for l∗(h) explicitly

in the special case β5γ5 = β6. In such case,

l∗(h) =

�
γ6+1

δ

 1
1−β6 H̄

α6−γ6
1−β6 h

α5γ5−α6
1−β6

1 +
�

γ6+1
δ

 1
1−β6 H̄

α6−γ6
1−β6 h

α5γ5−α6
1−β6

. (6.27)

For the highest available level of comparability, one has to impose γ6 = β1γ2

in order to equalize the elasticities of h in both utility functions. The functions

themselves remain different, though.

7 Conclusion

The purpose of the current paper has been to accomplish the two principal tasks:

(i) to show how a Markov perfect equilibrium (MPE) policy function can be com-

puted in a model with fully-specified intergenerational interactions in human capital

accumulation, within an otherwise standard discrete-time framework; (ii) to com-

pare the outcomes of the strategic model with a benchmark model which neglects

intergenerational interactions. To this end, we have proven analytically that when

compared to a model with dynastic optimization, our strategic model predicts un-

ambiguously lower equilibrium investment in human capital accumulation. We have

also demonstrated how the novel constructive method of computing Markov perfect

equilibria, due to Balbus, Reffett, and Woźny (2008), may be used in computational

practice.

We believe that finding a constructive algorithm for computing MPE policies in

models of intergenerational altruism is a significant step forward in modeling strate-

gic linkages across generations. In this paper, we have shown that this novel tool,

developed by Balbus, Reffett, and Woźny (2008), can be generalized to capture inter-

generational linkages in human capital accumulation. We have shown under which

conditions the MPE policy exists and is unique, we have proven its monotonicity,

and also presented a workhorse example for which most calculations could be done

analytically, and for which the numerical convergence of our iterative procedure to

the MPE is quick and easy.
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We have also presented the conditions under which the MPE labor supply policy

is increasing or decreasing. These conditions are the same for the strategic and

non-strategic model.

What remains to be done is, first and foremost, a generalization of the construc-

tive algorithm for computing MPE policies into higher dimensions. This is enforced

by the fact that most economic models featuring intergenerational altruism are set

up with multiple choice and state variables. Another issue which ought to be dealt

with is the general equilibrium decentralization for both strategic and dynastic op-

timization models. As emphasized in the introduction, the nature of the stochastic

transition underlying the analyzed class of models makes it inherently difficult to ob-

tain a general equilibrium characterization of a decentralized economy. We feel that

these two steps are necessary in order to bring models with strategic interactions

in human capital accumulation to the level of sophistication which is now common

with models lacking such strategic interactions.

41



Appendix: an auxiliary theorem

N a t i o n a l  B a n k  o f  P o l a n d40

Appendix: an auxiliary theorem

Definition 2 Let E be a real Banach space and P ⊆ E be a nonempty, closed,

convex set. Then:

• P is called a cone if it satisfies two conditions: (i) x ∈ P,  > 0⇒ x ∈ P and

(ii) x ∈ P,−x ∈ P ⇒ x = θ, where θ is a zero element of P ,

• suppose P is a cone in E and P ◦ = ∅, where P ◦ denotes the set of interior

points of P , we say that P is a solid cone,

• every cone P in E defines an order relation ≤ in E as follows:

x ≤ y if y − x ∈ P,

• a cone P is said to be normal if there exists a constant N > 0 such that:

(∀x, y ∈ P ) θ ≤ x ≤ y ⇒ x ≤ Ny.

Theorem 5 (Guo, Cho, and Zhu (2004)) Let P be a normal solid cone in a

real Banach space with partial ordering ≤ and B : P → P be a decreasing operator

(i.e. if l1 < l2 ∈ P then Bl2 ≤ Bl1) satisfying:

(∃r, 0 < r < 1)(∀l ∈ P ◦), (∀t, 0 < t < 1) trB(tl) ≤ Bl, (0.28)

then B has a unique fixed point in P ◦ and the following holds:

(∀l0 ∈ P ◦) lim
n→∞

ln − l∗ → 0, (0.29)

where (∀n ≥ 1) ln = B(ln−1).
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