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Abstract

This paper introduces a formal method of combining expert and model density forecasts

when the sample of past forecasts is unavailable. It works directly with the expert

forecast density and endogenously delivers weights for forecast combination, relying on

probability rules only. In the empirical part, we illustrate how our framework can be

applied in forecasting US inflation by mixing density forecasts from an autoregressive

model and the Survey of Professional Forecasters.

Keywords: Combining density forecasts; Forecast evaluation; Bayesian inference; Pre-

dictivism

JEL classification: C11, C53
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Non-technical summary

The topic of combining forecasts has received considerable attention both in the theoret-

ical literature and empirical applications. This can be explained by a well-documented

finding that merging point forecasts can improve forecast accuracy. In most cases, a

typical combined point forecast is calculated as a weighted average of individual fore-

casts, where weights can be fixed and computed using classical or Bayesian methods,

or can be time-varying. The literature on density forecast combination is much more

sparse. As a result, a simple average of cumulative distribution functions is used in

most empirical applications.

Another important divergence between the literature and practical needs is that

the main focus of the former has evolved into developing effective methods of com-

bining forecasts from various estimated models. At the same time, one of the main

problems faced by decision makers is how to incorporate expert judgment into model-

based density forecasts. For example, most central banks have developed sophisticated

macroeconomic models that are used for forecasting, but due to the lack of formal

methods resort to ad hoc techniques while adjusting their model forecasts. This type of

dilemmas is characteristic for many other institutions and firms, which in most cases use

purely judgmental forecasts, apply some simple expert corrections or combine forecasts

with ad hoc weights, for example assuming them equal for an expert and a model.

At the same time, potential gains from merging expert and model-based density

forecasts can be quite substantial as they seem to be complementary at least in some

respects. In particular, there are reasons to expect that combined forecasts could ben-

efit from point accuracy of experts and more valid confidence intervals generated by

econometric models.

This paper contributes to the literature by introducing a new formal method of com-
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bining expert and model-based density forecasts. Since the method applies Bayesian

inference and comes close in the essence to the predictivism, we dub it as the Predic-

tivistic Bayesian Forecasting System (PBFS). A crucial feature of our approach is that

the weights it delivers are endogenously determined within the framework and rely on

probability rules only, which contrasts with the literature surveyed above. Its output

can be interpreted as a result of merging information from three sources: an expert, a

statistical model and the economic theory.

Importantly, in comparison to the standard methods of combining density forecasts,

our approach can be applied even if the previous history of forecasts is unavailable,

which is often the case for expert-based forecasts. Another important advantage of the

PBFS is that it is able to work directly with a density forecast of the expert. This is

in contrast to the standard Bayesian approach in incorporating expert knowledge into

statistical models, which hinges on the information conversion from the expert’s density

forecast into the prior for statistical model parameters.

In the empirical part of the article we demonstrate how to implement the PBFS

algorithm to combine US inflation forecasts from a simple autoregressive model and

the Survey of Professional Forecasters (SPF). Given simplicity of our application, the

results of the out-of-sample forecasting performance evaluation look very promising.

Even though point forecasts from the PBFS are less accurate than those from experts

alone, our framework clearly outperforms the SPF in terms of interval forecasts.
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1 Introduction

The topic of combining forecasts has received considerable attention both in the theoret-

ical literature and empirical applications. This can be explained by a well-documented

finding that merging point forecasts can improve forecast accuracy (Timmermann,

2006). In most cases, a typical combined point forecast is calculated as a weighted

average of individual forecasts, where weights can be fixed and computed using classi-

cal (Elliott and Timmermann, 2004) or Bayesian methods (Min and Zellner, 1993), or

can be time-varying as e.g. in Guidolin and Timmermann (2009).

The literature on density forecast combination is much more sparse. As a result, a

simple average of cumulative distribution functions is used in most empirical applica-

tions. Only recently some authors have proposed methods that can be used to combine

density forecasts (e.g. Hall and Mitchell, 2007), but this research area remains still rela-

tively unexplored. This might be seen as surprising as density forecasts are widely used

in various domains like macroeconomic forecasting, risk analysis or weather forecasting.

Clearly, demand for methods of combining density forecasts is far from satiated.

Another important divergence between the literature and practical needs is that

the main focus of the former has evolved into developing effective methods of com-

bining forecasts from various estimated models. At the same time, one of the main

problems faced by decision makers is how to incorporate expert judgment into model-

based density forecasts. For example, most central banks have developed sophisticated

macroeconomic models that are used for forecasting, but due to the lack of formal meth-

ods resort to ad hoc techniques while adjusting their model forecasts (Pagan, 2003).

This type of dilemmas is characteristic for many other institutions and firms, which

in most cases use purely judgmental forecasts or apply some simple expert corrections

(Lawrence et al., 2006).

It has to be stressed that merging expert judgment with output from statistical mod-
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els using the existing tools may be highly problematic, even for point forecasts. Since

in many relevant cases the sample of past expert forecast errors is short or unavail-

able, standard methods of obtaining optimal weights cannot be applied. As a result,

the only option for decision makers is to combine forecasts with ad hoc weights, for

example assuming them equal for an expert and a model.

At the same time, potential gains from merging expert and model-based density

forecasts can be quite substantial as they seem to be complementary at least in some

respects. The empirical literature suggests that the accuracy of expert-based point fore-

casts for standard macroeconomic variables tend to be higher than those obtained from

state-of-art estimated models (Clark and McCracken, 2006; Rubaszek and Skrzypczyn-

ski, 2008). On the other hand, it is well established that experts tend to significantly

underestimate uncertainty.1 As demonstrated by Giordani and Soderlind (2003), this is

also evident for individual inflation forecasts in the Survey of Professional Forecasters

(SPF). All in all, there are reasons to expect that combined forecasts could benefit from

point accuracy of experts and more valid confidence intervals generated by econometric

models.

This paper contributes to the literature by introducing a new formal method of com-

bining expert and model-based density forecasts. Since the method applies Bayesian

inference and comes close in the essence to the predictivism, we dub it as the Predic-

tivistic Bayesian Forecasting System (PBFS). A crucial feature of our approach is that

the weights it delivers are endogenously determined within the framework and rely on

probability rules only, which contrasts with the literature surveyed above. Moreover,

in comparison to the standard methods of combining density forecasts (e.g. using log

score-based averaging, see Hall and Mitchell, 2007; Jore et al., 2010), our approach can

be applied even if the previous history of forecasts is unavailable, which is often the

1See Lawrence et al. (2006) for a discussion of possible reasons.
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case for expert-based forecasts. Another important advantage of the PBFS is that it is

able to work directly with a density forecast of the expert. This is in contrast to the

standard Bayesian approach in incorporating expert knowledge into statistical models,

discussed e.g. in Kadane (1980), Kadane et al. (1980) or Garthwaite et al. (2005),

which hinges on the information conversion from the expert’s density forecast into the

prior for statistical model parameters. As a result, the PBFS can absorb any, even

highly nonstandard form of the expert’s forecast probability density function (pdf),

while in the standard Bayesian approach the expert’s pdf is restricted by the form of

the likelihood and the prior assumed by the modeller.

In the empirical part of the article we demonstrate how to implement the PBFS

algorithm to combine US inflation forecasts from a simple autoregressive model and

the SPF. Given simplicity of our application, the results of the out-of-sample forecast-

ing performance evaluation look very promising. Even though point forecasts from the

PBFS are less accurate than those from experts alone, our framework clearly outper-

forms the SPF in terms of interval forecasts.

The rest of this paper is structured as follows. Section 2 lays out the PBFS frame-

work. The algorithm for a simple autoregressive model and an expert forecast density of

a known type is presented in section 3. Section 4 applies this example to forecasting US

inflation. Section 5 discusses the out-of-sample forecasting performance of the PBFS

and its individual components. The last section concludes.

2 The PBFS setup

Our departure point is the following factorization of the joint past and future data pdf:

p(y∗|y) =
p(y|y∗)p(y∗)

p(y)
(1)
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where y and y∗ denote past and future realization of some vector of variables, respec-

tively, and p(y) =
∫

p(y|y∗)p(y∗)dy∗.

The left-hand side of equation (1) is the posterior forecast pdf, which is a result

of updating some prior beliefs about future observations p(y∗), after having confronted

them with the past data. In the PBFS, we will assume that the prior is supplied by

an expert (E), while p(y|y∗) comes from a statistician (S). Hence, equation (1) can

be seen as a formula for merging expert and model-based knowledge into a combined

posterior forecast (C). We write this explicitly as:

pC(y∗|y) =
pS(y|y∗)pE(y∗)

pC(y)
(2)

where pC(y) =
∫

pS(y|y∗)pE(y∗)dy∗.

Before we proceed with further derivations, two comments are in order. First, one

can note that the way we write formula (1) abstracts away from any model parameters

as all densities are functions of observables only. This is in contrast to the standard

Bayesian inference, where the departure point is the model p(y, θ), with θ standing

for a vector of parameters. As we will see, the parameters do eventually appear in

the PBFS once we start characterizing the statistician’s input. However, they are

introduced indirectly and only for the ease of modeling. Therefore, our approach is in

line with the inferential framework advocated by predictivists, exemplified by Geisser

(1993), Bernardo and Smith (1994, pp. 165-167), Lane (1985) and, according to Stigler

(1982), Thomas Bayes himself. We note that many Bayesian thinkers support the idea

that probability statements should be confined to observables (see de Finetti, 1975, pp.

200-201; Lindley, 2006, p. 77).

Second, some may question describing expert judgment by pE(y∗) on the grounds

that experts usually take into account the past data while formulating their forecasts.

This is an analogous problem to the one that bothered Thomas Sargent (Klamer, 1984,

11
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p. 75):

It’s critical that you didn’t look at the data before. Acquiring priors from

the data and then going back and using the same data does not seem to be

right. Such objections are important for me. I think about them all the time

but I don’t let them stop me.

In general, the ”data double-use” problem has already been extensively discussed by

many authors (see e.g. Poirier, 1995, and references therein). We note, however, that

the idea of eliciting the prior after seeing the data has been already promoted in the

Bayesian literature by Hill (1985, 1992) and underlies much of applied Bayesian econo-

metric research, take the estimation of dynamic stochastic general equilibrium models

for instance (Smets and Wouters, 2003). In fact, there are fundamental reasons why

the view that the prior could be formed after seeing the data is legitimate. The argu-

mentation is as follows. First, as it was justified by Good (1950, p. 41), Jeffreys (1961,

chap. 1) or de Finetti (1972, p. 150), the Bayes formula should be regarded as a kind of

inductive tool. Second, inductive inference is correct if it does not miss any information

available about the inferential object (de Finetti, 1975, p. 196 and Fisher, 1956, p. 55).

In our model the inferential object is p(y∗, y), which was decomposed (but only for

our convenience) as p(y|y∗)p(y∗). Note that in most theories of probability the formula

of conditional probability is just a definition. Since we do not make “inductive”mistake

only if we use all available information while reasoning about p(y∗, y), the same is true

for p(y|y∗) and p(y∗) taken individually. We come to a conclusion that the essential

defining property of p(y∗) is not that it is a priori but the marginal density. Provided

that p(y∗) does not depend functionally on y our inference is fully coherent, i.e. we

obey the probability rules. There are no other constraints imposed on the expert. This

is perfectly consistent with the view about the induction contained in Keynes (1921,

pp. 305-306). In his pre-statistical language, p(y|y∗)p(y∗) is called a hypothesis. He

12states that the question as to whether a particular hypothesis happens to be propounded

before or after [observations] examination is quite irrelevant because it is the union of

prior knowledge, with the inductive grounds which arise out of the immediate instances,

that lends weight to an hypothesis, and not the occasion on which the hypothesis is first

proposed. The irrelevance of the moment when we elicit the marginal density, which

is better known as a priori density, was also emphasized by Hill (1992) and de Finetti

(1975, p. 198). Lastly, we note that similar defence of our position may be based on

Carnap (1950, pp. 211-212, 253 and 494). For the above reasons, we claim that the use

of expert judgment as a prior in our framework cannot be dismissed as illegitimate.

Now we can move to defining the statistician’s part. If she is a Bayesian, the relevant

component of formula (2) can be written as:

pS(y|y∗) =
pS(y∗|y)pS(y)

pS(y∗)
(3)

The statistician uses an econometric model, so all terms in (3) are marginal densities,

with the model parameters θ integrated out. In particular:

pS(y∗|y) =

∫
pS(y∗|y, θ)pS(θ|y)dθ (4)

is the standard model-based Bayesian forecast,

pS(y) =

∫
pS(y|θ)pS(θ)dθ (5)

is the marginal data density implied by the model and

pS(y∗) =

∫
pS(y∗|y)pS(y)dy =

∫
pS(y∗|θ)pS(θ)dθ (6)

can be called a prior forecast density of the statistician as it summarizes all model-

13
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based information on the future values of variables of interest, without a direct use of

knowledge about their past realizations. We note that pS(y∗|θ) for stationary models

is the unconditional distribution of observations.

After inserting (3) into (2) and absorbing into the proportionality sign all densities

that do not depend on y∗, we obtain the operational version of the PBFS:

pC(y∗|y) ∝ pS(y∗|y)

pS(y∗)
pE(y∗) (7)

Formula (7) shows how to combine forecast densities from an econometric model

with those generated by experts. Importantly, the implicit weights attached to these

two sources of knowledge are endogenously determined within the PBFS framework and

rely on probability rules only. This is in contrast to most of the literature, resorting to

ad hoc weights (e.g. finite mixture distribution suggested by Wallis, 2005) or relying

on the decision maker’s assessment of the credibility of an expert (Morris, 1974).

The model-based input to the operational version of the PBFS consists of two parts.

One, defined in equation (4), is just a standard Bayesian forecast pdf. However, in the

PBFS the statistician is also required to provide the same object as the expert, i.e.

the marginal pdf for future observations, given by equation (6). As a result, the PBFS

delivers a framework for formal use of three sources of information in the forecasting

process:

• expert judgment pE(y∗),

• conditional forecast from a statistical model pS(y∗|y) ,

• marginal density pS(y∗).

The last term can incorporate knowledge on the long-run dynamics implied by the

economic theory. To see this, note that according to equation (6) pS(y∗) is a weighted
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vector autoregressions.

3 PBFS algorithm for AR(1) model

The main difficulty with using the PBFS is that its output, i.e. the combined posterior

forecast pdf, cannot be derived analytically, except for some uninteresting degenerate

cases. This is very often true even if all densities appearing on the right-hand side of

equation (7) are obtainable in an analytical form. Therefore, sampling methods have

to be applied.

In order to illustrate how the PBFS can be used in practice, we consider its very

simple, yet unobtainable analytically variant. Let us assume that the forecast is formu-

lated for one period ahead and the statistician’s part is based on the stationary AR(1)

model:

yt = β0 + β1yt−1 + εt (8)

where εt ∼ N(0, σ2) and |β1| < 1. The statistician is a Bayesian and makes the following

assumptions on the prior distributions of the model’s parameters:

β|σ2 ∼ Ntr(β, σ2I)

σ2 ∼ IG(v1, v2)

(9)

where β = (β0, β1), the underlined symbols are hyperparameters, IG is the inverse

gamma distribution and Ntr denotes the truncated normal distribution over the interval
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15consistent with stationarity, i.e. when |β1| < 1. As regards the expert, we assume that

her forecast is given by a pdf of a known type.

In the simple illustration presented in this section pE(y∗) has an analytical form. The

other components of (7), i.e. those attributed to the statistician, cannot be obtained

analytically. This is due to the stationarity restriction |β1| < 1 for (4) and the fact that

in (6) the parameters enter ps(y
∗|θ) through unconditional moments E(y∗) = β0

1−β1
and

var(y∗) = σ2

1−β2
1
.

Our strategy to compute (4) and (6) is as follows. To obtain (4), we draw N

times from the joint posterior of θ and approximate the value of pS(y∗|y) at y∗ by

1
N

∑N
i=1 pS(y∗|y, θ(i)), where θ(i) denotes the i-th draw from the posterior. In the case of

(6), we exploit the fact that analytical integration with respect to β0 and σ2 is possible.

Then, drawing from the marginal prior for β1, which is t-Student, we approximate the

value of pS(y∗) at y∗ as 1
N

∑N
i=1 pS(y∗|β(i)

1 ). We note that pS(y∗|β(i)
1 ) is also t-Student.2

Having found a way to approximate pS(y∗|y) and pS(y∗), standard Bayesian sam-

pling techniques can be used to obtain the final PBFS output, i.e. pC(y∗|y) defined

in equation (7). In our application presented in the next section we will rely on the

random walk Metropolis-Hastings (MH) algorithm. It has to be noted that even though

the numerical approximation of the integrals discussed above is conceptually simple, the

need to evaluate them in every step of the MH chain will significantly slow down the

algorithm compared to its simple applications. Hence, in general, combining forecasts

using the PBFS can be relatively time-consuming.

2Detailed derivations are available from the authors upon request.
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4 An application to US inflation

We illustrate the typical output one can get from the PBFS by combining interval

forecasts of US annual GDP deflator inflation from the SPF with the AR(1) model. We

skip a detailed discussion of the SPF and its interval inflation forecasts, referring an

interested reader to exhaustive descriptions in Croushore (1993), Diebold et al. (1999)

or Giordani and Soderlind (2003). For the purpose of our study it is only important

to mention that each forecaster participating in the survey is asked to attach a certain

probability to a number of bins in which annual inflation might fall in the current and

next year. The answers are published in the form of interval forecasts.

To construct the PBFS forecasts we proceed as follows:

1. We take the interval inflation forecast from the SPF for a given year τ , formu-

lated in the first quarter of the same year. Following the arguments in Giordani

and Soderlind (2003), we use the probabilities attached to each of the ten bins

to approximate the expert density forecast for year τ , i.e. pE,τ (y
∗), with a Gaus-

sian distribution, assuming that all probability mass are located at the interval

midpoints.

2. We set the priors for the AR(1) at β
0

= 1, β
1

= 0.5, v1 = 2 and v2 = 1.

3. We use annual inflation data, taken from the real-time data set for macroe-

conomists (Croushore and Stark, 2001), to evaluate pS,τ (y
∗|y) and pS,τ (y

∗), where

y denotes real-time data available in the first quarter of year τ , i.e. inflation

time series from 1948 to year τ − 1. Integrals given in formulas (4) and (6) are

calculated as explained in section 3 with N=2,500 draws.

4. We apply the MH algorithm with 100,000 iterations, of which 10,000 initial draws

are burned, to obtain the PBFS density forecast pC,τ (y
∗|y).
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The results for selected years, which illustrate the logic behind the PBFS, are pre-

sented in Figure 1. Several points warrant a comment. First, forecast densities obtained

from the PBFS can be nonstandard: skewness, bimodality or other irregular features

may arise. Second, the PBFS output does not resemble the results of a simple forecast

averaging with constant weights as the position of the combined density peak relative

to the statistical and expert forecast pdfs differ across the forecasting rounds. Finally,

pdf from the PBFS can have higher or lower dispersion than its individual components.

In particular, if expert judgment and forecast from the statistical model do not diverge

too much and are informative, i.e. they are not too similar to the unconditional fore-

cast pdf, the PBFS yields a relatively concentrated density. On the other hand, if the

expert and statistician substantially disagree about the central tendency, the forecast

uncertainty implied by the PBFS is high. We consider these features of our method to

combine forecasts as very appealing.

5 Out-of-sample forecasting performance

We believe that our discussion has so far demonstrated that the PBFS is a promising

method that can be used to combine expert and model-based forecasts. However, a

natural question arises: how does the PBFS perform relative to some benchmarks? We

address this question by evaluating the out-of-sample point and interval forecasts for

US inflation from the AR(1) model, the SPF and the PBFS.

For each year τ from the period 1992-2009 we generate density forecasts of annual

inflation from the competing models in line with the algorithm described in section 4.

The choice of the evaluation sample is motivated by the change in the number of bins

and their ranges that took place in the SPF questionnaire in 1992 and made the earlier

observations incomparable to the most recent ones. As a result, the evaluation sample
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consists of 18 observations. Forecasts for year τ are compared to actuals aτ from the

“first release” vintage, namely the advance release of the US national accounts from the

first quarter of year τ +1. As discussed in Croushore (2006), experts from the SPF aim

to accurately predict the first release of inflation figures by the Bureau of Economic

Analysis rather than the final revised data. Consequently, it seems natural that one of

the inputs to the PBFS, and hence the PBFS itself, should be evaluated with the “first

release” actuals.

We start our forecasting contest by calculating point forecasts f j
τ , which are given

by the median of the density forecasts, and the corresponding forecast errors ej
τ =

aτ − f j
τ , where j = C,E, S for the PBFS, SPF and AR model, respectively. Standard

out of sample performance statistics, i.e. the mean forecast error (MFE) and root

mean squared forecast error (RMSFE), show that the SPF performs best and the AR

model is the worst (see Table 1). The calculated MFEs indicate that all forecasts

overestimate the level of inflation, which might be due to the downward trend in inflation

in the evaluation sample. As regards the RMSFEs, the SPF is by almost 30% more

accurate than the PBFS and by more than 40% better than the AR model. We analyze

whether the out-of-sample performance differences suggested by the RMSFE statistics

are significant with the Harvey et al. (1997) test (HLN), which corrects the Diebold and

Mariano (1995) test for the sample size. The results show that the above differences

are significant at the 1% level. Moreover, at the 10% level, the PBFS outperforms

the AR model in forecasting accuracy. It should be noted that these results should

be interpreted with caution as the HLN test does not take into account the real-time

nature of the data applied in the analysis (see Clark and McCracken, 2009 for a detailed

exposure of the problem).

Overall, the comparison of point forecasts confirms the well-known finding from the

literature, stating that point forecasts from the SPF are very difficult to beat. It should
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be emphasized, however, that the inferior performance of the PBFS point forecasts

relative to the SPF can be at least partly explained by the fact that the AR model

it incorporates is definitely too simple to account for the declining trend in inflation

observed in the evaluation sample.

In the second step we analyze the performance of the competing models in terms of

interval forecasts. An interval forecast can be considered well calibrated if the frequency

of realized observations falling into the forecast interval equals the given coverage prob-

ability of this interval α. To test for correct interval coverage we follow Christoffersen

(1998) by calculating the sequence of hit indicators:

Ij
τ (α) =





1 if aτ ∈ [F−1
j,τ (1−α

2
), F−1

j,τ (1+α
2

)]

0 if aτ /∈ [F−1
j,τ (1−α

2
), F−1

j,τ (1+α
2

)]
(10)

where Fj,τ is the cumulative density function of forecast from method j, with j =

C,E, S. For a correctly specified forecast, the sample estimates of interval coverage

α̂j = 1
18

∑2009
τ=1992 Ij

τ (α) should be equal to their true value α.

The upper-left panel of Figure 2 shows the empirical coverage probabilities for the

competing forecasting methods, plotted against their theoretical counterparts. An ideal

forecast should thus have an empirical coverage rate which is located on the 45 degree

line. According to our results, both the AR model and the SPF tend to generate too

wide interval forecasts, which confirms the findings of Diebold et al. (1999) that the

SPF tends to overestimate uncertainty.3 The curve for the PBFS curve is closest to the

45 degree line, which indicates that the PBFS produces better interval forecasts than

its two components.

We conduct a more formal analysis of the interval forecast accuracy with three tests

proposed by Christoffersen. The first one tests the null H0 : E {Ij
τ (α)} = α, which

3This is despite the fact that individual forecasters from the survey usually underestimate uncer-
tainty of their inflation forecasts (Giordani and Soderlind, 2003).
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states that unconditional coverage is correct. If the null is true, the relevant likelihood

ratio test statistic LRuc is χ2(1) distributed. The results presented in the upper-right

panel of Figure 2 show that α̂ from the AR model and the SPF in most cases are

significantly above α. The PBFS is the only method that is able to generate forecasts

with a correct unconditional coverage. As emphasized by Christoffersen, tests for the

correct unconditional coverage are insufficient when dynamics are present in the data

generating process of Ij
τ (α). This problem is addressed by the second test with the null

H0 : E {Ij
τ (α)} = E

{
Iα
τ |Iα

τ−1

}
, which states that Ij

τ (α) is independently distributed.

Under the null, the relevant likelihood ratio test statistic LRind ∼ χ2(1). According

to the results presented in the bottom-left panel of Figure 2, autocorrelation should

not significantly influence the unconditional coverage test in our application. This is

confirmed by the results of the joint likelihood ratio test of unconditional coverage

and independence, where the relevant statistic under the null LRcc ∼ χ2(2) (see the

bottom-right panel of Figure 2).

6 Concluding remarks

The aim of this article was to design a formal method of combining expert and model-

based density forecasts when the sample of past forecasts is unavailable, without resort-

ing to ad hoc weights. This kind of framework naturally addresses the problem faced

by decision makers, who often need to incorporate their judgment about the future

into model-based density forecasts. The PBFS proposed in this article works directly

with expert’s density forecast and endogenously delivers implicit weights for forecast

combination. Its output can be interpreted as a result of merging information from

three sources: an expert, a statistical model and the economic theory.

In the second part of the article we have shown how to implement the PBFS al-
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gorithm to combine US inflation forecasts from a simple autoregressive model and the

SPF. The results suggest that our framework can be successfully used in empirical ap-

plications. Given the relative simplicity of the autoregressive model, a natural extension

of our analysis would be to apply the PBFS to combining expert forecasts with more

sophisticated tools, such as dynamic stochastic general equilibrium models, which are

currently used in many policy-making institutions. While such an application would

certainly be much more demanding in terms of computational time, there is nothing in

the PBFS preventing its use in such cases. The other possible extension would be to

allow for multiple experts or multiple models. We leave these issues for future research.
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Tables and figures

Table 1: Point forecast evaluation

Standard statistics
PBFS (C) SPF (E) AR (S)

MFE -0.41 -0.13 -0.48
RMSFE 0.59 0.41 0.72

Harvey et al. test
H1 HLN stat. probability
SPF dominates PBFS 2.84 0.01
SPF dominates AR 2.56 0.01
PBFS dominates AR 1.46 0.08

Figure 1: Forecast pdfs from PBFS and its components for US inflation
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Figure 2: Interval forecast evaluation
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